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4 Statistical Learning Basics

Goal

Maximum Likelihood, Prior, Posterior, MAP, Bayesian LR

Alert 4.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 4.2: Distribution and density

Recall that the cumulative distribution function (cdf) of a random vector X ∈ Rd is defined as:

F (x) := Pr(X ≤ x),

and its probability density function (pdf) is

p(x) :=
∂dF

∂x1 · · · ∂xd
(x), or equivalently F (x) =

∫ x1

−∞
· · ·
∫ xd

−∞
p(x) dx.

Clearly, each cdf F : Rd → [0, 1] is

• monotonically increasing in each of its inputs;

• right continuous in each of its inputs;

• limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

On the other hand, each pdf p : Rd → R+

• integrates to 1, i.e.
∫∞
−∞ p(x) dx = 1.

(The cdf and pdf of a discrete random variable can be defined similarly and is omitted.)

Remark 4.3: Change-of-variable

Let T : Rd → Rd be a diffeomorphism (differentiable bijection with differentiable inverse). Let X = T(Z),
then we have the change-of-variable formula for the pdfs:

p(x) dx ≈ q(z) dz, i.e. p(x) = q(T−1(x))

∣∣∣∣det
dT−1

dx
(x)

∣∣∣∣
q(z) = p(T(z))

∣∣∣∣det
dT

dz
(z)

∣∣∣∣ ,
where det denotes the determinant.

Definition 4.4: Marginal, conditional, and independence

Let X = (X1,X2) be a random vector with pdf p(x) = p(x1,x2). We say X1 is a marginal of X with pdf

p1(x1) =

∫ ∞
−∞

p(x1,x2) dx2,
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where we marginalize over X2 by integrating it out. Similarly X2 is a marginal of X with pdf

p2(x2) =

∫ ∞
−∞

p(x1,x2) dx1.

We then define the conditional X1|X2 with density:

p1|2(x1|x2) = p(x1,x2)/p2(x2),

where the value of p1|2 is arbitrary if p2(x2) = 0 (usually immaterial). Similarly we may define the conditional
X2|X1. It is obvious from our definition that

p(x1,x2) = p1(x1)p2|1(x2|x1) = p2(x2)p1|2(x1|x2),

namely the joint density p can be factorized into the product of marginal p1 and conditional p2|1. Usually, we
omit all subscripts in p when referring to the marginal or conditional whenever the meaning is obvious from
context.

Iterating the above construction, we obtain the famous chain rule:

p(x1,x2, . . . ,xd) =

d∏
j=1

p(xj |x1, . . . ,xj−1),

with obviously p(x1|x1, . . . ,x0) := p(x1). We say that the random vectors X1,X2, . . . ,Xd are independent if

p(x1,x2, . . . ,xd) =

d∏
j=1

p(xj).

All of our constructions above can be done with cdfs as well (with serious complication for the conditional
though). In particular, we have the Bayes rule:

Pr(A|B) =
Pr(A,B)

Pr(B)
=

Pr(B|A) Pr(A)

Pr(B,A) + Pr(B,¬A)
.

Definition 4.5: Mean, variance and covariance

Let X = (X1, . . . , Xd) be a random (column) vector. We define its mean (vector) as

µ = EX, where µj =

∫
xj · p(xj) dxj

and its covariance (matrix) as

Σ = E(X− µ)(X− µ)>, where Σij =

∫
(xi − µi)(xj − µj) · p(xi, xj) dxi dxj .

By definition Σ is symmetric Σij = Σji and positive semidefinite (all eigenvalues are nonnegative). The j-th
diagonal entry of the covariance σ2

j := Σjj is called the variance of Xj .

Exercise 4.6: Covariance

Prove the following equivalent formula for the covariance:

• Σ = EXX> − µµ>;

• Σ = 1
2E(X−X′)(X−X′)>, where X′ is iid (independent and identically distributed) with X.

Yaoliang Yu 41 –Version 0.1–May 22, 2020–

https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Positive_semidefinite_matrix
https://en.wikipedia.org/wiki/Variance


CS480/680–Winter 2021 §4 STATISTICAL LEARNING BASICS University of Waterloo

Suppose X has mean µ and covariance Σ. Find the mean and covariance of AX + b, where A,b are
deterministic.

Example 4.7: Multivariate Gaussian

The pdf of the multivariate Gaussian distribution (a.k.a. normal distribution) is:

p(x) = (2π)−d/2[det(Σ)]−1/2 exp
(
− 1

2 (x− µ)>Σ−1(x− µ)
)
,

where d is the dimension and det denotes the determinant of a matrix. We typically use the notation X ∼
N (µ,Σ), where µ = EX is its mean and Σ = E(X− µ)(X− µ)> is its covariance.

An important property of the multivariate Gaussian distribution is its equivariance under affine transfor-
mations:

X ∼ N (µ,Σ) =⇒ AX + b ∼ N (Aµ+ b, AΣA>).

(This property actually characterizes the multivariate Gaussian distribution.)

Exercise 4.8: Marginal and conditional of multivariate Gaussian

Let
[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. Prove the following results:

X1 ∼ N (µ1,Σ11), X2|X1 ∼ N (µ2 + Σ21Σ−1
11 (X1 − µ1),Σ22 − Σ21Σ−1

11 Σ12);

X2 ∼ N (µ2,Σ22), X1|X2 ∼ N (µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).

Remark 4.9: Bias-variance trade-off

Suppose we are interested in predicting a random (scalar) quantity Y based on some feature vector (a.k.a.
covariate) X, using the function f̂ . Here the hat notation suggests f̂ may depend on other random quantities,
such as samples from a training set. In Section 2 we used squared loss to evaluate our prediction:

E(f̂(X)− Y )2 = E
(
f̂(X)− Ef̂(X) + Ef̂(X)− E(Y |X) + E(Y |X)− Y

)2

= E
(
f̂(X)− Ef̂(X)

)2︸ ︷︷ ︸
variance

+E
(
Ef̂(X)− E(Y |X)

)2︸ ︷︷ ︸
bias2

+E
(
E(Y |X)− Y

)2︸ ︷︷ ︸
difficulty

,

where recall that E(Y |X) is the so-called regression function. The last term indicates the difficulty of our
problem and cannot be reduced by our choice of f̂ . The first two terms reveals an inherent trade-off in
designing f̂ :

• the variance term reflects the fluctuation incurred by training on some random training set. Typically,
a less flexible f̂ will incur a smaller variance (e.g. constant functions have 0 variance);

• the (squared) bias term reflects the mismatch of our choice of f̂ and the optimal regression function.
Typically, a very flexible f̂ will incur a smaller bias (e.g. when f̂ can model any function).

The major goal of much of ML is to strike an appropriate balance between the first two terms.

Definition 4.10: Maximum likelihood estimation(MLE)

Suppose we have a dataset D = *x1, . . . ,xn+, where each sample xi (is assumed to) follow some pdf p(x|θ)
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with unknown parameter θ. We define the likelihood of a parameter θ given the dataset D as:

L(θ) = L(θ;D) := p(D|θ) =

n∏
i=1

p(xi|θ),

where in the last equality we assume our data is iid. A popular way to find an estimate of the parameter θ is
to maximize the likelihood over some parameter space Θ:

θMLE := argmaxθ∈Θ L(θ).

Equivalently, by taking the log and negating, we minimize the negative log-likelihood (NLL):

θMLE := argminθ∈Θ

n∑
i=1

− log p(xi|θ).

We remark that MLE is applicable only when we can evaluate the likelihood function efficiently, which
turns out to be not the case in many settings and we will study alternative algorithms (based on the unbearable
math you learned in Section 3 and Section 4 ).

Example 4.11: Sample mean and covariance as MLE

Let x1, . . . ,xn be iid samples from the multivariate Gaussian distribution N (µ,Σ) where the parameters µ
and Σ are to be found. We apply maximum likelihood:

µ̂MLE := argmin
µ

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ).

Applying Theorem 3.24 we obtain the sample mean:

µ̂MLE =
1

n

n∑
i=1

xi =: Êx,

where the hat expectation Ê is w.r.t. the given data.
Similarly we can show

Σ̂MLE := argmin
Σ

log det Σ +

n∑
i=1

(xi − µ)>Σ−1(xi − µ).

Or equivalently

Σ̂−1
MLE := argmin

S
− log detS +

n∑
i=1

(xi − µ)>S(xi − µ).

Applying Theorem 3.24 (with the fact that the gradient of log detS is S−1), we obtain:

Σ̂MLE =
1

n

n∑
i=1

(xi − µ)(xi − µ)> = Êxx> − (Êx)(Êx)>,

where we plug in the ML estimate µ̂MLE of µ if it is not known.

Exercise 4.12: Bias and variance of sample mean and covariance

Calculate the following bias and variance:

E[µ− µ̂MLE] =
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E[µ− µ̂MLE][µ− µ̂MLE]> =

E[Σ− Σ̂MLE] =

Definition 4.13: f-divergence (Csiszar63; Morimoto63; AliSilvey66)

Let f : R+ → R be a strictly convex function (see Definition 3.9) with f(1) = 0. We define the following
f -divergence to measure the closeness of two pdfs p and q:

Df (p‖q) :=

∫
f
(
p(x)/q(x)

)
· q(x) dx,

where we assume q(x) = 0 =⇒ p(x) = 0 (otherwise we put the divergence to ∞).

Exercise 4.14: Properties of f-divergence

Prove the following:

• Df (p‖q) ≥ 0, with 0 attained iff p = q;

• Df+g = Df + Dg and Dsf = sDf for s > 0;

• Let g(t) = f(t) + s(t− 1) for any s. Then, Dg = Df ;

• If p(x = 0) ⇐⇒ q(x) = 0, then Df (p‖q) = Df�(q‖p), where f�(t) := t · f(1/t);

• f� is (strictly) convex, f�(1) = 0 and (f�)� = f ;

The second last result indicates that f -divergences are not usually symmetric. However, we can always
symmetrize them by the transformation: f ← f + f�.

Example 4.15: KL and LK

Let f(t) = t log t, then we obtain the Kullback-Leibler (KL) divergence:

KL(p‖q) =

∫
p(x) log(p(x)/q(x)) dx.

Reverse the inputs we obtain the reverse KL divergence:

LK(p‖q) := KL(q‖p).

Verify by yourself that the underlying function f = − log for reverse KL.

Definition 4.16: Entropy, conditional entropy, cross-entropy, and mutual information

We define the entropy of a random vector X with pdf p as:

H(X) := E− log p(X) = −
∫
p(x) log p(x) dx,

the conditional entropy between X and Z (with pdf q) as:

H(X|Z) := E− log p(X|Z) = −
∫
p(x, z) log p(x|z) dx dz,
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and the cross-entropy between X and Z as:

�(X,Z) := E− log q(X) = −
∫
p(x) log q(x) dx.

Finally, we define the mutual information between X and Z as:

I(X,Z) := KL(p(x, z)‖p(x)q(z)) =

∫
p(x, z) log

p(x, z)

p(x)q(z)
dx dz

Exercise 4.17: Information theory

Verify the following:

H(X,Z) = H(Z) + H(X|Z)

�(X,Z) = H(X) + KL(X‖Z) = H(X) + LK(Z‖X)

I(X,Z) = H(X)− H(X|Z)

I(X,Z) ≥ 0, with equality iff X independent of Z
KL(p(x, z)‖q(x, z)) = KL(p(z)‖q(z)) + E[KL(p(x|z)‖q(x|z))].

All of the above can obviously be iterated to yield formula for more than two random vectors.

Exercise 4.18: Multivariate Gaussian

Compute

• the entropy of the multivariate Gaussian N (µ,Σ);

• the KL divergence between two multivariate Gaussians N (µ1,Σ1) and N (µ2,Σ2).

Example 4.19: More divergences, more fun

Derive the formula for the following f -divergences:

• χ2-divergence: f(t) = (t− 1)2;

• Hellinger divergence: f(t) = (
√
t− 1)2;

• total variation: f(t) = |t− 1|;

• Jensen-Shannon divergence: f(t) = t log t− (t+ 1) log(t+ 1) + log 4;

• Rényi divergence (Renyi61): f(t) = tα−1
α−1 for some α > 0 (for α = 1 we take limit and obtain ?).

Which of the above are symmetric?

Remark 4.20: MLE = KL minimization

Let us define the empirical “pdf” based on a dataset D = *x1, . . . ,xn+:

p̂(x) =
1

n

n∑
i=1

δxi ,
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where δx is the “illegal” delta mass concentrated at x. Then, we claim that

θMLE = argmin
θ∈Θ

KL
(
p̂‖p(x|θ)

)
.

Indeed, we have

KL(p̂‖p(x|θ)) =

∫
[log(p̂(x))− log p(x|θ)]p̂(x) dx = C +

1

n

n∑
i=1

− log p(xi|θ),

where C is a constant that does not depend on θ.

Exercise 4.21: Is the flood gate open?

Now obviously you are thinking to replace the KL divergence with any f -divergence, hoping to obtain some
generalization of MLE. Try and explain any difficulty you may run into. (We will revisit this in the GAN
lecture.)

Exercise 4.22: Why KL is so special

To appreciate the uniqueness of the KL divergence, prove the following:

log is the only continuous function satisfying f(st) = f(s) + f(t).

Remark 4.23: Information theory for ML

A beautiful they that connects information theory, Bayes risk, convexity and proper loss is available in
(GrunwaldDawid04; ReidWilliamson11) and the references therein.

Example 4.24: Linear regression as MLE

Let us now give linear regression a probabilistic interpretation, by making the following assumption:

Y = x>w + ε,

where ε ∼ N (0, σ2). Namely, the response is a linear function of the feature vector x, corrupted by some
standard Gaussian noise, or in fancy notation: Y ∼ N (x>w, σ2). Given a dataset D = *(x1, y1) . . . , (xn, yn)+
(where we assume the feature vectors xi are fixed and deterministic, unlike the responses yi which are random),
the likelihood function of the parameter w is:

L(w;D) = p(D|w) =

n∏
i=1

1√
2πσ2

exp

(
− (yi − x>i w)2

2σ2

)

ŵMLE = argmin
w

n

2
log σ2 +

1

2σ2

n∑
i=1

(yi − x>i w)2,

which is exactly the ordinary linear regression in Section 2.
Moreover, we can now also obtain an MLE of the noise variance σ2 by solving:

σ̂2
MLE = argmin

σ2

n

2
log σ2 +

1

2σ2

n∑
i=1

(yi − x>i w)2

=
1

n

n∑
i=1

(yi − x>i ŵMLE)2,
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which is nothing but the average training error.

Definition 4.25: Prior

In a full Bayesian approach, we also assume the parameter θ is random and follows a prior pdf p(θ). Ideally,
we choose the prior p(θ) to encode our a priori knowledge of the problem at hand. (Regrettably, in practice
computational convenience often dominates the choice of the prior.)

Definition 4.26: Posterior

Suppose we have chosen a prior pdf p(θ) for our parameter of interest θ. After observing some data D, our
belief on the probable values of θ will have changed, so we obtain the posterior:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ) dθ

,

where recall that p(D|θ) is exactly the likelihood of θ given the data D. Note that computing the denominator
may be difficult since it involves an integral that may not be tractable.

Example 4.27: Bayesian linear regression

Let us consider linear regression (with vector-valued response y ∈ Rm, matrix-valued covariate X ∈ Rm×d):

Y = Xw + ε,

where the noise ε ∼ Nm(µ, S) and we impose a Gaussian prior on the weights w ∼ Nd(µ0, S0). As usual we
assume ε is independent of w. Given a dataset D = *(X1,y1), . . . , (Xn,yn)+, we compute the posterior:

p(w|D) ∝ p(w)p(D|w)

∝ exp

(
− (w − µ0)>S−1

0 (w − µ0)

2

)
·
n∏
i=1

exp

(
− (yi −Xiw − µ)>S−1(yi −Xiw − µ)

2

)
= N (µn, Sn),

where (by completing the square) we have

S−1
n = S−1

0 +

n∑
i=1

X>i S
−1Xi

µn = Sn

(
S−1

0 µ0 +

n∑
i=1

X>i S
−1(yi − µ)

)
.

The posterior covariance Sn contains both the prior covariance S0 and the dataXi. As n→∞, data dominates
the prior. Similar remark applies to the posterior mean µn.

We can also derive the predictive distribution on a new input X:

p(y|X,D) =

∫
p(y|X,w)p(w|D) dw

= N (Xµn + µ, XSnX
> + S)

The covariance XSnX> + S reflects our uncertainty on the prediction at X.

Theorem 4.28: Bayes classifier

Consider the classification problem with random variables X ∈ Rd and Y ∈ [c] := {1, . . . , c}. The optimal
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(Bayes) classification rule, defined as

argmin
h:Rd→[c]

Pr(Y 6= h(X)),

admits the closed-form formula:

h?(x) = argmax
k∈[c]

Pr(Y = k|X = x) (4.1)

= argmax
k∈[c]

p(X = x|Y = k)︸ ︷︷ ︸
likelihood

·Pr(Y = k)︸ ︷︷ ︸
prior

,

where ties can be broken arbitrarily.

Proof. Let h(x) be any classification rule. Its classification error is:

Pr(h(X) 6= Y ) = 1− Pr(h(X) = Y ) = 1− E[Pr(h(X) = Y |X)].

Thus, conditioned on X, to minimize the error we should maximize Pr(h(X) = Y |X), leading to h(x) = h?(x).
To understand the second formula, we resort to the definition of conditional expectation:∫

A

Pr(Y = k|X = x)p(x) dx = Pr(X ∈ A, Y = k)

= Pr(X ∈ A|Y = k) Pr(Y = k)

=

∫
A

p(X = x|Y = k) Pr(Y = k) dx.

Since the set A is arbitrary, we must have

Pr(Y = k|X = x) =
p(X = x|Y = k) Pr(Y = k)

p(X = x)
.

(We assume the marginal density p(x) and class-specific densities p(x|Y = k) exist.)

In practice, we do not know the distribution of (X, Y ), hence we cannot compute the optimal Bayes
classification rule. One natural idea is to estimate the pdf of (X, Y ) and then plug into (4.1). This approach
however does not scale to high dimensions and we will see direct methods that avoid estimating the pdf.

It is clear that the Bayes error (achieved by the Bayes classification rule) is:

E
[
1−max

k∈[c]
Pr(Y = k|X)

]
.

In particular, for c = 2, we have

Bayes error = E
[

min{Pr(Y = 1|X),Pr(Y = −1|X)}
]
.

Exercise 4.29: Cost-sensitive classification (Elkan 2001)

Cost-sensitive classification refers to the setting where making certain mistakes is more expensive than making
some other ones. Formally, we suffer cost cij when we predict class i while the true class is j. We may of
course assume cii ≡ 0. Derive the optimal Bayes rule.
Elkan, Charles (2001). “The foundations of cost-sensitive learning”. In: IJCAI.

Exercise 4.30: Bayes estimator

Let ` : Ŷ ×Y → R+ be a loss function that compares our prediction ŷ with the groundtruth y. We define the
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Bayes estimator as:

min
f :X→Ŷ

E`(f(X),Y).

Can you derive the formula for the Bayes estimator (using conditional expectation)?

Definition 4.31: Maximum a posteriori (MAP)

Another popular parameter estimation algorithm is the MAP that simply maximizes the posterior:

θMAP := argmax
θ∈Θ

p(θ|D)

= argmin
θ∈Θ

− log p(D|θ)︸ ︷︷ ︸
negative log-likelihood

+ − log p(θ)︸ ︷︷ ︸
prior as regularization

A strong (i.e. sharply concentrated, i.e. small variance) prior helps reducing the variance of our estimator,
with potential damage to increasing our bias (see Definition 4.10) if our a priori belief is mis-specified, such
as stereotypes ,.

MAP is not a Bayes estimator, since we cannot find an underlying loss ` for it.

Example 4.32: Ridge regression as MAP

Continuing Example 4.24 let us now choose a standard Gaussian prior w ∼ N (0, 1
λI). Then,

ŵMAP = argmin
w

n

2
log σ2 +

1

2σ2

n∑
i=1

(yi − x>i w)2 +
λ

2
‖w‖22 −

d

2
log λ,

which is exactly equivalent to ridge regression. Note that the larger the regularization constant λ is, the smaller
the variance of the prior is. In other words, larger regularization means more determined prior information.

Needless to say, if we choose a different prior on the weights, MAP would yield a different regularized
linear regression formulation. For instance, with the Laplacian prior (which is more peaked than the Gaussian
around the mode), we obtain the celebrated Lasso (Tibshirani 1996):

min
w

1

2σ2
‖Xw − y‖22 + λ‖w‖1.

Tibshirani, Robert (1996). “Regression Shrinkage and Selection Via the Lasso”. Journal of the Royal Statistical Society:
Series B, vol. 58, no. 1, pp. 267–288.

Theorem 4.33: Bayes rule arose from optimization (e.g. Zellner 1988)

Let p(θ) be a prior pdf of our parameter θ, p(D|θ) the pdf of data D given θ, and p(D) =
∫
p(θ)p(D|θ) dθ the

data pdf. Then,

p(θ|D) = argmin
q(θ)

KL
(
p(D)q(θ) ‖ p(θ)p(D|θ)

)
, (4.2)

where the minimization is over all pdf q(θ).

Proof. KL is nonnegative while the posterior p(θ|D) already achieves 0. In fact, only the posterior can achieve
0, see Exercise 4.14.

This result may seem trivial at first sight. However, it motives a number of important extensions:
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• If we restrict the minimization to a subclass P of pdfs, then we obtain some KL projection of the posterior
p(θ|D) to the class P. This is essentially the so-called variational inference.

• If we replace the KL divergence with any other f -divergence, the same result still holds. This opens a
whole range of possibilities when we can only optimize over a subclass P of pdfs.

• The celebrated expectation-maximization (EM) algorithm also follows from (4.2)!

We will revisit each of the above extensions later in the course.
Zellner, Arnold (1988). “Optimal Information Processing and Bayes’s Theorem”. The American Statistician, vol. 42,

no. 4, pp. 278–280.
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