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Distributions and density

The cumulative distribution function (cdf) of a random vector X € R? is
F(x) :=Pr(X < x),

and its probability density function (pdf) is

d
p(x) := ({%(x), or equivalently F'(x / /

Clearly, each cdf F: R? — [0, 1] is
» monotonically increasing in each of its inputs;
» right continuous in each of its inputs;
> limy 00 F'(x) =1 and limy_, o F'(x) = 0.

On the other hand, each pdf p: R% — Ry
> integrates to 1, i.e. [* p(x)dx = 1.
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https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probability_density_function

Univariate Gaussians and Laplacians
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Change-of-variable

Let T: RY — R? be a diffeomorphism (differentiable bijection with
differentiable inverse). Let X = T(Z), then we have the
change-of-variable formula for the pdfs:

dT-!

p(x) dx ~ ¢(z) dz, i.e. p(x) = (T 1(x)) ’det ~ (x)
o(z) = p(T(@) fdet T -(2)|.

where det denotes the determinant.

4/21


https://en.wikipedia.org/wiki/Diffeomorphism
https://en.wikipedia.org/wiki/Determinant

Marginal and conditional
Let X = (X1, X3) be a random vector with pdf p(x) = p(x1,x2).
> X is a marginal of X with pdf

pl(Xl):/ p(x1,x2) dxa,

—0o0

where we marginalize over X5 by integrating it out.
» Define the conditional X;|Xy with density:

pr2(x1[x2) = p(x1,%2)/p2(x2),

where the value of py5 is arbitrary if pa(x2) = 0 (usually immaterial).
» Obvious from our definition that

p(x1,%2) = p1 (Xl)p2|1(X2|X1) = Pz(Xz)p1|2(X1|X2)7

namely the joint density p can be factorized into the product of
marginal p; and conditional py);.
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https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution

Independence and chain rule

> lterating the above construction, we obtain the famous chain rule:

d

p(X1,X2,...,Xq) = Hp(xj\xl, CeXjo1).
j=1

> We say that the random vectors X1, Xy, ..., Xy are independent if

d
p<X17X27 e 7Xd) = Hp(xj)
j=1
» The Bayes rule:
Pr(A, B) Pr(B|A) Pr(A)

PrAIB) = 5B = Pr(B, A) + Pr(B, ~A)°
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https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Bayes%27_theorem

Mean, variance and covariance

Let X = (X1,...,Xy) be a random (column) vector.

We define its mean (vector) as
p=EX, where pu;= /:cj -p(xj) da;
and its covariance (matrix) as
£ = EX — )X~ )78 = [ (o= i) = ) plos, ;) .

By definition X is symmetric ¥;; = 3;; and positive semidefinite (all
eigenvalues are nonnegative).

The j-th diagonal entry of the covariance a = 3J;; is called the variance
of Xj.
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https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Positive_semidefinite_matrix
https://en.wikipedia.org/wiki/Variance

Multivariate Gaussian

The pdf of multivariate Gaussian/normal distribution X ~ Ny(p, X), with
dimension d, mean p and covariance ¥, is:

p(x) = (2m) V2 [det(2)) 2 exp (—3(x — 1) S (x - ).
Gaussians are equivariance under affine transformations:
X ~N(p,%) = AX +b~N(Ap+b,AXAT).
(This property actually characterizes Gaussians.)
X b by
el (el B 2
Xy~ N(p1,211), Xo|Xi ~N(po + Eo1 27 (Xq — p1), Bo2 — S 277 S12);

Xo ~ N(p2, 822), Xq|Xo ~ N(p1 + Z12855 (Xo — p2), B11 — L1255 So1).
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Bias-variance trade-off

Predicting Y based on X under squared loss:

E(f(X) - Y)? = E(f(X) - Ef(X))* + E(Ef(X) — E(Y|X))* + E(E(Y]X) - Y)

2

)

variance

bias®

where recall that E(Y|X) is the so-called regression function.
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Maximum likelihood estimation (MLE)

Given D = [x1,..., Xy, where x; b p(x]0) with unknown parameter 6.

We define the likelihood of a parameter 6 given the dataset D as:

n

L(9) = L(6; D) = p(D|0) = [[ px:l6).
=1

A popular way to find an estimate of the parameter 6 is to maximize the
likelihood over some parameter space O:

OmLE := argmaxyce L(0).

Equivalently, by taking the log and negating, we minimize the negative
log-likelihood (NLL):

n
OMLE = argmingcg Z —log p(x;]6).
i=1

MLE is applicable only when we can evaluate the likelihood efficiently.
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https://en.wikipedia.org/wiki/Likelihood_function

Sample mean and covariance as MLE
Let X1,...,X, g N(p,X).
We apply maximum likelihood to estimate pu:

n

N 1 _
AMLE 1= argmin — Z(xZ — ) 27 (% — p).
w2

Applying Fermat's condition we obtain the sample mean:
1 n
AMLE = - in =: Ex.
=1
Similarly we can estimate X:
n
SMLE := argmin log det X + Z(Xl - u)TE_l(xi — )
by

=1

1 . LA

= > = ) — ) = B’ - (Bx)(Ex)
=1

where we plug in the ML estimate fip g of p if it is not known.
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f-divergence
Let f: Ry — R be a strictly convex function with f(1) = 0.
We define the f-divergence to measure the closeness of two pdfs p and ¢:

Dy(pllq) = / £ (p(x)/a(x)) - q(x) dx,

where we assume ¢(x) =0 = p(x) = 0 (otherwise we put the
divergence to o0).

» Let f(t) = tlogt, then we obtain the Kullback-Leibler (KL)
divergence:

KL(pllq) = / p() log(p(x)/q(x)) dx.

» On the other hand, let f = —log we obtain the reverse KL
divergence:

LK(pllq) := KL(q[Ip).
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https://en.wikipedia.org/wiki/F-divergence
https://en.wikipedia.org/wiki/Solomon_Kullback
https://en.wikipedia.org/wiki/Richard_Leibler

Information theory
We define the entropy of a random vector X with pdf p as:

HX) i= €~ logp(X) =~ [ plx) log p(x) dx
the conditional entropy between X and Z (with pdf ¢) as:
H(X[2) i= €~ ogp(X[2) =~ [ p(x,2)logplx]z) dxda,
and the cross-entropy between X and Z as:
TH(X,Z) :=E—logq¢(X) = — /p(x) log q(x) dx.

Finally, we define the mutual information between X and Z as:

I(X,Z) := KL(p(x,2)[[p(x)q(z)) = /p(X’Z) log m dx dz
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https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Conditional_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Mutual_information

MLE = KL minimization

Let us define the empirical “pdf” based on a dataset D = [xy,...,x,]:

where dx is the “illegal” delta mass concentrated at x.

We claim that

Ovie = argmin KL(p||p(x]0)).
(SIS

Indeed, we have

n

KL(BIp(xie)) = [ llog(560) ~log p(xi8)}p(x) dx = C+ 13~ log( ),

i=1
where C is a constant that does not depend on 6.
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https://en.wikipedia.org/wiki/Dirac_delta_function

Linear regression as MLE

Let us now give linear regression a probabilistic interpretation. Assume:

Y =x'w+e where e~ N(0,02).

Given a dataset D = (x1,¥1) - - ., (Xn,yn)J, the likelihood function of
the parameter w is:

T 1 (yi — %/ w)?

n

. . n 1
WMLE = argv{/mn 2 log o 2— Zl

which is exactly linear regression (after ignoring irrelevant constants).

We can now also obtain an MLE of the noise variance o2:

1 n

) T 2

OMLE = E (yi — X; WMLE)®,
=1

n

which is nothing but the average training error.
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Prior & Posterior

In a full Bayesian approach, we also assume the parameter 6 is random
and follows a prior pdf p(0).

Ideally, we choose the prior p(#) to encode our a priori knowledge of the
problem at hand. (Regrettably, in practice computational convenience
often dominates the choice of the prior.)

Suppose we have chosen a prior pdf p(#) for our parameter of interest 6.
After observing some data D, our belief on the probable values of 6 will
have changed, so we obtain the posterior:

p(DIO)p(6) _  p(D|0)p(6)
p(D) [ p(D|0)p(6) A6’

where recall that p(D|0) is exactly the likelihood of 6 given the data D.

p(0|D) =

Computing the denominator (a.k.a. evidence) may be difficult since it
involves an integral that may not be tractable.
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https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Posterior_probability

Bayesian linear regression
Let us consider linear regression again:

Y =x'w+e, where e~ N(0,0°).

This time we also impose a Gaussian prior on the weights w ~ A/(0, %]I)
As usual we assume € is independent of w.

Given a dataset D = [(x1,¥1), .- ., (Xn,Yn)J, we compute the posterior:
p(w|D) o p(w)p(D|w)

xexp (-2 W) Hexp( ‘XT"">2>

= N(tn, Sn),
where (by completing the square) we have (with X = [x1,...,x,]")
St =M+ X"X/o?
Hn = SnXTy/U2.

We can also derive the predictive distribution on a new input x.
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https://en.wikipedia.org/wiki/Completing_the_square

Maximum a posteriori (MAP)

Another popular parameter estimation algorithm is the MAP that simply
maximizes the posterior:

Omap := argmax p(0|D)

LSS,
= argmin —log p(D10) + —log p(9)

negative log-likelihood prior as regularization

A strong (i.e. sharply concentrated, i.e. small variance) prior helps
reducing the variance of our estimator, but potentially increasing our bias
(cf. bias-variance trade-off) if our a priori belief is mis-specified.
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https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation

Ridge regression as MAP

Let us consider linear regression one last time.

Like in Bayesian LR, impose w ~ A/(0, 1I). Then,

n
Wpmap = argmin  — loga +
w

29 9.2
=1

which is exactly equivalent to ridge regression.

(yi — %] w)?

A d
+ SIwl3 = Slog A,

Regularization constant ) is inverse to the variance of the prior. In other
words, larger regularization means more determined prior information.

If we choose a different prior on the weights, such as the Laplacian prior,

we obtain the celebrated Lasso:

min o~ HXW ylI3 + Alwlls.
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https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution

Bayes classifier

Consider the classification problem with random variables X € R and
Y € [c]:={1,...,c}. The optimal (Bayes) classification rule is:
Y (X) = argmax Pr(Y = k|X)
kelc]
= argmax Pr(X|Y =k)-Pr(Y = k),
kelc]

likelihood prior
where ties can be broken arbitrarily.

In practice, we do not know the distribution of (X,Y"), hence we cannot
compute the optimal Bayes classification rule. One natural idea is to
estimate the pdf of (X,Y") and then plug into above.

This approach however does not scale to high dimensions and we will see
direct methods that avoid estimating the pdf.
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https://en.wikipedia.org/wiki/Thomas_Bayes

Bayes rule arose from optimization

Let p(0) be a prior pdf of our parameter 0, p(D|0) the pdf of data D
given 6, and p(D) = [ p(0)p(D|6) df the data pdf. Then,

p(0|D) = arf—ii(r;;in KL(p(D)q(0) || p(0)p(DIH)),

where the minimization is over all pdf ¢(6).

» If we restrict the minimization to a subclass P of pdfs, then we
obtain some KL projection of the posterior p(6|D) to the class P.
This is essentially the so-called variational inference.

> If we replace the KL divergence with any other f-divergence, the
same result still holds. This opens a whole range of possibilities when
we can only optimize over a subclass P of pdfs.

» The celebrated expectation-maximization (EM) algorithm also
follows, as we will seel
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https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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