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Distributions and density
The cumulative distribution function (cdf) of a random vector X ∈ Rd is

F (x) := Pr(X ≤ x),

and its probability density function (pdf) is

p(x) :=
∂dF

∂x1 · · · ∂xd
(x), or equivalently F (x) =

∫ x1

−∞
· · ·
∫ xd

−∞
p(x) dx.

Clearly, each cdf F : Rd → [0, 1] is
I monotonically increasing in each of its inputs;
I right continuous in each of its inputs;
I limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

On the other hand, each pdf p : Rd → R+

I integrates to 1, i.e.
∫∞
−∞ p(x) dx = 1.
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https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Probability_density_function


Univariate Gaussians and Laplacians
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Change-of-variable

Let T : Rd → Rd be a diffeomorphism (differentiable bijection with
differentiable inverse). Let X = T(Z), then we have the
change-of-variable formula for the pdfs:

p(x) dx ≈ q(z) dz, i.e. p(x) = q(T−1(x))

∣∣∣∣det
dT−1

dx
(x)

∣∣∣∣
q(z) = p(T(z))

∣∣∣∣det
dT

dz
(z)

∣∣∣∣ ,
where det denotes the determinant.
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https://en.wikipedia.org/wiki/Diffeomorphism
https://en.wikipedia.org/wiki/Determinant


Marginal and conditional
Let X = (X1,X2) be a random vector with pdf p(x) = p(x1,x2).
I X1 is a marginal of X with pdf

p1(x1) =

∫ ∞
−∞

p(x1,x2) dx2,

where we marginalize over X2 by integrating it out.
I Define the conditional X1|X2 with density:

p1|2(x1|x2) = p(x1,x2)/p2(x2),

where the value of p1|2 is arbitrary if p2(x2) = 0 (usually immaterial).
I Obvious from our definition that

p(x1,x2) = p1(x1)p2|1(x2|x1) = p2(x2)p1|2(x1|x2),

namely the joint density p can be factorized into the product of
marginal p1 and conditional p2|1.
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https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Conditional_probability_distribution


Independence and chain rule

I Iterating the above construction, we obtain the famous chain rule:

p(x1,x2, . . . ,xd) =

d∏
j=1

p(xj |x1, . . . ,xj−1).

I We say that the random vectors X1,X2, . . . ,Xd are independent if

p(x1,x2, . . . ,xd) =

d∏
j=1

p(xj).

I The Bayes rule:

Pr(A|B) =
Pr(A,B)

Pr(B)
=

Pr(B|A) Pr(A)

Pr(B,A) + Pr(B,¬A)
.
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https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Bayes%27_theorem


Mean, variance and covariance

Let X = (X1, . . . , Xd) be a random (column) vector.

We define its mean (vector) as

µ = EX, where µj =

∫
xj · p(xj) dxj

and its covariance (matrix) as

Σ = E(X− µ)(X− µ)>,Σij =

∫
(xi − µi)(xj − µj) · p(xi, xj) dxi dxj .

By definition Σ is symmetric Σij = Σji and positive semidefinite (all
eigenvalues are nonnegative).

The j-th diagonal entry of the covariance σ2
j := Σjj is called the variance

of Xj .
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https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Positive_semidefinite_matrix
https://en.wikipedia.org/wiki/Variance


Multivariate Gaussian
The pdf of multivariate Gaussian/normal distribution X ∼ Nd(µ,Σ), with
dimension d, mean µ and covariance Σ, is:

p(x) = (2π)−d/2[det(Σ)]−1/2 exp
(
−1

2(x− µ)>Σ−1(x− µ)
)
.

Gaussians are equivariance under affine transformations:

X ∼ N (µ,Σ) =⇒ AX + b ∼ N (Aµ + b, AΣA>).

(This property actually characterizes Gaussians.)

Let
[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

X1 ∼ N (µ1,Σ11), X2|X1 ∼ N (µ2 + Σ21Σ−1
11 (X1 − µ1),Σ22 − Σ21Σ−1

11 Σ12);

X2 ∼ N (µ2,Σ22), X1|X2 ∼ N (µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution


Bias-variance trade-off
Predicting Y based on X under squared loss:

E(f̂(X)− Y )2 = E
(
f̂(X)− Ef̂(X)

)2︸ ︷︷ ︸
variance

+E
(
Ef̂(X)− E(Y |X)

)2︸ ︷︷ ︸
bias2

+E
(
E(Y |X)− Y

)2︸ ︷︷ ︸
difficulty

,

where recall that E(Y |X) is the so-called regression function.

9 / 21



Maximum likelihood estimation (MLE)
Given D = *x1, . . . ,xn+, where xi

i.i.d.∼ p(x|θ) with unknown parameter θ.

We define the likelihood of a parameter θ given the dataset D as:

L(θ) = L(θ;D) := p(D|θ) =

n∏
i=1

p(xi|θ).

A popular way to find an estimate of the parameter θ is to maximize the
likelihood over some parameter space Θ:

θMLE := argmaxθ∈Θ L(θ).

Equivalently, by taking the log and negating, we minimize the negative
log-likelihood (NLL):

θMLE := argminθ∈Θ

n∑
i=1

− log p(xi|θ).

MLE is applicable only when we can evaluate the likelihood efficiently.
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https://en.wikipedia.org/wiki/Likelihood_function


Sample mean and covariance as MLE
Let x1, . . . ,xn

i.i.d.∼ N (µ,Σ).
We apply maximum likelihood to estimate µ:

µ̂MLE := argmin
µ

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ).

Applying Fermat’s condition we obtain the sample mean:

µ̂MLE =
1

n

n∑
i=1

xi =: Êx.

Similarly we can estimate Σ:

Σ̂MLE := argmin
Σ

log det Σ +
n∑
i=1

(xi − µ)>Σ−1(xi − µ)

=
1

n

n∑
i=1

(xi − µ)(xi − µ)> = Êxx> − (Êx)(Êx)>,

where we plug in the ML estimate µ̂MLE of µ if it is not known.
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f -divergence
Let f : R+ → R be a strictly convex function with f(1) = 0.
We define the f -divergence to measure the closeness of two pdfs p and q:

Df (p‖q) :=

∫
f
(
p(x)/q(x)

)
· q(x) dx,

where we assume q(x) = 0 =⇒ p(x) = 0 (otherwise we put the
divergence to ∞).

I Let f(t) = t log t, then we obtain the Kullback-Leibler (KL)
divergence:

KL(p‖q) =

∫
p(x) log(p(x)/q(x)) dx.

I On the other hand, let f = − log we obtain the reverse KL
divergence:

LK(p‖q) := KL(q‖p).
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https://en.wikipedia.org/wiki/F-divergence
https://en.wikipedia.org/wiki/Solomon_Kullback
https://en.wikipedia.org/wiki/Richard_Leibler


Information theory
We define the entropy of a random vector X with pdf p as:

H(X) := E− log p(X) = −
∫
p(x) log p(x) dx,

the conditional entropy between X and Z (with pdf q) as:

H(X|Z) := E− log p(X|Z) = −
∫
p(x, z) log p(x|z) dxdz,

and the cross-entropy between X and Z as:

�(X,Z) := E− log q(X) = −
∫
p(x) log q(x) dx.

Finally, we define the mutual information between X and Z as:

I(X,Z) := KL(p(x, z)‖p(x)q(z)) =

∫
p(x, z) log

p(x, z)

p(x)q(z)
dx dz
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https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Conditional_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Mutual_information


MLE = KL minimization

Let us define the empirical “pdf” based on a dataset D = *x1, . . . ,xn+:

p̂(x) =
1

n

n∑
i=1

δxi ,

where δx is the “illegal” delta mass concentrated at x.

We claim that

θMLE = argmin
θ∈Θ

KL
(
p̂‖p(x|θ)

)
.

Indeed, we have

KL(p̂‖p(x|θ)) =

∫
[log(p̂(x))− log p(x|θ)]p̂(x) dx = C +

1

n

n∑
i=1

− log p(xi|θ),

where C is a constant that does not depend on θ.
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https://en.wikipedia.org/wiki/Dirac_delta_function


Linear regression as MLE
Let us now give linear regression a probabilistic interpretation. Assume:

Y = x>w + ε, where ε ∼ N (0, σ2).

Given a dataset D = *(x1, y1) . . . , (xn, yn)+, the likelihood function of
the parameter w is:

L(w;D) = p(D|w) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − x>i w)2

2σ2

)

ŵMLE = argmin
w

n

2
log σ2 +

1

2σ2

n∑
i=1

(yi − x>i w)2,

which is exactly linear regression (after ignoring irrelevant constants).

We can now also obtain an MLE of the noise variance σ2:

σ̂2
MLE =

1

n

n∑
i=1

(yi − x>i ŵMLE)2,

which is nothing but the average training error.
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Prior & Posterior
In a full Bayesian approach, we also assume the parameter θ is random
and follows a prior pdf p(θ).

Ideally, we choose the prior p(θ) to encode our a priori knowledge of the
problem at hand. (Regrettably, in practice computational convenience
often dominates the choice of the prior.)

Suppose we have chosen a prior pdf p(θ) for our parameter of interest θ.
After observing some data D, our belief on the probable values of θ will
have changed, so we obtain the posterior:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ) dθ

,

where recall that p(D|θ) is exactly the likelihood of θ given the data D.

Computing the denominator (a.k.a. evidence) may be difficult since it
involves an integral that may not be tractable.
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https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Posterior_probability


Bayesian linear regression
Let us consider linear regression again:

Y = x>w + ε, where ε ∼ N (0, σ2).

This time we also impose a Gaussian prior on the weights w ∼ N (0, 1
λI).

As usual we assume ε is independent of w.

Given a dataset D = *(x1, y1), . . . , (xn, yn)+, we compute the posterior:

p(w|D) ∝ p(w)p(D|w)

∝ exp

(
−λw

>w

2

)
·
n∏
i=1

exp

(
−(yi − x>i w)2

2σ2

)
= N (µn, Sn),

where (by completing the square) we have (with X = [x1, . . . ,xn]>)

S−1
n = λI+X>X/σ2

µn = SnX
>y/σ2.

We can also derive the predictive distribution on a new input x.
17 / 21

https://en.wikipedia.org/wiki/Completing_the_square


Maximum a posteriori (MAP)

Another popular parameter estimation algorithm is the MAP that simply
maximizes the posterior:

θMAP := argmax
θ∈Θ

p(θ|D)

= argmin
θ∈Θ

− log p(D|θ)︸ ︷︷ ︸
negative log-likelihood

+ − log p(θ)︸ ︷︷ ︸
prior as regularization

A strong (i.e. sharply concentrated, i.e. small variance) prior helps
reducing the variance of our estimator, but potentially increasing our bias
(cf. bias-variance trade-off) if our a priori belief is mis-specified.
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https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation


Ridge regression as MAP

Let us consider linear regression one last time.

Like in Bayesian LR, impose w ∼ N (0, 1
λI). Then,

ŵMAP = argmin
w

n

2
log σ2 +

1

2σ2

n∑
i=1

(yi − x>i w)2 +
λ

2
‖w‖22 −

d

2
log λ,

which is exactly equivalent to ridge regression.

Regularization constant λ is inverse to the variance of the prior. In other
words, larger regularization means more determined prior information.

If we choose a different prior on the weights, such as the Laplacian prior,
we obtain the celebrated Lasso:

min
w

1

2σ2
‖Xw − y‖22 + λ‖w‖1.
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https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution


Bayes classifier

Consider the classification problem with random variables X ∈ Rd and
Y ∈ [c] := {1, . . . , c}. The optimal (Bayes) classification rule is:

Ŷ (X) = argmax
k∈[c]

Pr(Y = k|X)

= argmax
k∈[c]

Pr(X|Y = k)︸ ︷︷ ︸
likelihood

·Pr(Y = k)︸ ︷︷ ︸
prior

,

where ties can be broken arbitrarily.

In practice, we do not know the distribution of (X, Y ), hence we cannot
compute the optimal Bayes classification rule. One natural idea is to
estimate the pdf of (X, Y ) and then plug into above.

This approach however does not scale to high dimensions and we will see
direct methods that avoid estimating the pdf.

20 / 21

https://en.wikipedia.org/wiki/Thomas_Bayes


Bayes rule arose from optimization

Let p(θ) be a prior pdf of our parameter θ, p(D|θ) the pdf of data D
given θ, and p(D) =

∫
p(θ)p(D|θ) dθ the data pdf. Then,

p(θ|D) = argmin
q(θ)

KL
(
p(D)q(θ) ‖ p(θ)p(D|θ)

)
,

where the minimization is over all pdf q(θ).

I If we restrict the minimization to a subclass P of pdfs, then we
obtain some KL projection of the posterior p(θ|D) to the class P.
This is essentially the so-called variational inference.

I If we replace the KL divergence with any other f -divergence, the
same result still holds. This opens a whole range of possibilities when
we can only optimize over a subclass P of pdfs.

I The celebrated expectation-maximization (EM) algorithm also
follows, as we will see!
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https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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