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5 k-Nearest Neighbors (kNN)

Goal

Understand k-nearest neighbors for classification and regression. Relation to Bayes error.

Alert 5.1: Convention

Gray boxes are not required hence can be omitted for unenthusiastic readers.
This note is likely to be updated again soon.

Definition 5.2: Distance

Given a domain X ⊆ Rd, we define a distance metric dist : X × X → R+ as any function that satisfies the
following axioms:

• nonnegative: dist(x, z) ≥ 0;

• identity: dist(x, z) = 0 iff x = z;

• symmetric: dist(x, z) = dist(z,x);

• triangle inequality: dist(x, z) ≤ dist(x,y) + dist(y, z).

We call the space X equipped with a distance metric dist a metric space, with notation (X,dist).
If we relax the “iff” part in identity to “if” then we obtain pseudo-metric; if we drop symmetry we obtain

quasi-metric; and finally if we drop the triangle inequality we get semi-metric.

Exercise 5.3: Example distances

Given any norm ‖ · ‖ on a vector space V, it immediately induces a distance metric:

dist‖·‖(x, z) = ‖x− z‖.

Verify by yourself dist‖·‖ is indeed a distance metric.
In particular, for the `p norm defined in Definition 1.23, we obtain the `p distance.
Another often used “distance” is the cosine similarity:

∠(x, z) =
x>z

‖x‖2 · ‖z‖2
.

Is it a distance metric?

Remark 5.4: kNN in a nutshell

Given a metric space (X,dist) and a dataset D = *(x1, y1) . . . , (xn, yn)+, where xi ∈ X, upon receiving a new
instance x ∈ X, it is natural to find near neighbors (e.g. “friends”) in our dataset D according to the metric
dist and predict ŷ(x) according to the y-values of the neighbors. The underlying assumption is

neighboring feature vectors tend to have similar or same y-values.

The subtlety of course lies on what do we mean by neighboring, i.e., how do we choose the metric dist.

Remark 5.5: The power of an appropriate metric

Suppose we have (X, Y ) following some distribution on X×Y, where the target space Y is equipped with some
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metric disty (acting as a measure of our prediction error). Then, we may define a (pseudo)metric on X as:

distx(x,x′) := E[disty(Y, Y ′)|X = x,X′ = x′],

where (X′, Y ′) is an independent copy of (X, Y ). (Note that distx(x,x) = 0 may not hold.) Given a test
instance X = x, if we can find a near neighbor X′ = x′ so that distx(x,x′) ≤ ε, then predicting Y (x) according
to Y (x′) gives us at most ε error:

E[disty(Y (X), Y (X′))] = E[distx(X,X′)] ≤ ε.

Of course, we would not be able to construct the distance metric distx in practice, as it depends on the
unknown distribution of our data.

Algorithm 5.6: kNN

Given a dataset D = *(x1,y1), . . . , (xn,yn)+, where xi ∈ (X,dist) and yi ∈ Y, and a test instance x, we
predict according to the knn algorithm:
Algorithm: kNN
Input: Dataset D = *(xi,yi) ∈ X× Y : i = 1, . . . , n+, new instance x ∈ X, hyperparameter k
Output: y = y(x)

1 for i = 1, 2, . . . , n do
2 di ← dist(x,xi) // avoid for-loop if possible

3 find indices i1, . . . , ik of the k smallest entries in d
4 y← aggregate(yi1 , . . . ,yik)

For different target space Y, we may use different aggregations:

• multi-class classification Y = {1, . . . , c}: we can perform majority voting

y← argmax
j=1,...,c

#{yil = j : l = 1, . . . , k}, (5.1)

where ties can be broken arbitrarily.

• regression: Y = Rm: we can perform averaging

y← 1

k

k∑
l=1

yil . (5.2)

Strictly speaking, there is no training time in kNN as we need only store the dataset D. For testing, it
costs O(nd) as we have to go through the entire dataset to compute all distances to the test instance. There
is a large literature that aims to bring down this complexity in test time by pre-processing our dataset and
often by contending with near (but not necessarily nearest) neighbors (see e.g. (Andoni and Indyk 2008)).
Andoni, Alexandr and Piotr Indyk (2008). “Near-optimal Hashing Algorithms for Approximate Nearest Neighbor in

High Dimensions”. Communications of the ACM, vol. 51, no. 1, pp. 117–122.

Exercise 5.7: The power of weights

More generally, suppose we also have a distance metric disty on Y, we may set

π ← argmin
π

n∑
i=1

w↓i · distx(x,xπ(i)) (5.3)

y← argmin
y∈Y

n∑
i=1

v↓i · dist2
y(y,yπ(i)), (5.4)
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where π : [n] → [n] is a permutation, and w1 ≥ w2 ≥ · · · ≥ wn ≥ 0, v1 ≥ v2 ≥ · · · ≥ vn ≥ 0 are weights
(e.g. how much each training instance should contribute to the final result). We may also use disty in (5.4)
(without squaring). A popular choice is to set vi ∝ 1/dπ(i) so that nearer neighbors will contribute more to
predicting y.

Prove that with the following choices we recover (5.1) and (5.2) from (5.3)-(5.4), respectively:

• Let Y = {1, . . . , c} and disty(y,y′) =

{
0, if y = y′

1, o.w.
be the discrete distance. Use the kNN weights

w = v = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0).

• Let Y = Rm and disty(y,y′) = ‖y − y′‖2 be the `2 distance.

Remark 5.8: Effect of k

Intuitively, using a larger k would give us more stable predictions (if we vary the training dataset), as we are
averaging over more neighbors, corresponding to smaller variance but potentially larger bias (see ??):

• If we use k = n, then we always predict the same target irrespective of the input x, which is clearly not
varied at all but may incur a large bias.

• Indeed, if we have a dataset where different classes are well separated, then using a large k can bring
significant bias while 1NN achieves near 0 error.

In practice we may select k using cross-validation (see Line 7). For a moderately large dataset, typically
k = 3 or 5 suffices. A rule of thumb is we use larger k for larger and more difficult datasets.

Theorem 5.9: kNN generalization error (Biau and Devroye 2015)

Let k be odd and fixed. Then, for all distributions of (X, Y ), as n→∞,

LkNN := Pr[hn(X) 6= Y ]→ E

[
k∑
l=0

(
k

l

)
rl(X)(1− r(X))k−l

(
r(X)Jl < l

2K + (1− r(X))Jl ≥ k
2 K
)]

,

where the knn classifier hn is defined in (5.5) and r(x) := Pr[Y = 1|X = x] is the regression function.

Proof. Let X1, . . . ,Xn
i.i.d.∼ X and let Yi = JUi ≤ r(Xi)K, where Ui

i.i.d.∼ Uniform([0, 1]). Clearly, (Xi, Yi, Ui)
form an i.i.d. sequence where (Xi, Yi) ∼ (X, Y ). Let Dn = *(Xi, Yi, Ui), i = 1, . . . , n+. Fixing x, define
Ỹi(x) = JUi ≤ r(x)K. Order X(i)(x), Y(i)(x), Ỹ(i)(x) and U(i)(x) according to the distance dist(Xi,x).
Consider the classifiers:

hn(x) =

{
1, if

∑k
l=1 Y(l)(x) > k/2

0, o.w.
, h̃n(x) =

{
1, if

∑k
l=1 Ỹ(l)(x) > k/2

0, o.w.
. (5.5)

Then, we have

Pr[hn(X) 6= h̃n(X)] ≤ Pr

[
k∑
l=1

Y(l)(X) 6=
k∑
l=1

Ỹ(l)(X)

]
≤ Pr

[(
Y(1)(X), . . . , Y(k)(X)

)
6=
(
Ỹ(1)(X), . . . , Ỹ(k)(X)

)]
≤ Pr

[
k⋃
l=1

Jr(X(l)(X)) ∧ r(X) < U(l)(X) ≤ r(X(l)(X)) ∨ r(X)K

]
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≤
k∑
l=1

E
∣∣r(X(l)(X))− r(X)

∣∣ n→∞−→ 0, see Stone’s Lemma 5.13 below.

Recall that L(hn) := Pr(hn(X) 6= Y |D) and similarly for L(h̃n). Thus,

E
∣∣∣L(hn)− L(h̃n)

∣∣∣ ≤ Pr[hn(X) 6= h̃n(X)] = o(1),

whereas noting that given x, Ỹl(x)
i.i.d.∼ Bernoulli(r(x)), hence

EL(h̃n) = Pr
[
Binomial(k, r(X)) > k

2 , Y = 0
]

+ Pr
[
Binomial(k, r(X)) ≤ k

2 , Y = 1
]

= E
[
(1− r(X))JBinomial(k, r(X)) > k

2 K + r(X)JBinomial(k, r(X)) ≤ k
2 K
]
.

Combining the above completes the proof.

The proof above exploits the beautiful decoupling idea: Y(i)’s, which the kNN classifier gn depends on, are
coupled through the ordering induced by the Xi’s. On the other hand, Ỹ(i)’s are independent (conditioned
on X = x) hence allow us to analyze the closely related classifier g̃n with ease. Stone’s Lemma 5.13 adds the
final piece that establishes the asymptotic equivalence of the two classifiers.
Biau, Gérard and Luc Devroye (2015). Lectures on the Nearest Neighbor Method. Springer.

Corollary 5.10: 1NN ≤ 2×Bayes (Cover and Hart 1967)

For n→∞, we have

LBayes ≤ L1NN ≤ 2LBayes(1− LBayes) ≤ 2LBayes,

and L3NN = E[r(X)(1− r(X))] + 4E[r2(X)(1− r(X))2].

Proof. For k = 1, it follows from Theorem 5.9 that

L1NN = 2E[r(X)(1− r(X))]

whereas the Bayes error is

LBayes = E[r(X) ∧ (1− r(X))].

Therefore, letting s(x) = r(x) ∧ (1− r(x)), we have

L1NN = 2E[s(X)(1− s(X))] = 2Es(X) · E(1− s(X))− 2 ·Variance(s(X)) ≤ 2LBayes(1− LBayes).

The formula for L3NN follows immediately from Theorem 5.9.

We note that for trivial problems where LBayes = 0 or LBayes = 1
2 , L1NN = LBayes. On the other hand,

when the Bayes error is small, L1NN ∼ 2LBayes while L3NN ∼ LBayes.
Cover, T. M. and P. E. Hart (1967). “Nearest Neighbor Pattern Classification”. IEEE Transactions on Information

Theory, vol. 13, no. 1, pp. 21–27.

Proposition 5.11: Continuity

Let f : Rd → R be (Lebesgue) integrable. If k/n→ 0, then

1

k

k∑
l=1

E
∣∣f(Xl(X)

)
− f(X)

∣∣→ 0,

where X(i)(X) is ordered by the distance ‖Xi −X‖2 and Xi ∼ X for i = 1, . . . , n.

Yaoliang Yu 54 –Version 0.0–May 25, 2020–

https://link.springer.com/book/10.1007/978-3-319-25388-6
https://ieeexplore.ieee.org/document/1053964/


CS480/680–Winter 2021 §5 K-NEAREST NEIGHBORS (KNN) University of Waterloo

Proof. Since Cc is dense in L1, we may approximate f by a (uniformly) continuous function fε with compact
support. In particular, for ε > 0 there exists δ > 0 such that dist(x, z) ≤ δ =⇒ |fε(x)− fε(z)| ≤ ε. Thus,

1

k

k∑
l=1

E
∣∣f(Xl(X)

)
− f(X)

∣∣ ≤ 1

k

k∑
l=1

E
∣∣f(Xl(X)

)
− fε(Xl(X))

∣∣+ E
∣∣fε(Xl(X)

)
− fε(X)

∣∣+ E |fε(X)− f(X)|

(Stone’s Lemma 5.13) ≤ (γd + 2)E |f(X)− fε(X)|+ 2‖fε‖∞ · Pr[dist(X(k),X) > δ] + ε

≤ (γd + 2)ε+ 2‖fε‖∞ · Pr[dist(X(k),X) > δ]

≤ (γd + 3)ε, thanks to Theorem 5.12 when n is large.

The proof is complete by noting that ε is arbitrary.

Theorem 5.12: projection through kNN

Fix x and define ρ = dist(x, suppµ) where suppµ is the support of some measure µ. If k/n→ 0, then almost
surely

dist(X(k)(x),x)→ ρ,

where Xi
i.i.d.∼ µ and X(i) is ordered by dist(Xi,x), i = 1, . . . , n.

Proof. Fix any ε > 0 and let p = Pr(dist(X,x) ≤ ε+ ρ) > 0. Then, for large n,

Pr(dist(X(k),x)− ρ > ε) = Pr

(
n∑
i=1

Bi < k

)
, where Bi

i.i.d.∼ Bernoulli(p)

= Pr

(
1

n

n∑
i=1

(Bi − p) < k/n− p

)
≤ exp

(
−2n(p− k/n)2

)
.

Since p > 0 and k/n→ 0, the theorem follows.

Let X ∼ µ be another independent copy, then with k/n→ 0:

dist(X(k),X)
a.s.−→ 0.

Indeed, for µ-almost all x and large n, we have

Pr

[
sup
m≥n

dist(X(k,m)(x),x) ≥ ε
]
≤
∑
m≥n

exp(−mp2)
n→∞−→ 0.

Lemma 5.13: Stone’s Lemma (Stone 1977)

Let (w
(n)
1 , . . . , w

(n)
n ) be a probability vector with w(n)

1 ≥ · · · ≥ w(n)
n for all n. Then, for any integrable function

f : Rd → R,

E

[
n∑
i=1

w
(n)
i

∣∣f(X(i)(X)
∣∣] ≤ (1 + γd)E|f(X)|,

where Xi’s are i.i.d. copies of X, X(i)’s are ordered by ‖Xi −X‖2, and γd <∞ only depends on d.
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Proof. Define

W
(n)
i (x) := W

(n)
i (x;x1, . . . ,xn) := w

(n)
k

if xi is the k-th nearest neighbor of x (ties broken by index). We first prove

n∑
i=1

W
(n)
i (xi;x1, . . . ,xi−1,x,xi+1, . . . ,xn) ≤ (1 + γd). (5.6)

Cover Rd with γd angular cones Kt, t = 1, . . . , γd, each with angle π/12. Let A = {i : xi = x} and Bt = {i :
xi ∈ (Kt + x) \ {x}}. Choose any a, b ∈ Bt such that 0 < ‖xa − x‖ ≤ ‖xb − x‖, then

‖xa − xb‖2 ≤ ‖xa − x‖2 + ‖xb − x‖2 − 2‖xa − x‖‖xb − x‖ cos(π/6) < ‖xb − x‖2. (5.7)

Therefore, if xb is the k-th closest to x among xBt , then x is at best the k-th closest to xb among x,xBt\{b}.
Since the weights w(n)

i are ordered, we have

∑
i∈Bt

W
(n)
i (xi;x1, . . . ,xi−1,x,xi+1, . . . ,xn) ≤

n−|A|∑
i=1

w
(n)
i ≤ 1

∑
i∈A

W
(n)
i (xi;x1, . . . ,xi−1,x,xi+1, . . . ,xn) =

|A|∑
i=1

w
(n)
i ≤ 1.

Taking unions over the γd angular cones proves (5.6).
Therefore,

E

[
n∑
i=1

w
(n)
i

∣∣f(X(i)(X)
∣∣] = E

[
n∑
i=1

W
(n)
i (X) |f(Xi)|

]

(symmetrization) = E

[
|f(X)|

n∑
i=1

W
(n)
i (Xi;X1, . . . ,Xi−1,X,Xi+1, . . . ,Xn)

]
≤ (1 + γd)E|f(X)|.

Here γd is the covering number of Rd by angular cones:

K(z, θ) := {x ∈ Rd : ∠(x, z) ≤ θ}.

The proof above relies on the `2 distance only in (5.7).
Stone, Charles J. (1977). “Consistent Nonparametric Regression”. The Annals of Statistics, vol. 5, no. 4, pp. 595–620.

Theorem 5.14: No free lunch (Shalev-Shwartz and Ben-David 2014)

Let h be any classifier learned from a training set Dn with size n ≤ |X|/2. Then, there exists a distribution
(X, Y ) over X× {0, 1} such that the Bayes error is zero while

Pr [h(X;Dn) 6= Y ] ≥ 1
4 .

In particular, with probability at least 1
7 over the training set Dn we have Pr [h(X;Dn) 6= Y |Dn] ≥ 1

8 .

Proof. We may assume w.l.o.g. that |X| = 2n. Enumerate all T = 22n functions ht : X→ {0, 1}, each of which
induces a distribution where X ∈ X is uniformly random while Y = ht(X). For each labeling function ht, we
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have S = (2n)n possible training sets Dn(s, t). Thus,

max
t∈[T ]

1

S

S∑
s=1

Pr[h(X;Dn(s, t)) 6= ht(X)] ≥ 1

T

T∑
t=1

1

S

S∑
s=1

Pr[h(X;Dn(s, t)) 6= ht(X)]

≥ min
s∈[S]

1

T

T∑
t=1

Pr[h(X;Dn(s, t)) 6= ht(X)]

≥ min
s∈[S]

1

T

T∑
t=1

1

2|X \ Dn(s, t)|
∑

xi∈X\Dn(s,t)

Jh(xi;Dn(s, t)) 6= ht(xi)K

= min
s∈[S]

1

2|X \ Dn(s, t)|
1

T

T∑
t=1

∑
xi∈X\Dn(s,t)

Jh(xi;Dn(s, t)) 6= ht(xi)K

≥ 1
4 ,

since we apparently have

Jh(xi;Dn(s, t)) 6= ht(xi)K + Jh(xi;Dn(s, τ)) 6= hτ (xi)K = 1,

for two labeling functions ht and hτ which agree on x iff x ∈ Dn.

Let c > 1 be arbitrary. Consider the uniform grid X in the cube [0, 1]d with 1/c distance between neighbors.
Clearly, there are (c+ 1)d points in X. If our training set is smaller than (c+ 1)d/2, then kNN suffers at least
1/4 error while the Bayes error is 0! Thus, the condition n → ∞ in Theorem 5.9 can be very unrealistic in
high dimensions!
Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning: From Theory to Algorithms. Cam-

bridge University Press.
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