
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 4 — Intro to Differential Privacy, Part 2

Prof. Gautam Kamath Scribe: Gautam Kamath

Today, we continue with some of the core fundamentals of differential privacy. We start by pre-
senting arguably the most important algorithm in differential privacy: the Laplace mechanism.

Laplace Mechanism

Content in this section is based heavily off of Section 3.3 of [DR14].

Last time, we saw our first differentially private algorithm: randomized response. At its core, this
is useful for privatizing the value of a single bit: whether an individual’s private data is 0 or 1
(though it can be generalized to categorical data). While the privatized result can be used for
whatever other query we wish to answer, this is indirect and often lossy. Our first focus today,
the Laplace mechanism, will directly address any sort of numeric query. Before we introduce the
algorithm itself, we will require the important concept of the sensitivity of a function (in particular,
the `1 sensitivity).

Definition 1. Let f : X n → Rk. The `1-sensitivity of f is

∆(f) = max
X,X′

‖f(X)− f(X ′)‖1,

where X and X ′ are neighbouring databases.

When the function we are discussing is clear from context, we will drop f and just use ∆ for the
`1-sensitivity.

The sensitivity is a rather natural quantity to consider in the context of differential privacy. Indeed,
recall that differential privacy attemps to mask the contributions of any one individual. Upper
bounding “how much” the function can change by modifying a single datum is thus well motivated
intuitively, and we will see how we exploit it technically. I put “how much” in quotes, since it
may seem mysterious why we consider the `1-sensitivity of the function, and not the `2-sensitivity
or some other notion. The answer is that we use it for technical reasons, though `2-sensitivity
is the right notion in other settings (say, for the Gaussian mechanism, rather than the Laplace
mechanism). Note that these are identical in the univariate setting (i.e., when k = 1), but may
vary in the multivariate setting (up to a factor of

√
k).

As a simple running example, we will consider the function f = 1
n

∑n
i=1Xi, where Xi ∈ {0, 1}. It

is not hard to verify that the sensitivity of this function is 1/n, realized when any bit is flipped.

As the name of the mechanism suggests, the Laplace distribution will be a key component of the
Laplace mechanism.

Definition 2. The Laplace distribution with location and scale parameters 0 and b, respectively,
has the following density:

p(x) =
1

2b
exp

(
−|x|
b

)
.

1

Note that the variance of this distribution is 2b2. Some visualizations of the density of the Laplace
distribution are provided in Figure 1. It can be seen as a symmetrization of the exponential dis-
tribution, which is only supported on x ∈ [0,∞) and has density ∝ exp(−cx), versus the Laplace
distribution which is supported on x ∈ R and has density ∝ exp(−c|x|). As another potentially
familiar point of comparison, the Gaussian distribution is also supported on R, and has density
∝ exp(−cx2). We can see the Gaussian distribution has lighter tails than the Laplace distribu-
tion, meaning that it enjoys somewhat stronger concentration (though both tails decay at least
exponentially).

Figure 1: Figure from Wikipedia. Laplace distributions with various parameters.

With the Laplace distribution in hand, we are ready to introduce the Laplace mechanism. It is
very simple to state: add noise to the statistic of magnitude proportional to its sensitivity.

Definition 3. Let f : X n → Rk. The Laplace mechanism is defined as

M(X) = f(X) + (Y1, . . . , Yk),

where the Yi are independent Laplace(∆/ε) random variables.

Let us apply this to our running example of f = 1
n

∑n
i=1Xi. This is a simple application of

Definition 3, where k = 1. As we previously established, ∆ = 1/n. Therefore, the Laplace
mechanism run on a dataset is p̃ = f(X) + Y , where Y is Laplace(1/εn). Recalling that we
previously defined p = f(X), we have that E[p̃] = p, by linearity of expectations and since E[Y] = 0.
Computing the variance, we have Var[p̃] = Var[Y] = O(1/ε2n2), and using Chebyshev’s inequality
gives that |p̃− p| ≤ O(1/εn) with reasonable probability.1 We can compare this with the accuracy
of ε-randomized response, which was O(1/ε

√
n) – the Laplace mechanism’s error is quadratically

smaller in n.

It remains to show that the Laplace mechanism is differentially private.

1Note that one can easily get a high probability bound by examining the tails of the distribution – the error will
exceed O(log(1/β)/εn) with probability ≤ β.

2

Theorem 4. The Laplace mechanism is ε-differentially private.

Proof. Let X and Y be any neighbouring databases, differing in any one entry. We let pX(z) and
pY (z) be the probability density functions of M(X) and M(Y) evaluated at a point z ∈ Rk. To
prove differential privacy, we will show that that their ratio is bounded above by exp(ε), for an
arbitrary choice of z and neighboring X and Y .

pX(z)

pY (z)
=

∏k
i=1 exp

(
− ε|f(X)i−zi|

∆

)
∏k

i=1 exp
(
− ε|f(Y)i−zi|

∆

)
=

k∏
i=1

exp

(
−ε(|f(X)i − zi| − |f(Y)i − zi|)

∆

)

≤
k∏

i=1

exp

(
−ε|f(Y)i − f(X)i|

∆

)

= exp

(
ε
∑k

i=1 |f(X)i − f(Y)i|
∆

)

= exp

(
ε‖f(X)− f(Y)‖1

∆

)
≤ exp(ε).

The first inequality is the triangle inequality, and the last uses the definition of `1-sensitivity.

Counting Queries

We’ll apply this in a few different scenarios. First, let’s look at counting queries. This is essentially
the non-normalized version of our running example we have used so far (though the term counting
query is sometimes used interchangeably for both). Specifically, we can ask the question “How
many people in the dataset have property P?” If we just ask one question like this, the analysis
follows very similarly to before. Each individual will have a bit Xi ∈ {0, 1} indicating whether or
not this is true about them, and the function f we consider is their sum. The sensitivity is 1, and
thus an ε-differential privatization of this statistic would be f(X) + Laplace(1/ε). This introduces
error to this query on the order of O(1/ε), independent of the size of the database.

What if we wanted to answer many queries? The way we defined the Laplace mechanism this
makes this easy to reason about. Suppose we had k counting queries f = (f1, . . . , fk), which are all
specified in advance. We would simply output the vector f(X)+Y , where the Yi’s are i.i.d. Laplace
random variables. But what scale parameter should we use for the Yi’s? Each individual counting
query fj has sensitivity 1, but we are using the same dataset to answer all queries, so changing a
single individual may affect the result of many queries at once. Consider, for example, the swapping
of two individuals: one who satisfies no properties, and one who satisfies every property. This swap
would change the result of every query by 1, and therefore the overall `1 sensitivity is k. Let’s
analyze this slightly more mathematically. Since f(X) =

∑
(f1(Xi), . . . , fk(Xi)), if neighbouring

datasets X and Y differ in that one contains x and the other contains y, the `1 difference can be

3

written as
∑

j |fj(x)− fj(y)|, as the common terms cancel. This can be upper bounded as follows:∑
j |fj(x)− fj(y)| ≤

∑
j 1 = k.

With this sensitivity bound ∆ = k in hand, we can add Yi ∼ Laplace(k/ε) noise to each coordinate,
answering each counting query with error of magnitude O(k/ε).

Some discussion is in order. First, this method of answering k counting queries required us to
specify all the queries in advance – in other words, a non-adaptive setting. We will later see that
similar guarantees are achieveable in the adaptive setting, where the choice of a query may depend
on previous ones. Secondly, let’s compare this with the Dinur-Nissim attacks [DN03] discussed
in previous lectures. That showed that if the analyst asks Ω(n) counting queries, defended by
the curator using noise of magnitude O(

√
n), the analyst can reconstruct the database and cause

blatant non-privacy. On the other hand, the above strategy shows that, if the analyst asks O(n)
counting queries and the curator adds noise of magnitude O(n/ε), then privacy is preserved. This
seems to be a huge gap in the two results: are there stronger attacks, which allow the adversary to
succeed even with more noise? Or can we add less noise and still preserve privacy? Fortunately, the
latter is true, and it is possible to add less noise via better analysis (as well as a slight relaxation
of the definition of differential privacy), using something called advanced composition.

Histograms

Another natural type of query is a histogram query. With counting queries, we had to be pessimistic
– changing a single individual could affect the results of every query at once. But certain structures
of queries might allow us to perform better sensitivity analysis. Suppose each individual in the
dataset has some categorical feature: for example, let’s say the person’s age (rounded down to the
nearest whole number). We would like to answer questions like “How many people in the dataset
are X years old?” While this is similar to the counting queries example, an individual here can
not have more than one age. Our function f will be (f0, f1, . . . , fk−1), where fi asks how many
people are i years old. It is not hard to argue that the `1-sensitivity of this function is 2: changing
any individual’s age would result in one count decrementing and another count incremening. More
formally, similar to before we consider neighbouring datasets X and Y , where the difference is
that one dataset has x and the other has it replaced by y. Then the `1 sensitivity is equal to
‖ea − eb‖1 = 2, where ej is the j-th standard basis vector (having a 1 in the jth position and 0
elsewhere), and fa and fb are the functions which evaluate to 1 on x and y. As such, the Laplace
mechanism prescribes outputting f(X) + Y , where Yi ∼ Laplace(2/ε), where the magnitude is
independent of the number of “bins” k.

How much error does this incur? As before, we observe that any individual count will have er-
ror on the order of O(1/ε). However, we can also reason about the error incurred in all counts
simultaneously! We can use the following basic fact about the Laplace distribution:

Fact 5. If Y ∼ Laplace(b), then
Pr[|Y | ≥ tb] = exp(−t).

This can be verified simply by integrating the PDF of the Laplace distribution. Now, for the ith
bin, the error in the count is exactly Yi, and we have that Pr[|Yi| ≥ 2 log(k/β)/ε] ≤ β/k. Taking
a union bound over all bins, it means that the probability that any bin has error ≥ 2 log(k/β)/ε
is at most β. Stated differently: the magnitude of the error scales only logarithmically with the
number of bins, in contrast to the linear relationship when our counting queries were arbitrary.

4

Properties of Differential Privacy

One of the reasons for the success of differential privacy is how “user friendly” it is. Specifically, it
possesses a number of convenient properties that make it possible to think about differential privacy
in a very modular fashion. We will discuss some of the most fundamental properties: closure under
post-processing, group privacy, and basic composition.

Post-Processing

One convenient fact about differentially private algorithms is that once a quantity is privatized,
it can’t be “un-privatized,” if the data is not used again. We used this already when we were
analyzing randomized response.

Theorem 6. Let M : X n → Y be ε-differentially private, and let F : Y → Z be an arbitrary
randomized mapping. Then F ◦M is ε-differentially private.

Proof. Since F is a randomized function, we can consider it to be a distribution over deterministic
functions f . The privacy proof follows for every neighbouring dataset X,X ′ and T ⊆ Y:

Pr[F (M(X)) ∈ T] = Ef∼F [Pr[M(X) ∈ f−1(T)]]

≤ Ef∼F [eε Pr[M(X ′) ∈ f−1(T)]]

= eε Pr[F (M(X ′)) ∈ T].

Group Privacy

So far, we’ve discussed differential privacy with respect to neighbouring datasets – ones which
differ in exactly one entry. But one might wonder about datasets which differ in multiple entries.
The definition of differential privacy allows for the guarantee to decay gracefully as the distance is
increased.

Theorem 7. Let M : X n → Y be an ε-differentially private algorithm. Suppose X and X ′ are
two datasets which differ in exactly k positions. Then for all T ⊆ Y, we have

Pr[M(X) ∈ T] ≤ exp(kε) Pr[M(X ′) ∈ T].

Proof. The proof follows by what is known in the business as a “hybrid” argument. Let X(0) = X,
X(k) = X ′ – since they differ in k positions, there exists a sequence X(0) through X(k) such that
each consecutive pair of datasets is neighbouring. Then, for all T ⊆ Y:

Pr[M(X(0)) ∈ T] ≤ eε Pr[M(X(1)) ∈ T]

≤ e2ε Pr[M(X(2)) ∈ T]

. . .

≤ ekε Pr[M(X(k)) ∈ T].

5

(Basic) Composition

As a final but important property, we discuss composition of differentially private algorithms.
Suppose you ran k differentially private algorithms on the same dataset, and released all of their
results – how private is this as a whole? Essentially, the overall privacy guarantee decays by a
factor of k. We already saw this when we considered the Laplace mechanism when the queries were
chose in advance, but the following result holds for general differentially private algorithms, even
when the queries are chosen adaptively!

Theorem 8. Suppose M = (M1, . . . ,Mk) is a sequence of ε-differentially private algorithms, po-
tentially chosen sequentially and adaptively. Then M is kε-differentially private.

Proof. Fix two neighbouring datasets X and X ′, and consider some sequence of outputs y =
(y1, . . . , yk). Then we have

Pr[M(X) = y]

Pr[M(X ′) = y]
=

k∏
i=1

Pr[Mi(X) = yi|(M1(X), . . . ,Mi−1(X)) = (y1, . . . , yi−1)]

Pr[Mi(X ′) = yi|(M1(X ′), . . . ,Mi−1(X ′)) = (y1, . . . , yi−1)]

≤
k∏

i=1

exp(ε)

= exp(kε).

Surprisingly, it is possible to do better: we can get away with paying a factor of O(
√
k) in the

privacy parameter, rather than the k given above, However, this will require a relaxation of the
privacy notion, which we will leave for next lecture.

References

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceed-
ings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, pages 202–210, New York, NY, USA, 2003. ACM.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

6

