
CS 860: Algorithms for Private Data Analysis Fall 2020

Lecture 5 — Approximate Differential Privacy

Prof. Gautam Kamath Scribe: Gautam Kamath

We will now study a relaxation of ε-differential privacy, first proposed by Dwork, Kenthapadi,
McSherry, Mironov, and Naor [DKM+06]. This relaxation will possess marginally weaker privacy
guarantees, but allow us to add significantly less noise to achieve it. This will be the topic of the
next lecture, but today we will focus on introducing this relaxation and some of the basic algorithms
and properties.

Approximate Differential Privacy

A few lectures ago, we mentioned that statistical distance is not an appropriate notion of distance
for differential privacy. In particular, if M is an algorithm, and X,X ′ are neighbouring datasets,
then

Pr[M(X) ∈ T] ≤ Pr[M(X ′) ∈ T] + ε

provides meaningless accuracy for small ε and weak privacy for large ε, see Section 1.6 of [Vad17]
for more details. However, when used in combination with (pure) ε-differential privacy, it gives rise
to the notion of (approximate) (ε, δ)-differential privacy.

Definition 1 (Approximate Differential Privacy). An algorithm M : X n → Y is (ε, δ)-differentially
private (i.e., it satisfies approximate differential privacy) if, for all neighbouring databases X,X ′ ∈
X n, and all T ⊆ Y,

Pr[M(X) ∈ T] ≤ eε Pr[M(X ′) ∈ T] + δ.

How should we interpret this new definition? One way is to consider the privacy loss random
variable.

Definition 2. Let Y and Z be two random variables. The privacy loss random variable LY ||Z is

distributed by drawing t ∼ Y , and outputting ln
(

Pr[Y=t]
Pr[Z=t]

)
. If the supports of Y and Z are not equal,

then the privacy loss random variable is undefined.

This definition holds for continuous random variables as well, by considering the ratio of their
densities. Though we say the privacy loss random variable will be undefined if the supports are not
equal, we will (informally) state that the privacy loss is infinite when sampling an outcome that
realizes this. While we state this for general random variables, we will apply it for Y and Z equal
to M(X) and M(X ′), where, as usual, M is an algorithm and X and X ′ are neighbouring datasets.
Intuitively, the realization of the privacy loss random variable indicates how much more (or less)
likely X was to be the input dataset compared to X ′, based on observing the realization of M(X).

From the definition of pure differential privacy, it is immediate to see that ε-DP corresponds to∣∣LM(X)||M(X′)

∣∣ being bounded by ε for all neighbouring X,X ′. Succinctly, ε-DP says that the
absolute value of the privacy loss random variable is bounded by ε with probability 1. While not

1

immediate, it can be shown (i.e., Lemma 3.17 of [DR14]) that (ε, δ)-DP is equivalent to saying that
the absolute value of the privacy loss random variable is bounded by ε with probability 1− δ.

The mystery at this point is, what can happen when this bad probability-δ event happens? And
consequently, how small should δ be set to avoid this bad event? To address the former question:
there’s a wide range of possible options.

First, consider a very simple (and rather useless) algorithm. With probability 1−δ, it does nothing,
i.e., outputs ⊥. On the other hand, with probability δ, it outputs the entire dataset! As we can see,
in the former case (which happens with probability 1− δ) the privacy loss random variable will be
0. In the other case (which, non-technically speaking, is not at all private) we have infinite privacy
loss, but this happens only with probability δ. Thus, it seems like it is possible that terrible things
could happen when this probability δ event occurs, and we should set δ to be quite small.

But how small is “quite small”? The following “name and shame”1 example shows that δ > 1/n
is not meaningful. Suppose an algorithm NSδ iterates over its input, and independently for each
datapoint, outputs the datum (which could be the individual’s SSN, emails, etc.) with probability
δ. We will shortly prove that this algorithm is (0, δ)-DP. However, the probability that at least one
person has their data output is 1 − (1 − δ)n, which by a Taylor expansion is roughly δn for small
enough δ. Thus, we can see that unless δ � 1/n, there’s a non-trivial chance that at least one
individual’s data is output in the clear. Most would not consider an algorithm which publishes a
random individual’s data to satisfy a strong privacy guarantee, and thus we will consider δ � 1/n.
For instance, if we were in a situation like this, something like δ = 1/n1.1 is perhaps the largest
δ we would tolerate. To draw a parallel with other security settings, we sometimes imagine δ as
“cryptographically small.”

Let us prove that NSδ is (0, δ)-DP, following presentation of Smith [Smi20]. Consider any two
neighbouring datasets X and X ′, which differ in only entry i. Let T be a set of datapoints. Let E
be the event that entry i is output. Conditioning on Ē (i.e., that event E does not happen), then
the output distribution of NSδ is identical under X and X ′. To see this, observe that X and X ′

are identical except for the ith entry.

The proof concludes as follows:

Pr[NSδ(X) ∈ T] = Pr[NSδ(X) ∈ T |Ē] Pr[Ē] + Pr[NSδ(X) ∈ T |E] Pr[E]

= Pr[NSδ(X
′) ∈ T |Ē] Pr[Ē] + Pr[NSδ(X) ∈ T |E] Pr[E]

≤ Pr[NSδ(X
′) ∈ T |Ē] Pr[Ē] + 1 · δ

≤ Pr[NSδ(X
′) ∈ T] + δ.

In the two examples we’ve seen so far, when the privacy loss random variable exceeds ε, it is a
“catastrophic failure.” In the first example, we output the entire dataset with probability δ. In the
latter, we output the single datapoint which distinguishes X and X ′ with probability δ. In both
these cases, the privacy loss random variable is either 0, or ∞ with probability δ. Thus, given no
further information, one should pessimistically assume that terrible things happen with probability
δ. However, for many common algorithms (such as the Gaussian mechanism which we will cover
shortly), the privacy loss random variable may decay gracefully – even if this probability-δ event
occurs, the privacy loss might not be significantly more than ε. This is sometimes parameterized by
multiple guarantees for the same algorithm – for instance, to make up some numbers, we might be

1I believe this excellent name (and potentially even the example) is due to Adam Smith.

2

told that an algorithm satisfies both (1, 0.001)-DP as well as (2, 0.0001)-DP. There are cleaner ways
of characterizing the privacy loss of an algorithm (compared to the relatively crude “threshold”
provided by (ε, δ)-DP), including Rényi DP [Mir17], concentrated DP [DR16, BS16]. We will likely
discuss some of these later in the class, and I might write a blog post on this topic if I get any time
this term (questionable at this point).

Before we proceed to the Gaussian mechanism, we comment on one difference between pure DP
and approximate DP. In the definition of pure DP, it was equivalent to consider Pr[M(X) = t]
for all outcomes t ∈ Y (switching from PMFs to PDFs for continuous distributions, if necessary),
compared to the way we usually state it, Pr[M(X) ∈ T] for all event T ⊆ Y. However, this is not
the case for approximate DP. This can be seen by considering an algorithm which simply outputs
the dataset X and a random number from {1, . . . , 1/δ}. Since the probability of every outcome t
of this algorithm is at most δ, this would satisfy the inequality Pr[M(X) = t] ≤ Pr[M(X ′) = t] + δ,
but it would not satisfy differential privacy nor any other type of reasonable privacy guarantee.
Note that using the equivalent formulation in terms of the privacy loss random variable allows us
to consider outcomes t ∈ Y once again.

Gaussian Mechanism

Now, we introduce the Gaussian mechanism. As the name suggests, this privatizes a statistic by
adding Gaussian noise. Before we get to that, we require a slightly different notion of sensitivity.

Definition 3. Let f : X n → Rk. The `2-sensitivity of f is

∆
(f)
2 = max

X,X′
‖f(X)− f(X ′)‖2,

where X and X ′ are neighbouring databases.

Recall that for the Laplace mechanism, we added noise proportional to the `1-sensitivity. The `2
and `1 norms enjoy the following relationship: for a vector x ∈ Rd, ‖x‖2 ≤ ‖x‖1 ≤

√
d‖x‖2. Thus,

the `2 sensitivity might be up to a factor
√
d less than the `1 sensitivity, which we will investigate

an implication of later.

We recall the Gaussian distribution:

Definition 4. The univariate Gaussian distribution N(µ, σ2) with mean and variance µ and σ2,
respectively, has the following density:

p(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Visualizations of the density of the Gaussian distribution are provided in Figure 1.

The Gaussian mechanism is as follows:

Definition 5. Let f : X n → Rk. The Gaussian mechanism is defined as

M(X) = f(X) + (Y1, . . . , Yk),

where the Yi are independent N(0, 2 ln(1.25/δ)∆2
2/ε

2) random variables.

3

Figure 1: Figure from Wikipedia. Laplace distributions with various parameters.

Note that we can also write this using the multivariate Gaussian as f(X) + Y , where Y ∼
N(0, 2 ln(1.25/δ)∆2

2/ε
2 · I). We claim that this algorithm is (ε, δ)-DP, which we will prove shortly:

Theorem 6. The Gaussian mechanism is (ε, δ)-differentially private.

To illustrate one difference between the Laplace and Gaussian mechanism, let’s consider the problem
of estimating the mean of a multivariate dataset. Suppose we have a dataset X ∈ {0, 1}n×d, and
we wish to privately estimate f(X) = 1

n

∑n
i=1Xi. The largest difference of this statistic between

two neighbouring datasets is 1
n
~1. This is a vector with `1-norm of d

n , and `2-norm of
√
d
n , which

define the `1 and `2 sensitivities, respectively. Using the Laplace mechanism to privatize f , we add
Laplace noise of magnitude d

nε to each coordinate – this gives an ε-DP estimate of f with `2 error

of magnitude O(d
3/2

nε). On the other hand, if we use the Gaussian mechanism, we add Gaussian

noise of magnitude O(

√
d log(1/δ)

nε) to each coordinate – this gives an (ε, δ)-DP estimate of f with `2
error of magnitude (roughly) O(d

nε). This example shows that the Gaussian mechanism can add a

factor of O(
√
d) less noise (albeit for a marginally weaker privacy guarantee), thus indicating that

in some cases it may be better suited for multivariate problems.

We now prove Theorem 6. For the sake of presentation, we are a bit informal in our derivation of
the constant factor in the noise. For full details, see Appendix A of [DR14].

Recall the following basic fact about “linearity” of Gaussian distributions:

Fact 7. If X and Y are i.i.d. N(0, 1), and a, b are constants, then aX + bY ∼ N(0, a2 + b2).

We start by proving the following lemma on the privacy loss random variable.

Lemma 8. Let X,X ′ ∈ X n be neighbouring datasets, and let M(Y) = f(Y) +N(0, σ2I) for some
function f : X n → Rk. Then the privacy loss random variable between M(X) and M(X ′) is

distributed as N
(
‖f(X)−f(X′)‖22

2σ2 ,
‖f(X)−f(X′)‖22

σ2

)
.

Proof. Without loss of generality, assume f(X) = f(X ′) + v. Consider drawing a noise magnitude

4

x ∼ N(0, σ2 · I). Then the privacy loss random variable is distributed as:

ln

(
Pr[M(X) = f(X) + x]

Pr[M(X ′) = f(X) + x]

)
= ln

(
exp

(
−‖x‖22/2σ2

)
exp (−‖x+ v‖2/2σ2)

)

=

(
− 1

2σ2

)(
‖x‖22 − ‖x+ v‖22

)
=

(
− 1

2σ2

) k∑
j=1

x2
j − (xj + vj)

2

=

(
1

2σ2

) k∑
j=1

2xjvj + v2
j

At this point, if we wanted only the univariate case (k = 1), we could essentially stop now:(

1

2σ2

)(
2xv + v2

)
=

v

σ2
x+

v2

2σ2

Since x ∼ N(0, σ2), this privacy loss random variable is distributed with mean v2

2σ2 , and variance
v2

σ4 · σ2 = v2

σ2 , as desired (Fact 7 is used to derive the variance). But let’s be brave and continue
with the mulrivariate case.

We first inspect the constant term, which does not multiply the xj ’s:

1

2σ2

k∑
j=1

v2
j =
‖v‖22
2σ2

.

This matches the desired mean of the distribution. Turning to the other term:(
1

2σ2

) k∑
j=1

2xjvj

 =
y

σ2
,

where y ∼ N
(

0, σ2
∑k

j=1 v
2
j

)
= N

(
0, σ2‖v‖22

)
, and we used Fact 7 to sum the xi’s into a single

Gaussian. Using this fact one more time gives the variance of y/σ2 to be ‖v‖22/σ2, completing the
proof.

The lemma says that, under the Gaussian mechanism, the privacy loss random variable is Gaussian
(note that this is a nice coincidence, and doesn’t hold in general). Letting Z ∼ N(0, 1), then the
privacy loss random variable can be rewritten as

‖f(X)− f(X ′)‖2
σ

Z +
‖f(X)− f(X ′)‖22

2σ2
.

Recall: our goal is to prove (ε, δ)-DP, which is done by proving the absolute value of the privacy
loss random variable exceeds ε with probability at most δ. With this in mind, we rewrite the
probability it exceeds ε as

Pr

[
|Z| ≥ εσ

‖f(X)− f(X ′)‖2
− ‖f(X)− f(X ′)‖2

2σ

]
.

5

Choosing σ = ∆2t
ε (for some t to be specified) allows us to upper bound this as

Pr
[
|Z| ≥ t− ε

2t

]
.

At this point, we will be a bit informal and drop the latter term for the sake of presentation – we
now consider

Pr [|Z| ≥ t] .

But this is amenable to standard Gaussian tail bounds, such as

Pr[Z ≥ v] ≤ exp(−v2/2).

Using this statement with t =
√

2 log(2/δ) gives

Pr [|Z| ≥ t] ≤ δ,

thus proving (ε, δ)-differential privacy.

Properties of Approximate Differential Privacy

Many of the convenient properties of pure differential privacy carry over to the approximate dif-
ferential privacy setting. We simply state and discuss them, one can refer to [DR14, Vad17] for
proofs.

Post-Processing

Closure under post-processing still holds: if an algorithm is (ε, δ)-DP, then any post-processing is
also (ε, δ)-DP.

Theorem 9. Let M : X n → Y be (ε, δ)-differentially private, and let F : Y → Z be an arbitrary
randomized mapping. Then F ◦M is (ε, δ)-differentially private.

Group Privacy

Group privacy, when we consider datasets which differ in k entries instead of 1, is not quite as clean
under approximate DP in comparison to pure DP. As we have already seen, ε scales linearly with
k, but the δ has an additional factor of e(k−1)δ.

Theorem 10. Let M : X n → Y be an (ε, δ)-differentially private algorithm. Suppose X and X ′

are two datasets which differ in exactly k positions. Then for all T ⊆ Y, we have

Pr[M(X) ∈ T] ≤ exp(kε) Pr[M(X ′) ∈ T] + ke(k−1)εδ.

6

(Basic) Composition

Finally, we revisit composition, in which we run k private analyses on the same sensitive dataset.
Conveniently, the εs and δs add up to give a final privacy guarantee.

Theorem 11. Suppose M = (M1, . . . ,Mk) is a sequence of algorithms, where Mi is (εi, δi)-
differentially private, and the Mi’s are potentially chosen sequentially and adaptively.2 Then M is
(
∑k

i=1 εi,
∑k

i=1 δi)-differentially private.

Now, we have the language to describe the advanced composition theorem [DRV10], though we will
only formally state and prove it next lecture. If all εi = ε, and all δi = δ, then M will overall be
(ε
√

8k ln(1/δ′), kδ+ δ′)-DP. Observe that this only pays a multiplicative O(
√
k) factor in the value

of ε, compared to basic composition which incurs a factor of k.

References

[BS16] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Proceedings of the 14th Conference on Theory of
Cryptography, TCC ’16-B, pages 635–658, Berlin, Heidelberg, 2016. Springer.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Proceed-
ings of the 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT ’06, pages 486–503, Berlin, Heidelberg, 2006.
Springer.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[DR16] Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887, 2016.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential pri-
vacy. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’10, pages 51–60, Washington, DC, USA, 2010. IEEE Computer Society.

[Mir17] Ilya Mironov. Rényi differential privacy. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium, CSF ’17, pages 263–275, Washington, DC, USA,
2017. IEEE Computer Society.

[RRUV16] Ryan M. Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan. Privacy odometers
and filters: Pay-as-you-go composition. In Advances in Neural Information Processing
Systems 29, NIPS ’16, pages 1921–1929. Curran Associates, Inc., 2016.

[Smi20] Adam Smith. Lectures 9 and 10. https://drive.google.com/file/d/1M_

GfjspEV2oaAuANKn2NJPYTDm1Mek0q/view, 2020.

2While the algorithms themselves may be sequentially and adaptively chosen, the privacy parameters may not be
– see [RRUV16] for more discussion.

7

https://drive.google.com/file/d/1M_GfjspEV2oaAuANKn2NJPYTDm1Mek0q/view
https://drive.google.com/file/d/1M_GfjspEV2oaAuANKn2NJPYTDm1Mek0q/view

[Vad17] Salil Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tutorials
on the Foundations of Cryptography: Dedicated to Oded Goldreich, chapter 7, pages
347–450. Springer International Publishing AG, Cham, Switzerland, 2017.

8

