
CS 860: Algorithms for Private Data Analysis Fall 2022

Problem Set

Prof. Gautam Kamath Deadline: 11:59 PM on Monday, October 24, 2022

You are allowed to discuss the problems in groups. List your collaborators for each problem. Every
person must write up and submit their own solutions. Allowed references are anything given on
the course website. It might be possible to find solutions to these problems online, but please do
not search for them. If you have already seen a solution before, solve it without referring to said
reference.

1. A different private algorithm. Suppose that we wanted to answer a count query: f(X) =∑n
i=1Xi, where Xi ∈ {0, 1}. In class, we learned the Laplace mechanism: simply add Laplace

noise with scale parameter 1/ε. But what if we didn’t have access to Laplace noise? Suppose
Z is a continuous uniform random variable, drawn uniformly from the interval [−3/ε, 3/ε].
Consider the statistic f̃(X) =

∑n
i=1Xi + Z. Is f̃ O(ε)-differentially private? If yes, prove it,

with the best constant you can give in the privacy guarantee. If no, explain why not.

2. Randomized Response, re-revisited. We’ll see some generalizations of randomized re-
sponse, beyond just binary alphabets. I will informally and vaguely describe an algorithm,
you must rigorously define and specify the algorithm and prove that it is ε-differentially
private.

(a) Let’s start by revisiting the binary case. The analysis of randomized response we gave
in class was sloppy in two ways: first, it used big-Oh notation, and only worked for
sufficiently small ε. Give a randomized response algorithm and analysis which works
for all ε > 0. More precisely: the vector (Y1, . . . , Yn) ∈ {0, 1}n is output, where Yi is
equal to Xi with probability proportional to g(ε) (for some function g which you must
specify), and equal to 1 − Xi with probability proportional to 1. Informally speaking,
this algorithm will be “exact” – the differential privacy guarantee will hold with equality.

(b) Let’s generalize this beyond the binary alphabet, assume Xi ∈ {1, . . . , k} for the remain-
der of this problem. The vector (Y1, . . . , Yn) ∈ {1, . . . , k}n is output, where Yi is equal to
Xi with probability proportional to g(ε) (for some function g which you must specify),
and equal to each s ∈ {1, . . . , k} \Xi with probability proportional to 1.

(c) Here’s another way to generalize randomized response. The vector (Y1, . . . , Yn) ∈ {0, 1}kn
is output. Yi ∈ {0, 1}k is a vector generated in the following manner: each Xi is first
converted to a “one-hot” vector ∈ {0, 1}k, where coordinate j is 1 if j = Xi and 0 other-
wise. Yi generated from Xi by applying a bitwise randomized response (with appropriate
parameter).

3. Mean estimation with non-binary data. In class, we saw how to estimate the mean of
a dataset f(X) = 1

n

∑n
i=1Xi in the case when the Xi’s are binary. Here, we will see how to

estimate the mean of a dataset when this may not be the case.

(a) Suppose we only knew the Xi ∈ R were real numbers. Prove that, for all t ≥ 0, there is
no ε-differentially private algorithm M : Rn → R such that Pr [|M(X)− f(X)| ≤ t] ≥
9/10, where ε = 1. Optionally, prove the same statement for finite all ε > 0.
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(b) The previous problem showed that, in general, we can’t privately estimate the mean of
an unbounded dataset. Let’s see how we can circumvent this issue. Give an algorithm
A2 : Rn → R with the following guarantees. The algorithm is ε-differentially private,
for all possible datasets (X1, . . . , Xn) ∈ Rn. If all Xi ∈ [−R,R], then there exists some
constant C > 0 such that Pr[|A2(X)− f(X)| ≤ CR

εn ] ≥ 9/10. The parameter R is known
to the algorithm. Observe that this algorithm must always be private, but only needs
to be accurate when the input dataset satisfies some additional properties.

(c) You have now shown that, if the data is in some known bounded range, we can privately
estimate its mean. However, this can still be wasteful if R is large, but the data is
actually concentrated in a much tighter range. The latter is often the case: for instance,
given Gaussian data sampled from N(0, 1), almost all of the data will lie in the range
[−3, 3]. Thus, the last two parts of this problem will attempt to reduce the dependence
on R when something like this holds.

Suppose we are given a dataset X ∈ Rn. Give an algorithm A1 with the following guaran-
tees. The algorithm is ε-differentially private, for all possible datasets (X1, . . . , Xn) ∈ Rn.
If there exists some interval I ⊂ [−R,R] such that all Xi ∈ I and the width of the inter-
val I is bounded by 2, and if n ≥ C logR

ε for some constant C > 0, then with probability
at least 9/10 the algorithm outputs an interval J such that I ⊂ J and the width of J is
bounded by some constant (you can choose the constant, but prove it explicitly). Again,
assume the parameter R is known to the algorithm, but the interval I is not.

(d) Give an algorithm A with the following guarantees. The algorithm is ε-differentially
private, for all possible datasets (X1, . . . , Xn) ∈ Rn. If all Xi ∈ I for some interval
I ⊂ [−R,R] of width at most 2, and if n ≥ C1 logR

ε for some constant C1 > 0, then there

exists some constant C2 > 0 such that Pr[|A(X) − f(X)| ≤ C2
εn ] ≥ 4/5. (This problem

should be easy, given the answer to the previous two parts.)

4. Amplification by subsampling. Suppose we have an algorithm M : Xm → Y which is
(ε, δ)-DP. Consider the following algorithm M ′ : X n → Y, where n > m. When run on an
input X ∈ X n, it chooses a random subset of the input X ′ ∈ Xm of size m, and outputs
M(X ′). Prove that M ′ is (O(εm/n), O(δm/n))-DP.

This means that given a 1-DP algorithm, it can always be converted to a ε-DP algorithm by
just expanding the dataset size by a factor of O(1/ε). Thus, while there may be a qualitative
difference between DP algorithms with large and constant ε, going from constant to small ε
never experiences the same type of difference.

5. Broken sparse vector is not DP. It is notoriously hard to get the Sparse Vector algorithm
right. In the version discussed in class, we noise the threshold T at the start of the algorithm
to obtain a new threshold T̃ , and we additionally noise each query. A common mistake is
to not noise the threshold (just using T instead), and only the queries. For instance, this
mistake is present in the original paper on Private Multiplicative Weights. Show that this
variant is not ε-DP for any ε > 0.

6. Tightness of Advanced Composition. Advanced composition says that, if we run k ε-DP
algorithms on the same dataset, the result will be (1, δ)-DP if k < 1/8ε2 log(1/δ). Show that
this is “tight”: if we run k ε-DP algorithms on the same dataset where k > C/ε2 for some
large constant C, the result may not be (1, 0.1)-DP. If you like, you can also replace C with
some polynomial in log(1/ε), if that makes your life easier.
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7. Noisy Report Max. Suppose we are in the same setting as the exponential mechanism.
That is, we have a datasetX ∈ X n, a set of objectsH, and a score function s(·, ·) : X n×H → R
which maps from a pair of a dataset and an object to a real value. Suppose that, for any h ∈ H,
the sensitivity of s is at most ∆. Here is an algorithm which is very similar to the exponential
mechanism, but may be easier to implement in some cases. Return arg maxh∈H{s(h,X)+Zh},
where Zh ∼ Exp(2∆/ε) drawn i.i.d. for each h ∈ H. In words: compute the score of each
object, noise each score with an independent draw from the exponential distribution, and
return the object which has the highest (noisy) score. [Hint: Suppose you fix (condition on)
the values of the noise Zy = zy for all y 6= h. Compute and compare the probability that the
outcome will be h under two neighbouring data sets X and X ′.]

Note that this algorithm, known as noisy report max, is not identical to the exponential
mechanism, this this claim is sometimes incorrectly made. If you replace the exponential
noise with Gumbel noise, then the resulting algorithm is exactly equivalent to the exponential
mechanism. Optionally, prove that this is true.
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