Concentration of Multilinear Functions of the Ising Model And Applications to Network Data

Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath

Our Result

Known that no non-trivial concentration holds in low-temperature.

We show **High Temp.** \approx **Independent case.** (weaker assumption of **Dobrushin's uniqueness** suffices)

Previous Best (degree-d function): Radius of conc. = $O_d(n^{d-0.5})$ Our bound: Radius of conc. = $\tilde{O}_d(n^{d/2})$

Also achieve tight decay rate of tail: $Pr[|f(X) - E[f(X)]| > r] \le 2\exp\left(-\frac{r}{\widetilde{O}_d(n)}\right)$

Proof Idea: Martingale Theory

- > Our approach: Martingale theory.
- > Use Glauber dynamics together with concept of **Doob martingale.**
- > Freedman's inequality: Builds on Azuma's inequality, stopping time.
- > Inductive Structure: (d-1)-degree concentration crucial for d-degree concentration.

Contributions

THEORY:

- >Tight concentration bounds for Polynomial functions of Ising model
- \succ Natural statistics useful for hypothesis testing, learning.
- > Handle complex dependencies between nodes.
- > Improve previously known log-Sobolev bounds.
- \succ Contribution to probability, statistical physics.

APPLICATIONS:

> Test existence of strong network effects

- In synthetic data.
- In Last.fm dataset.

 \geq Many techniques known when independence exists. > Main challenge: Dependent random variables. > Known Log-Sobolev techniques suboptimal.

Application: Testing Strong Network Effects From <u>One</u> Sample Which of the two images is Last.fm Data Bilinear Statistics vs. MPLE Bilinear Statistic -MPLE

from a true Ising model?

What if all variables are I.I.D.?

If each $X_i \sim Rad\left(\frac{1}{2}\right)$ i.i.d., then know tight concentration for d-linear function f(.)Radius: $O_d(n^{d/2})$ Tail (r): $2\exp\left(-\frac{r^{2/d}}{O_d(n)}\right)$ Contains most of the probability mass $\leq 2 \exp$

> Strong network effects Weak network effects