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Abstract

Hypothesis testing is one of the most classical problems in statistics. While it has enjoyed
over a century of intense study, only recent focus has been on the small-sample regime, with
interest in sample complexities and minimax rates. Our understanding of many fundamental
problems is now quite mature, but there are several questions which have arisen over the last
decade, which have not yet received adequate attention. The goal of this dissertation is to
identify and address several contemporary challenges in distribution testing. In particular,
we make progress in answering the following questions:

∙ Can we test distributions with tolerance to model misspecification?

∙ How does the complexity of distribution testing change as we consider different mea-
sures of distance?

∙ Can we efficiently test for membership in (potentially infinite) classes of distributions?

∙ How can we avoid the curse of dimensionality when testing multivariate distributions?

∙ Is it possible to perform hypothesis testing on sensitive data, while respecting privacy
of the dataset?

∙ Can we design more efficient algorithms if the dataset is sampled actively?

Directions for further investigation are also discussed.

Thesis Supervisor: Constantinos Daskalakis
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Hypothesis testing is one of the most classical statistical questions, with a history dating

back at least three hundred years [Arb10, Lap78]. It asks the following question: can a

dataset, which is assumed to be distributed according to some unknown distribution, be

explained by some hypothesis model? For example, by consulting Christening records from

1629 to 1710, Arbuthnott rejected the hypothesis that the male birth rate is equal to the

female birth rate, and attributed this discrepancy to divine intervention [Arb10].

Modern study in statistics can be traced back to the early 20th century, roughly originat-

ing from Pearson’s introduction of the 𝜒2-test [Pea00]. Over the last century, these problems

have enjoyed significant study (see, e.g., [Fis25, LR05]), often with the goal of computing

𝑝-values for tests of statistical significance.

However, some of the classical works in this field are focused on directions which are not

entirely aligned with the needs of modern data science. Much of the analysis is targeted at the

asymptotic regime, in which we allow the number of samples to go to infinity. For instance, a

common goal is to understand the limiting distribution of a statistic. The drawback is that

modern data analysis is frequently performed on datasets with extremely large domains,

settings in which limited amounts of data may cause these asymptotic guarantees to not

even be approximately true. Furthermore, an emphasis is placed on significance rates: that

is, understanding the probability with which we reject the hypothesized model (also known as

the null hypothesis). Somewhat less rigorously considered is the power of statistical tests: the

probability of not rejecting the model when we are in fact looking at a different distribution
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(an alternative hypothesis). In many works, this is analyzed with respect to limited classes

of alternative hypotheses or empirically measured on several “natural” alternatives, in both

cases, lacking the precise and widely applicable guarantees we desire.

Guided by these motivations, a recent direction of study has been on understanding the

sample complexity (or equivalently, minimax rates) of hypothesis testing. The broad interest

in these questions has caused a number of communities (including statistics, information

theory, machine learning, and theoretical computer science) to converge upon this common

goal. Perhaps the starting point in the statistics community can be considered the work

of Ingster and coauthors [Ing94, Ing97, IS03], which studied the minimax rates of various

tests. Our main focus in this thesis is the study in theoretical computer science, of which

the genesis is generally considered the work Goldreich and Ron [GR00], which studied the

problem of testing uniformity of a distribution for the application of testing expansion of

a bounded degree graph. As this investigation is within the field of computer science, in

addition to the desiderata mentioned above, there is an additional emphasis on developing

algorithms and tests that are computationally efficient. Since this introduction, there has

been a flurry of results, culminating in a tight understanding of the sample complexity of

many fundamental problems of interest (see Section 1.1 for a brief history of the field so far).

While it might be tempting to declare victory in light of this success, the more applied

side of the field has changed significantly over the past century. In particular, there are

a number of settings and requirements in modern data science that were not dreamed of

when hypothesis testing was first considered, bearing with them a number of new challenges

we must face. The goal of this thesis is to identify and address several of these unresolved

questions, and highlight some directions for further investigation. Specifically, the aspects

of distribution testing which we focus on in this thesis are as follows:

∙ Tolerance and Alternative Distances. Classically, hypothesis testing has focused

on a single null hypothesis: is our unknown distribution 𝑝 equal to some model 𝑞?

However, it seems unreasonable for our model to precisely match the unknown dis-

tribution, as small errors might have been introduced for a number of reasons. As a

result, we would really like to test whether 𝑝 is close to the model 𝑞. Additionally,

while total variation is the canonical distance for distribution testing, other metrics
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and divergences may be more natural for some settings. We investigate both of these

concerns in Chapter 2.

∙ Composite Hypotheses. Somewhat related to the previous topic, we would also like

to test if our distribution belongs to some (potentially infinite) family of distributions.

For example, a researcher might want to determine if their data is distributed according

to the law of some unimodal distribution, not a particular unimodal distribution. We

describe results for testing such composite null hypotheses in Chapter 3.

∙ High Dimensions. Modern settings of data analysis involve highly multivariate do-

mains. In these settings, the curse of dimensionality manifests: distribution testing in

general high-dimensional settings necessitates a sample complexity which is exponen-

tial in the dimension. How can we perform statistical inference tasks in multivariate

settings? In Chapter 4, we design specialized algorithms for Ising models, a common

graphical model for high-dimensional datasets.

∙ Data Privacy. Statistical tasks are often performed on sensitive individual data. For

instance, a medical study might operate on patient health records. Can we perform

statistical procedures while ensuring privacy of the dataset? This is the topic we

explore in Chapter 5.

∙ Conditional Sampling. Nowadays, data collection is not a static process: we may

have some additional control over how our dataset is acquired. Given this extra power,

can we exploit it to design more efficient algorithms? This motivates the study of the

conditional sampling model, which we discuss in Chapter 6.

∙ Other Directions. Naturally, there are a number of directions that we will not have

the opportunity to address elsewhere in this thesis. In Chapter 7, we briefly describe

and discuss a few more modern challenges, and give pointers to the relevant literature.
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1.1 Background, Prior Work, and Outline of Contribu-

tions

In this section, we provide a brief history of the field of distribution testing within theoretical

computer science and adjacent fields. We also outline our contributions and place them in

context with existing work. Discussion of some classical results will be deferred to later

chapters, when they become more relevant to the topic of discussion.

Within theoretical computer science, the field of distribution testing originated as a

subfield of property testing. The problem was first stated by Goldreich, Goldwasser, and

Ron in [GGR96], but it was first studied in earnest by Goldreich and Ron [GR00], who were

concerned with the problem of testing whether a bounded-degree graph is an expander. Their

approach is based on the fact that random walks on expander graphs are rapidly mixing to

the uniform distribution. This allows them to reduce their problem to uniformity testing :

given samples from a distribution 𝑝, is it uniform over its support, or is it 𝜀-far in total

variation distance1 from the uniform distribution? While they do not phrase their results in

this language, they imply the following theorem:

Theorem 1 ([GR00]). There exists a polynomial-time algorithm which, given sample access

to a distribution 𝑝 over [𝑛], can distinguish (with probability at least 2/3) between the case

where 𝑝 is uniform over [𝑛], and the case where 𝑝 is 𝜀-far in total variation distance from

being uniform. The algorithm uses 𝑂 (
√
𝑛/𝜀4) samples.

At first glance, it might seem surprising that one can test whether a distribution over

[𝑛] is uniform from only 𝑂(
√
𝑛) samples. Indeed, with this few samples, almost all elements

of the domain will never be observed. One counter-intuitive fact which provides a glimmer

of hope is the well-known birthday paradox : if one takes only Θ(
√
𝑛) samples from the

uniform distribution, collisions between the sampled elements will start to occur. This is

the type of statistic exploited by Goldreich and Ron. One can observe that the uniform

distribution minimizes the number of collisions between samples from 𝑝, and therefore one

can test uniformity of a distribution by appropriately thresholding the number of collisions.
1Total variation distance, as well as several other concepts we require in this thesis, is defined in Sec-

tion 1.3.
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More generally, one can consider the problem of identity testing : given samples from a

distribution 𝑝, is it equal to some particular distribution 𝑞, or is it 𝜀-far in total variation

distance from 𝑞? Batu, Fischer, Fortnow, Kumar, Rubinfeld, and White gave the first

algorithm for this problem [BFF+01], which requires 𝑂̃ (
√
𝑛 · poly(𝜀−1)) samples. Note that

this nearly matches the dependence on 𝑛 for uniformity testing. Their method partitions

the domain [𝑛] so that 𝑞 is roughly uniform on each part, and then tests whether 𝑝 is

uniform over each part using the algorithm of Goldreich and Ron [GR00]. This method of

reducing identity testing to uniformity testing is fundamental, and a number of recent works

essentially do this, either by rescaling [ADK15] or splitting [DK16, Gol16] elements of the

domain. Indeed, as Goldreich showed via the splitting method, uniformity testing is complete

for testing identity [Gol16]. In other words, up to constant factors, an algorithm for testing

uniformity implies an algorithm for testing identity with the same sample complexity.

The first optimal upper bounds of 𝑂(
√
𝑛/𝜀2) were provided by Paninski [Pan08], and

Valiant and Valiant [VV14]. The former algorithm only works when 𝜀 = Ω(𝑛−1/4), and is for

the special case of testing uniformity (which we now know to be complete), while the latter

algorithm removed both these restrictions. Optimal algorithms for this problem have since

been rediscovered several times [ADK15, DKN15b, DGPP16, DK16, DGPP18, DKW18]. To

complement these upper bounds, Paninski also showed an information-theoretic lower bound

of Ω(
√
𝑛/𝜀2) for uniformity testing. The dependence on 𝑛 is intuitive from the fact that the

Θ(
√
𝑛) in the birthday paradox is tight: if one receives fewer samples from a distribution

which is uniform over a random half of the domain [𝑛], no collisions will be witnessed, and

thus the distribution is indistinguishable from the uniform distribution. Obtaining the tight

inverse-quadratic dependence on 𝜀 requires a more careful argument. To summarize, this

line of work has resulted in the following optimal sample complexity for testing identity:

Theorem 2 ([Pan08, VV14]). There exists a polynomial-time algorithm which, given sam-

ple access to a distribution 𝑝 over [𝑛] and the description of a distribution 𝑞 over [𝑛], can

distinguish (with probability at least 2/3) between the case where 𝑝 is equal to 𝑞, and the case

where 𝑝 is 𝜀-far in total variation distance from 𝑞. The algorithm uses 𝑂 (
√
𝑛/𝜀2) samples.

Furthermore, any algorithm for this problem which succeeds with probability at least 2/3 must

use Ω (
√
𝑛/𝜀2) samples.
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While this settles the complexity of identity testing, this formulation is rather basic, and

may be of limited interest in many real-world settings. For example, it seems unreasonable for

the distribution 𝑝 to exactly match the hypothesized model 𝑞, as error may be introduced into

the process at a number of points. Therefore, it may be more motivated to study the tolerant

case, when 𝑝 and 𝑞 are close, rather than equal. Perhaps the most natural formulation of

this question is as follows: how many samples are required to distinguish the case where 𝑝

is 𝜀/2-close to 𝑞 from the case where 𝑝 is 𝜀-far from 𝑞? Surprisingly, as shown by Valiant

and Valiant [VV10a, VV10b, VV11a, VV11b], the problem is much harder than before: the

sample complexity jumps to Θ
(︁

𝑛
log𝑛

)︁
. This is rather unsatisfying, as the tolerance we desire

cost us a near-quadratic blow-up in the sample complexity, thus motivating study of the

following question in Chapter 2:

Question 1. Can we design sample-efficient algorithms for tolerant identity testing, poten-

tially by considering other distance measures?

We answer this question affirmatively, and provide a number of computationally efficient

and sample-optimal tests for a number of testing problems. We show that some types of

tolerance come at no cost, including tolerance in ℓ2-distance or the 𝜒2-divergence.

Another way to lessen the restrictive nature of identity testing is to consider composite

hypotheses. In addition to identity testing, the paper of Batu et al. [BFF+01] also studied

independence testing : given samples from a two-dimensional distribution 𝑝, is it a product

measure? Observe that, in contrast to previous problems where the null hypothesis is a single

distribution, we wish to test whether 𝑝 is equal to one of infinitely many 𝑞. In a simliar vein,

Batu, Kumar, and Rubinfeld [BKR04] investigated monotonicity testing : given samples

from a distribution 𝑝 over [𝑛], is its probability mass function monotone non-decreasing?

Interestingly, the sample complexity is once again 𝑂̃ (
√
𝑛 · poly(𝜀−1)): the cost is comparable

to that of testing identity to a single hypothesis 𝑞. This raises the main question of study in

Chapter 3:

Question 2. Are there sample-efficient tests for testing if a distribution belongs to some

structured family?

We once again answer this affirmatively for a number of families of interest by providing
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sample-optimal and computationally efficient algorithms for testing many natural classes of

distributions. We find that testing for an entire class of distributions often comes at no cost

over testing for a single distribution 𝑞. Surprisingly, we must exploit a technical connection

with Question 1.

Most of the problems mentioned so far have been studied in low-dimensional settings:

all are univariate, with the exception of independence testing, which is bivariate. However,

distribution testing problems frequently arise in high-dimensional settings, which are far more

common in modern data analysis. Troublingly, if one embeds the lower bound construction of

Paninski [Pan08] into a multivariate domain, it can be shown that the curse of dimensionality

necessitates a sample complexity which is exponential in the dimension. This seems at odds

with our needs to perform statistical analysis in these settings. One vestige of hope is the fact

that structural assumptions on the underlying distribution often enable significant savings

for testing problems. This was observed by Batu, Kumar, and Rubinfeld [BKR04], who

achieved exponential savings in the sample complexity when the underlying distributions are

assumed to be monotone. Note that this is testing with structure, not testing for structure,

as considered in Question 2. Specifically, we investigate the following question in Chapter 4:

Question 3. Is high-dimensional distribution testing tractable over structured classes of

densities?

If the underlying distribution is an Ising model, we show that the curse of dimensionality

can be avoided. As a result, the sample complexity is polynomial in the dimension, rather

than exponential.

Turning briefly to the applied side of hypothesis testing, statistical methods are now

applied in an increasingly wide variety of settings. One recent area of interest is genome

wide association studies (GWASs), where one tries to detect correlations between traits

and genetic variants using hypothesis tests for independence. Naturally, these datasets are

quite sensitive in nature, containing health information of large collections of individuals.

Worryingly, it was recently shown by Homer et al. that naïve methods might allow an

attacker to identify individuals who participated in such a study [HSR+08], thus motivating
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interest in methods which explicitly try to prevent such attacks. We turn our focus to this

issue in Chapter 5:

Question 4. Can we perform distributional hypothesis testing and property estimation while

respecting privacy of the dataset?

Using the celebrated notion of differential privacy, we give efficient private algorithms for

several problems of interest. Surprisingly, in many parameter regimes of interest, privacy

comes at a negligible cost in the sample complexity.

Finally, a new direction has attempted to quantify the savings enjoyed when we have

stronger access to the underlying distribution. For example, suppose that, rather than

simply being given a dataset, we can somehow (potentially adaptively) gather a dataset.

This evokes the spirit of the celebrated active learning model in machine learning, in which

one can request labels for specific datapoints. The recently-introduced conditional sampling

model, in which the algorithm can elicit samples conditioned on being from query sets it

specifies, attempts to capture this type of phenomenon [CFGM13, CRS14], and it has been

shown that the complexity of several problems drops dramatically. For instance, identity

testing requires only 𝑂̃(1/𝜀2) queries [FJO+15], in contrast to the 𝑂(
√
𝑛/𝜀2) samples in

the standard model, completely eliminating the dependence on the size of the support 𝑛.

However, the complexity of a number of basic questions is still not well understood – we fill

several gaps in the literature in Chapter 6, contemplating the following question:

Question 5. How far can we push the savings enabled by the conditional sampling model for

distribution tesing, and how does the power of the model change when it is adaptive versus

non-adaptive?

We conclude this section by mentioning prior work on a few other interesting questions

in distribution testing.

The success probability of identity testing in Theorem 2 is at least 2/3. This can be

boosted to 1− 𝛿 at a multiplicative cost of 𝑂(log(1/𝛿)) samples, as we discuss in Section 1.3.

However, it turns out one can do slightly better – in some parameter regimes, one may get

away with paying only a multiplicative 𝑂(
√︀

log(1/𝛿)) [HM13b, DGPP18].
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As mentioned before, if one can test uniformity, one can test identity to any distribution

𝑞. As such, the uniform distribution is the hardest distribution, and we can actually do

better on an instance-by-instance basis, as shown in [VV14, DK16, BCG17].

The harder problem of equivalence testing, when both 𝑝 and 𝑞 are unknown, was first

studied in [BFR+00]. Optimal upper and lower bounds were given in [CDVV14], where the

lower bound was based off the approach of [Val11].

Theorem 3 ([Val11, CDVV14]). There exists a polynomial-time algorithm which, given

sample access to distributions 𝑝 and 𝑞 over [𝑛], can distinguish (with probability at least 2/3)

between the case where 𝑝 is equal to 𝑞, and the case where 𝑝 and 𝑞 are 𝜀-far from each other

in total variation distance. The algorithm uses 𝑂
(︁

max
{︁

𝑛2/3

𝜀4/3
, 𝑛

1/2

𝜀2

}︁)︁
samples. Furthermore,

any algorithm for this problem must use Ω
(︁

max
{︁

𝑛2/3

𝜀4/3
, 𝑛

1/2

𝜀2

}︁)︁
samples.

In fact, one can show that it is possible to test equivalence when given unequal numbers

of samples from the two distributions, as investigated in [AJOS14b, BV15, DK16].

Beyond distribution testing, there has also been significant study on several related prob-

lems of property estimation, some of which we describe and discuss in Section 1.3.1.2. All of

these problems are in the “barely-sublinear” regime, with sample complexity Θ
(︁

𝑛
log𝑛

)︁
. Spe-

cific lines of work include Shannon and Rényi entropy estimation [Pan03, BDKR05, VV13,

WY16, JVHW17, AOST17, OS17], support coverage and support size estimation [OSW16,

WY18], and estimating distance between discrete distributions [VV10a, VV10b, VV11a,

VV11b, JHW16, HJW16, JVHW17].

Our coverage in this section is necessarily incomplete, focusing on the results which are

most relevant to our work in this thesis. For further background, surveys, and books which

may be of interest, we refer the reader to [Rub12, Can15b, Gol17, BW17b].

1.2 Organization and Bibliographic Information

Most contents of this thesis have appeared previously as other publications, which we briefly

outline.

In the remainder of Chapter 1, we standardize notation and overview some preliminaries

that we will require for the rest of the thesis.
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Chapter 2 focuses on distribution testing with alternative distance measures. This is

based on the paper “Which Distribution Distances are Sublinearly Testable?” which is joint

work with Constantinos Daskalakis and John Wright, and appeared in the Proceedings of

the 29th Annual ACM-SIAM Symposium on Discrete Algorithms [DKW18].

Chapter 3 studies the testing of shape restrictions of distributions. This is based on the

paper “Optimal Testing for Properties of Distributions,” which is joint work with Jayadev

Acharya and Constantinos Daskalakis, and appeared in Advances in Neural Information

Processing Systems 28 [ADK15].

Chapter 4 investigates testing in structured high-dimensional domains, when the un-

derlying distribution is known to be an Ising model. This is based on the paper “Testing

Ising Models,” which is joint work with Constantinos Daskalakis and Nishanth Dikkala,

and appeared in the Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete

Algorithms [DDK18].

Chapter 5 describes results on distribution testing and property estimation with privacy

constraints. This is based on two papers: the first is “Priv’IT: Private and Sample Effi-

cient Identity Testing,” which is joint work with Bryan Cai and Constantinos Daskalakis,

and appeared in the Proceedings of the 34th International Conference on Machine Learn-

ing [CDK17]. The second is “INSPECTRE: Privately Estimating the Unseen,” which is

joint work with Jayadev Acharya, Ziteng Sun, and Huanyu Zhang, and appeared in the

Proceedings of the 35th International Conference on Machine Learning [AKSZ18].

Chapter 6 discusses distribution testing when one is given conditional sampling access

to the underlying distribution. This is based on two papers: the first is “A Chasm Between

Identity and Equivalence Testing with Conditional Queries,” which is joint work with Jayadev

Acharya and Clément L. Canonne, and appeared in the proceedings of the 19th International

Workshop on Randomization and Computation [ACK15b]. The second is “Anaconda: A

Non-Adaptive Conditional Sampling Algorithm for Distribution Testing,” which is joint work

with Christos Tzamos, and is currently available as a preprint [KT18].

Chapter 7 lists some other recent directions in distribution testing, which are ripe for

further investigation.

Other papers by the author over the course of his PhD studies, but not included in this
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thesis include [DK14, ACK15a, DKT15, DDKT16, DKK+16, DDK17, DKK+17, DKK+18a,

DKK+18b, KLSU18, HKKT18].
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1.3 Preliminaries and Notation

In this thesis, we will use the symbols 𝑝 and 𝑞 to denote probability distributions. Distri-

butions will usually be discrete, with support [𝑛] = {1, . . . , 𝑛}. To represent the probability

of observing element 𝑖, we will use either 𝑝(𝑖) or 𝑝𝑖, the choice of which will be clear from

context. Except when stated otherwise, for a set 𝑆 ⊆ [𝑛] and a distribution 𝑝 over [𝑛], 𝑝𝑆 is

the vector 𝑝 restricted to the coordinates in 𝑆. We will call this a restriction of distribution

𝑝. We will generally use 𝜀 ∈ (0, 1) to measure the accuracy of a statistical procedure: either

the parameter in the “soundness” case for distribution testing or how accurately we must

estimate some functional of a distribution for property estimation. 𝛿 ∈ (0, 1) is used to indi-

cate the probability that the test or estimator fails (i.e., outputs an incorrect or inaccurate

answer). The exception will be Chapter 5, where we use 𝜀 and 𝛿 for privacy parameters, we

will use 𝛼 and 𝛽 in their place, respectively. The symbol 𝑚 will be used for the number of

samples. We will use 𝒰𝑛 for the uniform distribution over [𝑛].

1.3.1 Problems Statements

The primary problem of interest in this thesis is distribution testing. There are many flavors

which we describe in Section 1.3.1.1. Other property estimation problems we study are

described in Section 1.3.1.2.

1.3.1.1 Distribution Testing

We define some classical distribution testing problems here, extensions will be defined in

later chapters as they become relevant.

The most classical distribution testing problem is identity testing. Given an explicit

description of a distribution 𝑞, the goal is to distinguish between the following two cases:

∙ Completeness: 𝑝 = 𝑞;

∙ Soundness: 𝑑TV(𝑝, 𝑞) ≥ 𝜀,

where 𝑑TV(𝑝, 𝑞) is the total variation distance between 𝑝 and 𝑞. We would like for our test

to be successful with probability at least 2/3: this can be boosted to probability 1− 𝛿 by a
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standard argument at the cost of a multiplicative log(1/𝛿) in the sample complexity.2 When

the distribution 𝑞 = 𝒰𝑛, then the problem is called uniformity testing. In the statistics

community, these problems are referred to as one-sample testing : this is in reference to the

fact that we have samples from one unknown distribution.

In the harder case where 𝑞 is not explicitly known and we only have sample access to 𝑞,

then the problem is called equivalence testing.3 As one might expect, this variation of the

problem is called two-sample testing by the statistics community.

Sometimes, the completeness condition is changed from 𝑑TV(𝑝, 𝑞) = 0 to 𝑑TV(𝑝, 𝑞) ≤ 𝜀′.

In this case, the problem is called tolerant testing. Often, 𝜀′ is chosen to be 𝜀/2, or some

other value which gives a constant factor gap between the soundness and completeness cases.

1.3.1.2 Other Problems

There are a number of other property estimation problems which we explore in this thesis.

Support Size. The support size of a distribution 𝑝 is 𝑆(𝑝) = |{𝑥 : 𝑝(𝑥) > 0}|, the number

of symbols with non-zero probability values. However, notice that estimating 𝑆(𝑝) from sam-

ples can be hard due to the presence of symbols with negligible, yet non-zero probabilities.

To circumvent this issue, [RRSS09] proposed to study the problem when the smallest prob-

ability is bounded. Let ∆≥ 1
𝑛
, {𝑝 ∈ ∆ : 𝑝(𝑥) ∈ {0} ∪ [1/𝑛, 1]} be the set of all distributions

where all non-zero probabilities have value at least 1/𝑛. Given samples from 𝑝 ∈ ∆≥ 1
𝑛
, our

goal is to estimate 𝑆(𝑝) up to ±𝜀𝑛.

Support Coverage. For a distribution 𝑝, and an integer 𝑘, let 𝑆𝑘(𝑝) =
∑︀

𝑥(1−(1−𝑝(𝑥))𝑘),

be the expected number of symbols that appear when we obtain 𝑘 independent samples from

the distribution 𝑝. The objective is, given samples from 𝑝, to estimate 𝑆𝑘 (𝑝) up to an additive

±𝜀𝑘.

Support coverage arises in many ecological and biological studies [CCG+12] to quantify

2The argument is as follows: run the test independently 𝑂(log(1/𝛿)) times, and take the majority result.
Since each result is correct with probability at least 2/3, then, by a Chernoff bound, the correct result will
be the majority with probability 1− 𝛿.

3The problem is also known as closeness testing, though we will generally use the former term in this
thesis.
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the number of new elements (gene mutations, species, words, etc.) that can be expected to

be seen in the future. Good and Toulmin [GT56] proposed an estimator that can extrapolate

by a factor of up to 2: it can use 𝑘/2 samples to estimate 𝑆𝑘(𝑝).

Entropy. The Shannon entropy of a distribution 𝑝 is 𝐻(𝑝) =
∑︀

𝑥 𝑝(𝑥) log 1
𝑝(𝑥)

. 𝐻(𝑝) is a

central object in information theory [CT06a], and also arises in many fields such as machine

learning [Now12], neuroscience [BWM97, NBdRvS04], and others. Estimating 𝐻(𝑝) is un-

fortunately impossible with any finite number of samples due to the possibility of infinite

support. To circumvent this, a natural approach is to consider distributions in ∆𝑛, where

∆𝑛 is all discrete distributions over at most 𝑛 symbols. The goal is to estimate the entropy

of a distribution in ∆𝑛 up to ±𝜀.

Distance between Distributions. The ℓ1-distance between a distribution 𝑝 and 𝑞 is

‖𝑝−𝑞‖1 =
∑︀

𝑖 |𝑝(𝑖)−𝑞(𝑖)| ∈ [0, 1]. This is most frequently studied when 𝑞 = 𝒰𝑛. The goal is to

estimate ‖𝑝−𝑞‖1 up to an additive 𝜀. Estimating the distance between distributions is closely

related to the problem of tolerant distribution testing, when we want to determine whether

two distributions are close or far in ℓ1 distance. For more discussion on this connection and

distribution testing, see [PRR06, DKW18].

1.3.2 Measures of Distance between Distributions

In this thesis, a number of different distances and divergences will be core to our work.

Definition 1. The total variation distance or statistical distance between 𝑝 and 𝑞 is defined

as

𝑑TV(𝑝, 𝑞) = max
𝑆⊆[𝑛]

𝑝(𝑆)− 𝑞(𝑆) =
1

2

∑︁
𝑖∈[𝑛]

|𝑝𝑖 − 𝑞𝑖| =
1

2
‖𝑝− 𝑞‖1 ∈ [0, 1].

Note that, up to a factor of two, this is equivalent to the ℓ1 distance between 𝑝 and 𝑞.

Definition 2. The KL divergence between 𝑝 and 𝑞 is defined as

𝑑KL(𝑝, 𝑞) =
∑︁
𝑖∈[𝑛]

𝑝𝑖 ln
𝑝𝑖
𝑞𝑖
∈ [0,∞).
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This definition uses the convention that 0 ln 0 = 0.

Definition 3. The symmetric KL divergence between 𝑝 and 𝑞 is defined as

𝑑SKL(𝑝, 𝑞) = 𝑑KL(𝑝, 𝑞) + 𝑑KL(𝑞, 𝑝) =
∑︁
𝑖∈[𝑛]

𝑝𝑖 ln
𝑝𝑖
𝑞𝑖

+ 𝑞𝑖 ln
𝑞𝑖
𝑝𝑖
∈ [0,∞).

Definition 4. The Hellinger distance between 𝑝 and 𝑞 is defined as

𝑑H(𝑝, 𝑞) =
1√
2

√︃∑︁
𝑖∈[𝑛]

(
√
𝑝𝑖 −
√
𝑞𝑖)

2 ∈ [0, 1].

Definition 5. The 𝜒2-divergence (or chi-squared divergence) between 𝑝 and 𝑞 is defined as

𝑑𝜒2(𝑝, 𝑞) =
∑︁
𝑖∈[𝑛]

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖
∈ [0,∞).

Definition 6. The ℓ2 distance between 𝑝 and 𝑞 is defined as

𝑑ℓ2(𝑝, 𝑞) =

√︃∑︁
𝑖∈[𝑛]

(𝑝𝑖 − 𝑞𝑖)2 = ‖𝑝− 𝑞‖2 ∈ [0, 1].

We also define these distances for restrictions of distributions 𝑝𝑆 and 𝑞𝑆 by replacing the

summations over 𝑖 ∈ [𝑛] with summations over 𝑖 ∈ 𝑆.

We have the following relationships between these distances. These are well-known for

distributions, i.e., see [GS02], but we prove them more generally for restrictions of distribu-

tions in Section 1.3.2.1.

Proposition 1. Letting 𝑝𝑆 and 𝑞𝑆 be restrictions of distributions 𝑝 and 𝑞 to 𝑆 ⊆ [𝑛],

𝑑2H(𝑝𝑆, 𝑞𝑆) ≤ 𝑑TV(𝑝𝑆, 𝑞𝑆) ≤
√

2𝑑H(𝑝𝑆, 𝑞𝑆) ≤
√︃∑︁

𝑖∈𝑆

(𝑞𝑖 − 𝑝𝑖) + 𝑑KL(𝑝𝑆, 𝑞𝑆) ≤
√︁
𝑑𝜒2(𝑝𝑆, 𝑞𝑆).

Furthermore, 𝑑KL(𝑝𝑆, 𝑞𝑆) ≤ 𝑑SKL(𝑝𝑆, 𝑞𝑆).

We recall that 𝑑ℓ2 fits into the picture by its relationship with total variation distance:
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Proposition 2. Letting 𝑝 and 𝑞 be distributions over [𝑛],

𝑑ℓ2(𝑝, 𝑞) ≤ 2𝑑TV(𝑝, 𝑞) ≤
√
𝑛𝑑ℓ2(𝑝, 𝑞).

The second inequality follows from Cauchy-Schwarz.

We will also need to following bound for Hellinger distance:

Proposition 3. 2𝑑2H(𝑝, 𝑞) ≤
𝑛∑︁

𝑖=1

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
≤ 4𝑑2H(𝑝, 𝑞).

Proof. Expanding the Hellinger-squared distance,

𝑑2H(𝑝, 𝑞) =
1

2

𝑛∑︁
𝑖=1

(
√
𝑝𝑖 −
√
𝑞𝑖)

2 =
1

2

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2

(
√
𝑝𝑖 +
√
𝑞𝑖)2

.

The fact now follows because (𝑝𝑖 + 𝑞𝑖) ≤ (
√
𝑝𝑖 +
√
𝑞𝑖)

2 ≤ 2(𝑝𝑖 + 𝑞𝑖).

The quantity
∑︀𝑛

𝑖=1(𝑝𝑖− 𝑞𝑖)2/(𝑝𝑖 + 𝑞𝑖) is sometimes called the triangle distance. However, we

see here that it is essentially the Hellinger distance (up to constant factors).

1.3.2.1 Proof of Proposition 1

Recall that we will prove this for restrictions of probability distributions to subsets of the

support – in other words, we do not assume
∑︀

𝑖∈𝑆 𝑝𝑖 =
∑︀

𝑖∈𝑆 𝑞𝑖 = 1, we only assume that∑︀
𝑖∈𝑆 𝑝𝑖 ≤ 1 and

∑︀
𝑖∈𝑆 𝑞𝑖 ≤ 1.

𝑑2H(𝑝𝑆, 𝑞𝑆) ≤ 𝑑TV(𝑝𝑆, 𝑞𝑆) :

𝑑2H(𝑝𝑆, 𝑞𝑆) =
1

2

∑︁
𝑖∈𝑆

(
√
𝑝𝑖 −
√
𝑞𝑖)

2

≤ 1

2

∑︁
𝑖∈𝑆

|√𝑝𝑖 −
√
𝑞𝑖|(
√
𝑝𝑖 +
√
𝑞𝑖)

=
1

2

∑︁
𝑖∈𝑆

|𝑝𝑖 − 𝑞𝑖|

= 𝑑TV(𝑝𝑆, 𝑞𝑆).
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𝑑TV(𝑝𝑆, 𝑞𝑆) ≤
√

2𝑑H(𝑝𝑆, 𝑞𝑆) :

𝑑2TV(𝑝𝑆, 𝑞𝑆) =
1

4

(︃∑︁
𝑖∈𝑆

|𝑝𝑖 − 𝑞𝑖|

)︃2

=
1

4

(︃∑︁
𝑖∈𝑆

|√𝑝𝑖 −
√
𝑞𝑖| (
√
𝑝𝑖 +
√
𝑞𝑖)

)︃2

≤ 1

4

(︃∑︁
𝑖∈𝑆

|√𝑝𝑖 −
√
𝑞𝑖|2
)︃(︃∑︁

𝑖∈𝑆

(
√
𝑝𝑖 +
√
𝑞𝑖)

2

)︃

≤ 𝑑2H(𝑝𝑆, 𝑞𝑆) · 1

2

(︃∑︁
𝑖∈𝑆

(
√
𝑝𝑖 +
√
𝑞𝑖)

2

)︃

= 𝑑2H(𝑝𝑆, 𝑞𝑆) ·

(︃∑︁
𝑖∈𝑆

𝑝𝑖 +
∑︁
𝑖∈𝑆

𝑞𝑖 − 𝑑2H(𝑝𝑆, 𝑞𝑆)

)︃
≤ 𝑑2H(𝑝𝑆, 𝑞𝑆) ·

(︀
2− 𝑑2H(𝑝𝑆, 𝑞𝑆)

)︀
≤ 2𝑑2H(𝑝𝑆, 𝑞𝑆).

Taking the square root of both sides gives the result. The second inequality is Cauchy-

Schwarz.

2𝑑2H(𝑝𝑆, 𝑞𝑆) ≤
∑︀

𝑖∈𝑆(𝑞𝑖 − 𝑝𝑖) + 𝑑KL(𝑝𝑆, 𝑞𝑆) :

2𝑑2H(𝑝𝑆, 𝑞𝑆) =
∑︁
𝑖∈𝑆

(𝑞𝑖 + 𝑝𝑖)− 2
∑︁
𝑖∈𝑆

√
𝑝𝑖𝑞𝑖

=
∑︁
𝑖∈𝑆

(𝑞𝑖 + 𝑝𝑖)− 2

(︃(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃∑︁
𝑖∈𝑆

𝑝𝑖∑︀
𝑗∈𝑆 𝑝𝑗

√︂
𝑞𝑖
𝑝𝑖

)︃

≤
∑︁
𝑖∈𝑆

(𝑞𝑖 + 𝑝𝑖)− 2

(︃(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃
exp

(︃
1

2

∑︁
𝑖∈𝑆

𝑝𝑖∑︀
𝑗∈𝑆 𝑝𝑗

log
𝑞𝑖
𝑝𝑖

)︃)︃

≤
∑︁
𝑖∈𝑆

(𝑞𝑖 + 𝑝𝑖)− 2

(︃(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃
1 +

1

2

∑︁
𝑖∈𝑆

𝑝𝑖∑︀
𝑗∈𝑆 𝑝𝑗

log
𝑞𝑖
𝑝𝑖

)︃)︃

=
∑︁
𝑖∈𝑆

(𝑞𝑖 − 𝑝𝑖)−

(︃∑︁
𝑖∈𝑆

𝑝𝑖 log
𝑞𝑖
𝑝𝑖

)︃
=
∑︁
𝑖∈𝑆

(𝑞𝑖 − 𝑝𝑖) + 𝑑KL(𝑝𝑆, 𝑞𝑆).

35



The first inequality is Jensen’s, and the second is 1 + 𝑥 ≤ exp(𝑥).

𝑑KL(𝑝𝑆, 𝑞𝑆) ≤
∑︀

𝑖∈𝑆(𝑝𝑖 − 𝑞𝑖) + 𝑑𝜒2(𝑝𝑆, 𝑞𝑆) :

𝑑KL(𝑝𝑆, 𝑞𝑆) =

(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃∑︁
𝑖∈𝑆

𝑝𝑖∑︀
𝑗∈𝑆 𝑝𝑗

log
𝑝𝑖
𝑞𝑖

)︃

≤

(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃
log

1∑︀
𝑗∈𝑆 𝑝𝑗

∑︁
𝑖∈𝑆

𝑝2𝑖
𝑞𝑖

)︃

=

(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃
log

(︃
1∑︀

𝑗∈𝑆 𝑝𝑗

(︃
𝑑𝜒2(𝑝𝑆, 𝑞𝑆) + 2

∑︁
𝑖∈𝑆

𝑝𝑖 −
∑︁
𝑖∈𝑆

𝑞𝑖

)︃)︃)︃

=

(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃
log

(︃
2 +

1∑︀
𝑗∈𝑆 𝑝𝑗

(︃
𝑑𝜒2(𝑝𝑆, 𝑞𝑆)−

∑︁
𝑖∈𝑆

𝑞𝑖

)︃)︃)︃

≤

(︃∑︁
𝑗∈𝑆

𝑝𝑗

)︃(︃
1 +

1∑︀
𝑗∈𝑆 𝑝𝑗

(︃
𝑑𝜒2(𝑝𝑆, 𝑞𝑆)−

∑︁
𝑖∈𝑆

𝑞𝑖

)︃)︃

=
∑︁
𝑖∈𝑆

(𝑝𝑖 − 𝑞𝑖) + 𝑑𝜒2(𝑝𝑆, 𝑞𝑆).

The first inequality is Jensen’s, and the second is 1 + 𝑥 ≤ exp(𝑥).

𝑑KL(𝑝𝑆, 𝑞𝑆) ≤ 𝑑SKL(𝑝𝑆, 𝑞𝑆) This is immediate from non-negativity of KL divergence.

1.3.3 Convergence Bounds

One general purpose tool is the celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality.

This gives a generic approach for learning an arbitrary distribution in Kolmogorov distance

with only 𝑂(1/𝜀2) samples. This is in contrast to learning in total variation distance, which

generally requires tailored methods for every distribution class of interest.

Lemma 1 ([DKW56],[Mas90]). Let 𝑝𝑚 be the empirical distribution generated by 𝑚 i.i.d.

samples from a distribution 𝑝. We have that

Pr[𝑑K(𝑝, 𝑝𝑚) ≥ 𝜀] ≤ 2𝑒−2𝑚𝜀2 .

In particular, if 𝑚 = Ω(log(1/𝛿)/𝜀2), then Pr[𝑑K(𝑝, 𝑝𝑚) ≥ 𝜀] ≤ 𝛿.
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We will make extensive use of Chernoff-style bounds in this work. Recall that the

Binomial(𝑛, 𝑝) distribution describes the distribution of the number of successes when we

run 𝑛 independent Bernoulli trials, each with success probability 𝑝.

Lemma 2 (Chernoff Bound for Binomials). Let 𝑋 ∼ Binomial(𝑛, 𝑝) and 𝜇 = E [𝑋] = 𝑛𝑝.

Then

∀𝛿 ∈ [0, 1), Pr[ |𝑋 − 𝜇| ≥ 𝛿𝜇 ] ≤ 2 exp

(︂
−𝛿

2𝜇

3

)︂
.

We will also need a similar Chernoff-style bound for the hypergeometric distribution. The

Hypergeometric(𝑛,𝐾,𝑁) distribution describes the distribution of the number of successes

when we draw 𝑛 times without replacement from a population of size 𝑁 , in which 𝐾 objects

have the pertinent feature (and thus count as successes). Note that if the drawing were done

with replacement, and 𝐾/𝑁 = 𝑝, then this would be equivalent to Binomial(𝑛, 𝑝). Sampling

without replacement introduces negative correlation between the probability of each draw

being successful. This type of negative correlation generally “helps” with concentration,

allowing one to prove similar concentration bounds (see, e.g., [Chv79, DR96], Theorem 1.17

of [AD11]).

Lemma 3 (Chernoff Bound for Hypergeometrics). Let 𝑋 ∼ Hypergeometric(𝑛,𝐾,𝑁) and

𝜇 = E [𝑋] = 𝑛𝐾/𝑁 . Then,

∀𝛿 ∈ [0, 1), Pr[ |𝑋 − 𝜇| ≥ 𝛿𝜇 ] ≤ 2 exp

(︂
−𝛿

2𝜇

3

)︂
.

1.3.4 Poisson Sampling

At certain points, our algorithms will employ Poisson sampling. Rather than taking a fixed

number of 𝑚 samples from a distribution 𝑝, we instead draw Poisson(𝑚) samples. More

precisely, we first sample 𝑚′ ∼ Poisson(𝑚), and then draw 𝑚′ samples from 𝑝. While this

procedure might seem odd and indirect, it has a perhaps surprising benefit. Namely, letting

𝑁𝑖 be the number of occurrences of element 𝑖, all 𝑁𝑖 will be independent and distributed

as Poisson(𝑚 · 𝑝𝑖). This is in contrast to the standard sampling procedure: the 𝑁𝑖’s will

be marginally distributed as Binomial(𝑚, 𝑝𝑖), but there will exist significant correlations.

Injecting this independence over the 𝑁𝑖’s makes the analysis significantly easier in certain
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cases, as we can focus on individual symbols without worrying about correlations. One

concern could be that 𝑚′ is much larger than 𝑚, which would significantly increase the

sample complexity. However, since Poisson(𝑚) is tightly concentrated around its mean 𝑚,

we have that 𝑚′ = Θ(𝑚) with high probability. Therefore, any algorithm which draws

Poisson(𝑚) samples can be converted to an algorithm with a fixed budget of (say) 10𝑚

samples. The first step would be to draw 𝑚′ ∼ Poisson(𝑚): if 𝑚′ ≤ 10𝑚, use that many

samples and discard the rest. On the other hand, if 𝑚′ > 10𝑚 (which occurs with negligible

probability), then the output can be arbitrary.
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Chapter 2

Testing with Tolerance and Alternative

Distances

2.1 Introduction

Up to this point, most of the discussion on the problem of testing whether 𝑝 is equal to some

hypothesis 𝑞, or is far in total variation distance from 𝑞. In this chapter, we focus on relaxing

both of these restrictions. In particular, the two core problems will be the following:

1. Can we handle when 𝑝 is close to 𝑞, rather than equal?

2. Can we test for when 𝑝 and 𝑞 are far in other distances besides total variation?

To give an example of why these type of issues may arise, we give a concrete example.

Suppose we want to test whether the sizes of some population of insects are normally dis-

tributed around their mean by sampling insects and measuring their sizes. Of course, our

models are usually imperfect. In our insect example, perhaps our estimation of the mean

and variance of the insect sizes is a bit off. Furthermore, the sizes will clearly always be

positive numbers. Yet a Normal distribution could still be a good fit. To get a meaningful

testing problem some slack may be introduced, turning the problem into that of distinguish-

ing whether 𝑑1(𝑝, 𝑞) ≤ 𝜀1 versus 𝑑2(𝑝, 𝑞) ≥ 𝜀2, for some distance measures 𝑑1(·, ·) and 𝑑2(·, ·)

between distributions over [𝑛] and some choice of 𝜀1 and 𝜀2 which may potentially depend

on [𝑛] or even 𝑞. Regardless, for the problem to be well-defined, the sets of distributions
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𝒞 = {𝑝 | 𝑑1(𝑝, 𝑞) ≤ 𝜀1} and ℱ = {𝑝 | 𝑑2(𝑝, 𝑞) ≥ 𝜀2} should be disjoint. In fact, as our goal

is to distinguish between 𝑝 ∈ 𝒞 and 𝑝 ∈ ℱ from samples, we cannot possibly draw the right

conclusion with probability 1 or detect the most minute deviations of 𝑝 from 𝒞 or ℱ . So our

guarantee should be probabilistic, and there should be some “gap” between the sets 𝒞 and

ℱ . In sum, the problem is the following:

(𝑑1, 𝑑2)-Identity Testing: Given an explicit description of a distribution 𝑞 over [𝑛],

sample access to a distribution 𝑝 over [𝑛], and bounds 𝜀1 ≥ 0, and 𝜀2, 𝛿 > 0, distinguish

with probability at least 1 − 𝛿 between 𝑑1(𝑝, 𝑞) ≤ 𝜀1 and 𝑑2(𝑝, 𝑞) ≥ 𝜀2, whenever 𝑝

satisfies one of these two inequalities.

A related problem is when we have sample access to both 𝑝 and 𝑞. For example, we might

be interested in whether two populations of insects have distributions that are close or far.

The resulting problem is the following:

(𝑑1, 𝑑2)-Equivalence (or Closeness) Testing: Given sample access to distributions 𝑝

and 𝑞 over [𝑛], and bounds 𝜀1 ≥ 0, and 𝜀2, 𝛿 > 0, distinguish with probability at least

1 − 𝛿 between 𝑑1(𝑝, 𝑞) ≤ 𝜀1 and 𝑑2(𝑝, 𝑞) ≥ 𝜀2, whenever 𝑝, 𝑞 satisfy one of these two

inequalities.

As mentioned before, the primary focus of prior work has been on the case where 𝜀1 = 0

and 𝑑2 is the total variation distance. There are several other sub-optimal results known for

various combinations of 𝑑1, 𝑑2, 𝜀1 and 𝜀2, and for many combinations there are no known

testers. A more extensive discussion of the literature is provided in Section 2.1.2.

The goal of this chapter is to provide a complete mapping of the optimal sample complexity

required to obtain computationally efficient testers for identity testing and equivalence testing

under the most commonly used notions of distances 𝑑1 and 𝑑2. Our results are summarized

in Tables 2.1, 2.2, and 2.3 and discussed in detail in Section 2.1.1. In particular, we obtain

computationally efficient and sample optimal testers for distances 𝑑1 and 𝑑2 ranging in the

set {ℓ2-distance, total variation distance, Hellinger distance, Kullback-Leibler divergence, 𝜒2-

divergence},1 and for combinations of these distances and choice of errors 𝜀1 and 𝜀2 which

1These distances are nicely nested, as discussed in Section 1.3.2, from the weaker ℓ2 to the stronger
𝜒2-divergence.
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give rise to meaningful testing problems as discussed above. The sample complexities stated

in the tables are for probability of error 1/3. Throwing in extra factors of 𝑂(log 1/𝛿) boosts

the probability of error to 1− 𝛿, as usual.

Our motivation for this work is primarily the fundamental nature of identity and equiv-

alence testing, as well as of the distances under which we study these problems. It is also

the fact that, even though distribution testing is by now a mature subfield of information

theory, property testing, and sublinear-time algorithms, several of the testing questions that

we consider have had unknown statuses prior to our work. This gap is accentuated by the

fact that, as we establish, closely related distances may have radically different behavior. To

give a quick example, it is easy to see that 𝜒2-divergence is the second-order Taylor expan-

sion of KL-divergence. Yet, as we show, the sample complexity for identity testing changes

radically when 𝑑2 is taken to be total variation or Hellinger distance, and 𝑑1 transitions from

𝜒2 to KL or weaker distances; see Table 2.1. Similar fragility phenomena are identified by

our work for equivalence testing, when we switch from total variation to Hellinger distance,

as seen in Tables 2.2 and 2.3.

Adding to the fundamental nature of the problems we consider here, we should also

emphasize that a clear understanding of the different tradeoffs mapped out by our work is

critical at this point for the further development of the distribution testing field, as recent

experience has established. We provide a couple of recent examples where testing with

tolerance and alternative distances proves to be critical. One application in [ADK15] is

that of composite hypothesis testing, where we wish to test if 𝑝 belongs to some class of

distributions. For instance, one could ask if the density of 𝑝 is monotone increasing. It turns

out that testing with 𝑑1 being the 𝜒2-divergence is crucial for this application. This work is

the focus of Chapter 3, and we defer further discussion to then.

Another example supporting our expectation can be found in recent work of Daskalakis

and Pan [DP17]. They study equivalence testing of Bayesian networks under total varia-

tion distance. Bayesian networks are flexible models expressing combinatorial structure in

high-dimensional distributions in terms of a directed acyclic graph (DAG) specifying their

conditional dependence structure. The challenge in testing Bayes nets is that their sup-

port scales exponentially in the number of nodes, and hence naive applications of known
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equivalence tests lead to sample complexities that are exponential in the number of nodes,

even when the in-degree 𝛿 of the underlying DAGs is bounded. To address this challenge,

Daskalakis and Pan establish “localization-of-distance” results of the following form, for var-

ious choices of distance 𝑑: “If two Bayes nets 𝑝 and 𝑞 are 𝜀-far in total variation distance,

then there exists a small set of nodes 𝑆 (whose size is ∆ + 1, where ∆ is again the maximum

in-degree of the underlying DAG where 𝑝 and 𝑞 are defined) such that the marginal distri-

butions of 𝑝 and 𝑞 over the nodes of set 𝑆 are 𝜀′-far under distance 𝑑.” When they take 𝑑 to

be total variation distance, they can show 𝜀′ = Ω(𝜀/𝑚), where 𝑚 is the number of nodes in

the underlying DAG (i.e. the dimension). Given this localization of distance, to test whether

two Bayes nets 𝑝 and 𝑞 satisfy 𝑝 = 𝑞 versus 𝑑TV(𝑝, 𝑞) ≥ 𝜀, it suffices to test, for all relevant

marginals 𝑝𝑆 and 𝑞𝑆 whether 𝑝𝑆 = 𝑞𝑆 versus 𝑑TV(𝑝𝑆, 𝑞𝑆) = Ω(𝜀/𝑚). From Table 2.2 it follows

that this requires sample size superlinear in 𝑚, which is suboptimal. Interestingly, when they

take 𝑑 to be the square Hellinger distance, they can establish a localization-of-distance result

with 𝜀′ = 𝜀2/2𝑚. By Table 2.2, to test each 𝑆 they need sample complexity that is linear

in 𝑚, leading to an overall dependence of the sample complexity on 𝑚 that is 𝑂̃(𝑚),2 which

is optimal up to log factors. More recent applications of our algorithm for identity testing

for Hellinger distance include [DDG18, ABDK18]. Again, switching to a different distance

results in near-optimal overall sample complexity, and our table is guidance as to where the

bottlenecks and opportunities lie.

Finally, we comment that tolerant testing (i.e., when 𝜀1 > 0) is perhaps one of the most

interesting questions in the design of practically useful testers. Indeed, as mentioned before,

in many statistical settings there may be model misspecification. For example, why should

one expect to be receiving samples from precisely the uniform distribution? As such, one

may desire that a tester is robust to small errors, and accepts all distributions which are

close to uniform. Unfortunately, Valiant and Valiant [VV11a] ruled out the possibility of a

strongly sublinear tester which has total variation tolerance, showing that such a problem

requires Θ
(︁

𝑛
log𝑛

)︁
samples. This raises the following question: Which distances can a tester

be tolerant to, while maintaining a strongly sublinear sample complexity? We outline what

is possible.

2The extra log factors are to guarantee that the tests performed on all sets 𝑆 of size 𝛿 + 1 succeed.
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𝑑TV(𝑝, 𝑞) ≥ 𝜀 𝑑H(𝑝, 𝑞) ≥ 𝜀/
√

2 𝑑KL(𝑝, 𝑞) ≥ 𝜀2 𝑑𝜒2(𝑝, 𝑞) ≥ 𝜀2

𝑝 = 𝑞 Ω
(︁√

𝑛
𝜀2

)︁
[Pan08] Untestable [Theorem 10]

𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/4 𝑂
(︁√

𝑛
𝜀2

)︁
[Theorem 4]

𝑑KL(𝑝, 𝑞) ≤ 𝜀2/4 Ω
(︁

𝑛
log𝑛

)︁
[Theorem 11]

𝑑H(𝑝, 𝑞) ≤ 𝜀/2
√

2

𝑑TV(𝑝, 𝑞) ≤ 𝜀/2 or 𝜀2/44 𝑂
(︁

𝑛
log𝑛

)︁
[Corollary 3]

Table 2.1: Identity Testing. Rows correspond to completeness of the tester, and columns
correspond to soundness.

2.1.1 Results

Our results are pictorially presented in Tables 2.1, 2.2, and 2.3. We note that these tables

are intended to provide only references to the sample complexity of each testing problem,

rather than exhaustively cover all prior work. As such, several references are deferred to

Section 2.1.2. In Tables 2.1 and 2.2, each cell contains the complexity of testing whether

two distributions are close in the distance for that row, versus far in the distance for that

column.3 These distances and their relationships are covered in detail in Section 2.2, but we

note that the distances are scaled and transformed such that problems become harder as we

traverse the table down or to the right. In other words, lower bounds hold for cells which are

down or to the right in the table, and upper bounds hold for cells which are up or to the left;

problems with the same complexity are shaded with the same color. The dark grey boxes

indicate problems which are not well-defined, i.e. two distributions could simultaneously be

close in KL and far in 𝜒2-divergence.

We highlight some of our results:

1. We give an 𝑂(
√
𝑛/𝜀2) sample algorithm for identity testing whether 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/4 or

𝑑H(𝑝, 𝑞) ≥ 𝜀/
√

2 (Theorem 4). This is the first algorithm which achieves the optimal

dependence on both 𝑛 and 𝜀 for identity testing with respect to Hellinger distance

(even non-tolerantly). We note that a 𝑂(
√
𝑛/𝜀4) algorithm was known, due to optimal

identity testers for total variation distance and the quadratic relationship between total

3Note that we chose constants in our theorem statements for simplicity of presentation, and they may
not match the constants presented in the table. This can be remedied by appropriate changing of constants
in the algorithms and constant factor increases in the sample complexity.

4We note that we must use 𝜀/2 or 𝜀2/4 depending on whether we are testing with respect to TV or
Hellinger. For more details and other discussion of the 𝑛/ log 𝑛 region of this chart, see Section 2.1.1.2.
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𝑑TV(𝑝, 𝑞) ≥ 𝜀 𝑑H(𝑝, 𝑞) ≥ 𝜀/
√

2 𝑑KL(𝑝, 𝑞) ≥ 𝜀2 𝑑𝜒2(𝑝, 𝑞) ≥ 𝜀2

𝑝 = 𝑞 𝑂
(︁

max
{︁

𝑛1/2

𝜀2
, 𝑛

2/3

𝜀4/3

}︁)︁
[CDVV14] 𝑂

(︁
min

{︁
𝑛3/4

𝜀2
, 𝑛

2/3

𝜀8/3

}︁)︁
[Theorem 8] Untestable [Theorem 10]

Ω
(︁

max
{︁

𝑛1/2

𝜀2
, 𝑛

2/3

𝜀4/3

}︁)︁
[CDVV14] Ω

(︁
min

{︁
𝑛3/4

𝜀2
, 𝑛

2/3

𝜀8/3

}︁)︁
[DK16]

𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/4 Ω
(︁

𝑛
log𝑛

)︁
[Theorem 12]

𝑑KL(𝑝, 𝑞) ≤ 𝜀2/4

𝑑H(𝑝, 𝑞) ≤ 𝜀/2
√

2

𝑑TV(𝑝, 𝑞) ≤ 𝜀/2 or 𝜀2/44 𝑂
(︁

𝑛
log𝑛

)︁
[Corollary 3]

Table 2.2: Equivalence Testing. Rows correspond to completeness of the tester, and columns
correspond to soundness.

Identity Testing Equivalence Testing

𝑑(𝑝, 𝑞) ≤ 𝑓𝑑(𝑛, 𝜀) vs. 𝑑ℓ2(𝑝, 𝑞) ≥ 𝜀 Θ
(︀

1
𝜀2

)︀
[Corollary 2] Θ

(︀
1
𝜀2

)︀
[Corollary 2]

𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀√
𝑛

vs. 𝑑TV(𝑝, 𝑞) ≥ 𝜀 Θ
(︁√

𝑛
𝜀2

)︁
[Theorem 5] Θ

(︁
max

{︁
𝑛1/2

𝜀2
, 𝑛

2/3

𝜀4/3

}︁)︁
[Theorem 7]

𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀2√
𝑛

vs. 𝑑H(𝑝, 𝑞) ≥ 𝜀 Θ
(︁√

𝑛
𝜀2

)︁
[Theorem 6] Θ

(︁
min

{︁
𝑛3/4

𝜀2
, 𝑛

2/3

𝜀8/3

}︁)︁
[Theorem 8]

Table 2.3: ℓ2 Testing. 𝑓𝑑(𝑛, 𝜀) is a quantity such that 𝑑(𝑝, 𝑞) ≤ 𝑓𝑑(𝑛, 𝜀) and 𝑑ℓ2(𝑝, 𝑞) ≥ 𝜀 are
disjoint.

variation and Hellinger distance. Note that this immediately implies an algorithm

with the same sample complexity for identity testing whether 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/4 or

𝑑TV(𝑝, 𝑞) ≥ 𝜀, which was also shown in [ADK15].

2. In the case of identity testing, a stronger form of tolerance (i.e., KL divergence instead

of 𝜒2) causes the sample complexity to jump to Ω (𝑛/ log 𝑛) (Theorem 11). We find

this a bit surprising, as 𝜒2-divergence is the second-order Taylor expansion of KL di-

vergence, so one might expect that the testing problems have comparable complexities.

3. In the case of equivalence testing, even 𝜒2-tolerance comes at the cost of an Ω (𝑛/ log 𝑛)

sample complexity (Theorem 12). This is a qualitative difference from identity testing,

where 𝜒2-tolerance came at no cost.

4. However, in both identity and equivalence testing, ℓ2 tolerance comes at no additional

cost (Theorems 5, 6, 7, and 8). Thus, in many cases, ℓ2 tolerance is the best one can

do if one wishes to maintain a strongly sublinear sample complexity.

From a technical standpoint, our algorithms are 𝜒2-statistical tests, and most closely re-

semble those of [ADK15] and [CDVV14] (similar 𝜒2-tests were employed in [VV17a, DKN15b,
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CDGR16]). However, crucial changes are required to satisfy the more stringent requirements

of testing with respect to Hellinger distance. In our identity tester for Hellinger, we deal

with this different distance measure by pruning light domain elements of 𝑞 less aggressively

than in the total variation tester of [ADK15], in combination with a preliminary test to

reject early if the difference between 𝑝 and 𝑞 is contained exclusively within the set of light

elements – this is a new issue that cannot arise when testing with respect to total variation

distance. In our equivalence tester for Hellinger, we follow an approach, similar to [CDVV14]

and [DK16], of analyzing the light and heavy domain elements separately, with the challenge

that the algorithm does not know which elements are which. Finally, to achieve ℓ2 tolerance

in these cases, we use a “mixing" strategy in which instead of testing based solely on samples

from 𝑝 and 𝑞, we mix in some number (depending on our application) of samples from the

uniform distribution. At a high level, the purpose of mixing is to make our distributions well-

conditioned, i.e. to ensure that all probability values are sufficiently large. Such a strategy

was recently employed by Goldreich in [Gol16] for uniformity testing.

2.1.1.1 Comments on ℓ2-tolerance

ℓ2 tolerance has been indirectly considered in [GR00, BFF+01, BFR+13] through their

weak tolerance for total variation distance and the relationship with ℓ2 distance, though

these results have suboptimal sample complexity. Our equivalence testing results improve

upon [CDVV14] by adding ℓ2-tolerance. We note that [DK16] also provides ℓ2-tolerant

testers (as well as [DKN15b] for the case of uniformity), comparable to those obtained in

Theorems 5, 6, and 8, though this tolerance is not explicitly analyzed in their paper. This

can be seen by noting that the underlying tester from [CDVV14] is tolerant, and the “flat-

tening” operation they apply reduces the ℓ2-distance between the distributions. The testers

in [DK16] are those of Propositions 2.7, 2.10, and 2.15, combined with the observation of

Remark 2.8. We rederive these results for completeness, and to show a direct way of prov-

ing ℓ2-tolerance. Note that Theorem 8 also improves upon Proposition 2.15 of [DK16] by

removing log factors in the sample complexity.
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2.1.1.2 Comments on the Θ(𝑛/ log 𝑛) Results

Our upper bounds in the bottom-left portion of the table are based off the total variation

distance estimation algorithm of Jiao, Han, and Weissman [JHW16], where an Θ(𝑛/ log 𝑛)

complexity is only derived for 𝜀 ≥ 1/ poly(𝑛). Similarly, in [VV10a], the lower bounds are

only valid for constant 𝜀. We believe that the precise characterization is a very interesting

open problem. In the present work, we focus on the case of constant 𝜀 for these testing

problems.

We wish to draw attention to the bottom row of the table, and note that the two testing

problems are 𝑑TV(𝑝, 𝑞) ≤ 𝜀/2 versus 𝑑TV(𝑝, 𝑞) ≥ 𝜀, and 𝑑TV(𝑝, 𝑞) ≤ 𝜀2/4 versus 𝑑H(𝑝, 𝑞) ≥

𝜀/
√

2. This difference in parameterization is required to make the two cases in the testing

problem disjoint. With this parameterization, we conjecture that the latter problem has a

greater dependence on 𝜀 as it goes to 0 (namely, 𝜀−4 versus 𝜀−2), so we colour the box a

slightly darker shade of orange.

2.1.2 Related Work

[Wag15, DBNNR11, GMV06] also consider testing problems with other distances, namely

ℓ𝑝 distances, earth mover’s distance (also known as Wasserstein distance), and various 𝑓 -

divergences.

Tolerant identity testing (where 𝜀1 = 𝑂(𝜀) and 𝑑1 is total variation distance) was stud-

ied in [VV10a, VV10b, VV11a, VV11b], through the (equivalent) lens of estimating total

variation distance between distributions. In these works, Θ (𝑛/ log 𝑛) bounds were proven

for the sample complexity. Several other related problems (e.g., support size and entropy

estimation) share the same sample complexity, and have enjoyed significant study [AOST17,

WY16, ADOS17]. The closest related results to our work are those on estimating distances

between distributions [JHW16, JVHW17, HJW16].

𝜒2-tolerance (when 𝑑1 is 𝜒2-divergence and 𝜀1 = 𝑂(𝜀2)) was introduced and applied

by [ADK15] for testing families of distributions, e.g., testing if a distribution is monotone or

far from being monotone. This result will be discussed more in Chapter 3.

Testing with respect to Hellinger distance was applied in [DP17, ABDK18] for testing
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Bayes networks, and [DDG18] for testing Markov chains. Due to tensorization properties,

Hellinger distance is more natural for testing problems in some multivariate settings, and

we believe it will arise more frequently as this new direction matures. Prior to our work,

Hellinger testing was studied for equivalence testing in [DK16].

Most of our tests in this work are based around 𝜒2-statistics. We note that the 𝜒2-statistic

for testing hypothesis is prevalent in statistics providing optimal error exponents in the large-

sample regime. A similar modification to the 𝜒2-statistic as we use here (i.e., subtracting the

count 𝑁𝑖 from (𝑁𝑖−𝑚𝑞𝑖)2) was previously used in [Zel87]. To the best of our knowledge, in

the small-sample regime, modified-versions of the 𝜒2-statistic have only been used somewhat

recently. Some instances include equivalence testing in [ADJ+12, CDVV14], uniformity

testing of monotone distributions in [AJOS13], and identity testing in [DKN15b, VV17a].

The latter two papers also apply subtraction modifications, similar to our work and [Zel87].

The statistic of [ADJ+12] is an unbiased statistic for estimating the 𝜒2-distance between two

unknown distributions.

2.1.3 Organization

The organization of this chapter is as follows. In Section 2.2, we state preliminaries and

notation used in this chapter. In Sections 2.3 and 2.4, we prove upper bounds for identity

testing and equivalence testing (respectively) based on 𝜒2-style statistics. In Section 2.5,

we prove upper bounds for distribution testing based on distance estimation. Finally, in

Section 2.6, we prove testing lower bounds.

2.2 Preliminaries

Proposition 4. Given a number 𝛿 ∈ [0, 1] and a discrete distribution 𝑟 = (𝑟1, . . . , 𝑟𝑛), define

𝑟+𝛿 := (1− 𝛿) · 𝑟 + 𝛿 · ( 1
𝑛
, . . . , 1

𝑛
).
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Then given two discrete distributions 𝑝 = (𝑝1, . . . , 𝑝𝑛) and 𝑞 = (𝑞1, . . . , 𝑞𝑛),

𝑑TV(𝑝+𝛿, 𝑞+𝛿) = (1− 𝛿)𝑑TV(𝑝, 𝑞), 𝑑ℓ2(𝑝
+𝛿, 𝑞+𝛿) = (1− 𝛿)𝑑ℓ2(𝑝, 𝑞).

In addition, 𝑑H(𝑝+𝛿, 𝑞+𝛿) ≥ 𝑑H(𝑝, 𝑞)− 2
√
𝛿.

Proof. The statements for total variation and ℓ2 distance are immediate. As for the Hellinger

distance, we have by the triangle inequality that

𝑑H(𝑝, 𝑞) ≤ 𝑑H(𝑝, 𝑝+𝛿) + 𝑑H(𝑝+𝛿, 𝑞+𝛿) + 𝑑H(𝑞+𝛿, 𝑞).

We can bound the first term by

𝑑2H(𝑝, 𝑝+𝛿) ≤ 𝑑TV(𝑝, 𝑝+𝛿) = 1
2
· ‖𝛿 · 𝑝− 𝛿 · ( 1

𝑛
, . . . , 1

𝑛
)‖1 ≤ 𝛿,

where the last step is by the triangle inequality, and a similar argument bounds the third

term by
√
𝛿 as well. Thus, 𝑑H(𝑝+𝛿, 𝑞+𝛿) ≥ 𝑑H(𝑝, 𝑞)− 2

√
𝛿.

A similar technique was employed in [Gol16].

2.3 Upper Bounds for Identity Testing

In this section, we prove the following theorems for identity testing.

Theorem 4. There exists an algorithm for identity testing between 𝑝 and 𝑞 distinguishing

the cases:

∙ 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2;

∙ 𝑑H(𝑝, 𝑞) ≥ 𝜀.

The algorithm uses 𝑂
(︁

𝑛1/2

𝜀2

)︁
samples.

Theorem 5. There exists an algorithm for identity testing between 𝑝 and 𝑞 distinguishing

the cases:
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∙ 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀√
𝑛
;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀.

The algorithm uses 𝑂
(︁

𝑛1/2

𝜀2

)︁
samples.

Theorem 6. There exists an algorithm for identity testing between 𝑝 and 𝑞 distinguishing

the cases:

∙ 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀2√
𝑛
;

∙ 𝑑H(𝑝, 𝑞) ≥ 𝜀.

The algorithm uses 𝑂
(︁

𝑛1/2

𝜀2

)︁
samples.

We prove Theorem 4 in Section 2.3.1, and Theorems 5 and 6 in Section 2.3.2.

2.3.1 Identity Testing with Hellinger Distance and 𝜒2-Tolerance

We prove Theorem 4 by analyzing Algorithm 1. We will set 𝑐1 = 1
100
, 𝑐2 = 6

25
, and let 𝐶 be

a sufficiently large constant.

Algorithm 1 𝜒2-close versus Hellinger-far testing algorithm
1: Input: 𝜀; an explicit distribution 𝑞; sample access to a distribution 𝑝
2: Implicitly define 𝒜 ← {𝑖 : 𝑞𝑖 ≥ 𝑐1𝜀

2/𝑛}, 𝒜 ← [𝑛] ∖ 𝒜
3: Let 𝑝 be the empirical distribution5 from drawing 𝑚1 = Θ(1/𝜀2) samples from 𝑝
4: if 𝑝(𝒜) ≥ 3

4
𝑐2𝜀

2 then
5: return Reject
6: end if
7: Draw a multiset 𝑆 of Poisson(𝑚2) samples from 𝑝, where 𝑚2 = 𝐶

√
𝑛/𝜀2

8: Let 𝑁𝑖 be the number of occurrences of the 𝑖th domain element in 𝑆
9: Let 𝑆 ′ be the set of domain elements observed in 𝑆

10: 𝑍 ←
∑︀

𝑖∈𝑆′∩𝒜
(𝑁𝑖−𝑚2𝑞𝑖)

2−𝑁𝑖

𝑚2𝑞𝑖
+𝑚2(1− 𝑞(𝑆 ′ ∩ 𝒜))

11: if 𝑍 ≤ 3
2
𝑚2𝜀

2 then
12: return Accept
13: else
14: return Reject
15: end if

We note that the sample and time complexity are both 𝑂(
√
𝑛/𝜀2). We draw 𝑚1 +𝑚2 =

Θ(
√
𝑛/𝜀2) samples total. All steps of the algorithm only involve inspecting domain elements
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where a sample falls, and it runs linearly in the number of such elements. Indeed, Step 10

of the algorithm is written in an unusual way in order to ensure the running time of the

algorithm is linear.

We first analyze the test in Step 4 of the algorithm. Folklore results state that with

probability at least 99/100, this preliminary test will reject any 𝑝 with 𝑝(𝒜) ≥ 𝑐2𝜀
2, it will

not reject any 𝑝 with 𝑝(𝒜) ≤ 𝑐2
2
𝜀2, and behavior for any other 𝑝 is arbitrary. Condition on the

event the test does not reject for the remainder of the proof. Note that since both thresholds

here are Θ(𝜀2), it only requires 𝑚1 = Θ(1/𝜀2) samples, rather than the “non-extreme” regime,

where we would require Θ(1/𝜀4) samples.

Remark 1. We informally refer to this “extreme” versus “non-extreme” regime in distribution

testing. To give an example of what we mean in these two cases, consider distinguishing

𝐵𝑒𝑟(1/2) from 𝐵𝑒𝑟(1/2 + 𝜀). The complexity of this problem is Θ(1/𝜀2), and we consider

this to be in the non-extreme regime. On the other hand, distinguishing 𝐵𝑒𝑟(𝜀) from 𝐵𝑒𝑟(2𝜀)

has a sample complexity of Θ(1/𝜀), and we consider this to be in the extreme regime.

We justify that any 𝑝 which may be rejected in Step 5 (i.e., any 𝑝 such that 𝑝(𝒜) > 𝑐2
2
𝜀2)

has the property that 𝑑𝜒2(𝑝, 𝑞) > 𝜀2 (in other words, we do not wrongfully reject any 𝑝).

Consider a 𝑝 such that 𝑝(𝒜) ≥ 𝑐2
2
𝜀2. Note that 𝑑𝜒2(𝑝, 𝑞) ≥ 𝑑𝜒2(𝑝𝒜, 𝑞𝒜), which we lower

bound as follows:

𝑑𝜒2(𝑝𝒜, 𝑞𝒜) =
∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖

≥ 𝑛

𝑐1𝜀2

∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

≥ 𝑛

𝑐1𝜀2
· 1

𝑛

(︃∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)

)︃2

≥ 𝑛

𝑐1𝜀2
𝜀4
(︀
𝑐2
2
− 𝑐1

)︀2
𝑛

=

(︀
𝑐2
2
− 𝑐1

)︀2
𝑐1

𝜀2

The first inequality is by the definition of 𝒜, the second is by Cauchy-Schwarz, and the

third is since 𝑝(𝒜) ≥ 𝑐2
2
𝜀2 and 𝑞(𝒜) ≤ 𝑐1𝜀

2. By our setting of 𝑐1 and 𝑐2, this implies that

50



𝑑𝜒2(𝑝, 𝑞) > 𝜀2, and we are not rejecting any 𝑝 which should be accepted.

For the remainder of the proof, we will implicitly assume that 𝑝(𝒜) ≤ 𝑐2𝜀
2.

Let

𝑍 ′ =
∑︁
𝑖∈𝒜

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖
.

Note that the statistic 𝑍 can be rewritten as follows:

𝑍 =
∑︁

𝑖∈𝑆′∩𝒜

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖
+𝑚2(1− 𝑞(𝑆 ′ ∩ 𝒜))

=
∑︁

𝑖∈𝑆′∩𝒜

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖
+
∑︁

𝑖∈𝒜∖𝑆′

𝑚2𝑞𝑖 +𝑚2𝑞(𝒜)

=
∑︁

𝑖∈𝑆′∩𝒜

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖
+
∑︁

𝑖∈𝒜∖𝑆′

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖
+𝑚2𝑞(𝒜)

= 𝑍 ′ +𝑚2𝑞(𝒜)

We proceed by analyzing 𝑍 ′. First, note that it has the following expectation and vari-

ance:

Proposition 5.

E[𝑍 ′] = 𝑚2 ·
∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖
= 𝑚2 · 𝑑𝜒2(𝑝𝒜, 𝑞𝒜) (2.1)

Var[𝑍 ′] =
∑︁
𝑖∈𝒜

[︂
2
𝑝2𝑖
𝑞2𝑖

+ 4𝑚2 ·
𝑝𝑖 · (𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖

]︂
(2.2)
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Proof. We start by analyzing the mean:

E [𝑍 ′] =
∑︁
𝑖∈𝒜

E
[︂

(𝑁𝑖 −𝑚2𝑞𝑖)
2 −𝑁𝑖

𝑚2𝑞𝑖

]︂
=
∑︁
𝑖∈𝒜

E [𝑁2
𝑖 ]− 2𝑚2𝑞𝑖E [𝑁𝑖] +𝑚2

2𝑞
2
𝑖 − E [𝑁𝑖]

𝑚2𝑞𝑖

=
∑︁
𝑖∈𝒜

𝑚2
2𝑝

2
𝑖 +𝑚2𝑝𝑖 − 2𝑚2

2𝑞𝑖𝑝𝑖 +𝑚2
2𝑞

2
𝑖 −𝑚2𝑝𝑖

𝑚2𝑞𝑖

= 𝑚2

∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖

= 𝑚2 · 𝑑𝜒2(𝑝𝒜, 𝑞𝒜)

Next, we analyze the variance. Let 𝜆𝑖 = E [𝑁𝑖] = 𝑚2𝑝𝑖 and 𝜆′𝑖 = 𝑚2𝑞𝑖.

Var[𝑍 ′] =
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
Var(𝑁𝑖 − 𝜆𝑖)2 + 2(𝑁𝑖 − 𝜆𝑖)(𝜆𝑖 − 𝜆′𝑖)− (𝑁𝑖 − 𝜆𝑖)

=
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
Var(𝑁𝑖 − 𝜆𝑖)2 + (𝑁𝑖 − 𝜆𝑖)(2𝜆𝑖 − 2𝜆′𝑖 − 1)

=
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
E
[︀
(𝑁𝑖 − 𝜆𝑖)4 + 2(𝑁𝑖 − 𝜆𝑖)3(2𝜆𝑖 − 2𝜆′𝑖 − 1) + (𝑁𝑖 − 𝜆𝑖)2(2𝜆𝑖 − 2𝜆′𝑖 − 1)2 − 𝜆2𝑖

]︀
=
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
[3𝜆2𝑖 + 𝜆𝑖 + 2𝜆𝑖(2𝜆𝑖 − 2𝜆′𝑖 − 1) + 𝜆𝑖(2𝜆𝑖 − 2𝜆′𝑖 − 1)2 − 𝜆2𝑖 ]

=
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
[2𝜆2𝑖 + 𝜆𝑖 + 4𝜆𝑖(𝜆𝑖 − 𝜆′𝑖)− 2𝜆𝑖 + 𝜆𝑖(4(𝜆𝑖 − 𝜆′𝑖)2 − 4(𝜆𝑖 − 𝜆′𝑖) + 1)]

=
∑︁
𝑖∈𝒜

1

𝜆′2𝑖
[2𝜆2𝑖 + 4𝜆𝑖(𝜆𝑖 − 𝜆′𝑖)2]

=
∑︁
𝑖∈𝒜

[︂
2
𝑝2𝑖
𝑞2𝑖

+ 4𝑚2 ·
𝑝𝑖 · (𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖

]︂
(2.3)

The third equality is by noting the random variable has expectation 𝜆𝑖 and the fourth equality

substitutes the values of centralized moments of the Poisson distribution.

We require the following two lemmas, which state that the mean of the statistic is sep-

arated in the two cases, and that the variance is bounded. The proofs largely follow the

proofs of two similar lemmas in [ADK15].
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Lemma 4. If 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2, then E[𝑍 ′] ≤ 𝑚2𝜀
2. If 𝑑H(𝑝, 𝑞) ≥ 𝜀, then E[𝑍 ′] ≥ (2 − 𝑐1 −

𝑐2)𝑚2𝜀
2.

Proof. The former case is immediate from (2.1).

For the latter case, note that

𝑑2H(𝑝, 𝑞) = 𝑑2H(𝑝𝒜, 𝑞𝒜) + 𝑑2H(𝑝𝒜, 𝑞𝒜).

We upper bound the latter term as follows:

𝑑2H(𝑝𝒜, 𝑞𝒜) ≤ 𝑑TV(𝑝𝒜, 𝑞𝒜)

=
1

2

∑︁
𝑖∈𝒜

|𝑝𝑖 − 𝑞𝑖|

≤ 1

2

(︀
𝑝(𝒜) + 𝑞(𝒜)

)︀
≤
(︂
𝑐1 + 𝑐2

2

)︂
𝜀2

The first inequality is from Proposition 1, and the third inequality is from our prior condition

that 𝑝(𝒜) ≤ 𝑐2𝜀
2.

Since 𝑑2H(𝑝, 𝑞) ≥ 𝜀2, this implies 𝑑2H(𝑝𝒜, 𝑞𝒜) ≥
(︀
1− 𝑐1+𝑐2

2

)︀
𝜀2. Proposition 1 further implies

that 𝑑𝜒2(𝑝𝒜, 𝑞𝒜) ≥ (2− 𝑐1 − 𝑐2) 𝜀2. The lemma follows from (2.1).

Lemma 5. If 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2, then Var[𝑍 ′] = 𝑂(𝑚2
2𝜀

4). If 𝑑H(𝑝, 𝑞) ≥ 𝜀, then Var[𝑍 ′] ≤

𝑂(E[𝑍 ′]2). The constant in both expressions can be made arbitrarily small with the choice of

the constant 𝐶.

Proof. We bound the terms of (2.2) separately, starting with the first.
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2
∑︁
𝑖∈𝒜

𝑝2𝑖
𝑞2𝑖

= 2
∑︁
𝑖∈𝒜

(︂
(𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖
+

2𝑝𝑖𝑞𝑖 − 𝑞2𝑖
𝑞2𝑖

)︂
= 2

∑︁
𝑖∈𝒜

(︂
(𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖
+

2𝑞𝑖(𝑝𝑖 − 𝑞𝑖) + 𝑞2𝑖
𝑞2𝑖

)︂
≤ 2𝑛+ 2

∑︁
𝑖∈𝒜

(︂
(𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖
+ 2

(𝑝𝑖 − 𝑞𝑖)
𝑞𝑖

)︂
≤ 4𝑛+ 4

∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖

≤ 4𝑛+
4𝑛

𝑐1𝜀2

∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖

= 4𝑛+
4𝑛

𝑐1𝜀2
𝐸[𝑍 ′]

𝑚2

≤ 4𝑛+
4

𝑐1𝐶

√
𝑛𝐸[𝑍 ′] (2.4)

The second inequality is the AM-GM inequality, the third inequality uses that 𝑞𝑖 ≥ 𝑐1𝜀2

𝑛
for

all 𝑖 ∈ 𝒜, the last equality uses (2.1), and the final inequality substitutes a value 𝑚2 ≥ 𝐶
√
𝑛

𝜀2
.

The second term can be similarly bounded:

4𝑚2

∑︁
𝑖∈𝒜

𝑝𝑖(𝑝𝑖 − 𝑞𝑖)2

𝑞2𝑖
≤ 4𝑚2

(︃∑︁
𝑖∈𝒜

𝑝2𝑖
𝑞2𝑖

)︃1/2(︃∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)4

𝑞2𝑖

)︃1/2

≤ 4𝑚2

(︂
4𝑛+

4

𝑐1𝐶

√
𝑛𝐸[𝑍 ′]

)︂1/2
(︃∑︁

𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)4

𝑞2𝑖

)︃1/2

≤ 4𝑚2

(︂
2
√
𝑛+

2√
𝑐1𝐶

𝑛1/4𝐸[𝑍 ′]1/2
)︂(︃∑︁

𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖

)︃

=

(︂
8
√
𝑛+

8√
𝑐1𝐶

𝑛1/4𝐸[𝑍 ′]1/2
)︂
𝐸[𝑍 ′].

The first inequality is Cauchy-Schwarz, the second inequality uses (2.4), the third inequality

uses the monotonicity of the ℓ𝑝 norms, and the equality uses (2.1).

Combining the two terms, we get

Var[𝑍 ′] ≤ 4𝑛+

(︂
8 +

4

𝑐1𝐶

)︂√
𝑛E[𝑍 ′] +

8√
𝑐1𝐶

𝑛1/4E[𝑍 ′]3/2.
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We now consider the two cases in the statement of our lemma.

∙ When 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2, we know from Lemma 4 that E[𝑍 ′] ≤ 𝑚2𝜀
2. Combined with a

choice of 𝑚2 ≥ 𝐶
√
𝑛

𝜀2
and the above expression for the variance, this gives:

Var[𝑍 ′] ≤ 4

𝐶2
𝑚2

2𝜀
4 +

(︂
8

𝐶
+

4

𝑐1𝐶2

)︂
𝑚2

2𝜀
4 +

8

𝐶
√
𝑐1
𝑚2

2𝜀
4

=

(︂
8

𝐶
+

8

𝐶
√
𝑐1

+
4

𝐶2
+

4

𝑐1𝐶2

)︂
𝑚2

2𝜀
4 = 𝑂(𝑚2

2𝜀
4).

∙ When 𝑑H(𝑝, 𝑞) ≥ 𝜀, Lemma 4 and 𝑚2 ≥ 𝐶
√
𝑛

𝜀2
give:

E[𝑍 ′] ≥ (2− 𝑐1 − 𝑐2)𝑚2𝜀
2 ≥ 𝐶(2− 𝑐1 − 𝑐2)

√
𝑛.

Similar to before, combining this with our expression for the variance we get:

Var[𝑍 ′] ≤

(︃
8

𝐶(2− 𝑐1 − 𝑐2)
+

8

𝐶
√︀
𝑐1(2− 𝑐1 − 𝑐2)

+
4

𝐶2(2− 𝑐1 − 𝑐2)2
+

4

𝐶2𝑐1(2− 𝑐1 − 𝑐2)

)︃
E[𝑍 ′]2

= 𝑂(E[𝑍 ′]2).

To conclude the proof, we consider the two cases.

∙ Suppose 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2. By Lemma 4 and the definition of 𝒜, we have that E[𝑍] ≤

(1 + 𝑐1)𝑚2𝜀
2. By Lemma 5, Var[𝑍] = 𝑂(𝑚2

2𝜀
4). Therefore, for constant 𝐶 sufficiently

large, Chebyshev’s inequality implies Pr(𝑍 > 3
2
𝑚2𝜀

2) ≤ 1/10.

∙ Suppose 𝑑H(𝑝, 𝑞) ≥ 𝜀. By Lemma 4, we have that E[𝑍 ′] ≥ (2 − 𝑐1 − 𝑐2)𝑚2𝜀
2. By

Lemma 5, Var[𝑍 ′] = 𝑂(E[𝑍 ′]2). Therefore, for constant 𝐶 sufficiently large, Cheby-

shev’s inequality implies Pr(𝑍 ′ < 3
2
𝑚2𝜀

2) ≤ 1/10. Since 𝑍 ≥ 𝑍 ′, Pr(𝑍 < 3
2
𝑚2𝜀

2) ≤

1/10 as well.

2.3.2 Identity Testing with ℓ2 Tolerance

In this section, we sketch the algorithms required to achieve ℓ2 tolerance for identity testing.

Since the algorithms and analysis are very similar to those of Algorithm 1 of [ADK15] and
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Algorithm 1, the full details are omitted.

First, we prove Theorem 5. The algorithm is Algorithm 1 of [ADK15], but instead of

testing on 𝑝 and 𝑞, we instead test on 𝑝+
1
2 and 𝑞+

1
2 , as defined in Proposition 4. By this

proposition, this operation preserves total variation and ℓ2 distance, up to a factor of 2, and

also makes it so that the minimum probability element of 𝑞+
1
2 is at least 1/2𝑛. In the case

where 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀√
𝑛
, we have the following upper bound on E[𝑍]:

E[𝑍] = 𝑚
∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖
≤ 𝑂

(︀
𝑚 · 𝑛 · 𝑑2ℓ2(𝑝, 𝑞)

)︀
≤ 𝑂(𝑚𝜀2).

This is the same bound as in Lemma 2 of [ADK15]. The rest of the analysis follows identically

to that of Algorithm 1 of [ADK15], giving us Theorem 5.

Next, we prove Theorem 6. We observe that Algorithm 1 as stated can be considered as

ℓ2-tolerant instead of 𝜒2-tolerant, if desired. First, we do not wrongfully reject any 𝑝 (i.e.,

those with 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀2√
𝑛
) in Step 5. This is because we reject in this step if there is ≥ Ω(𝜀2)

total variation distance between 𝑝 and 𝑞 (witnessed by the set 𝒜), which implies that 𝑝 and

𝑞 are far in ℓ2-distance by Proposition 2. It remains to prove an upper bound on E[𝑍 ′] in

the case where 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀2√
𝑛
.

E[𝑍 ′] = 𝑚2𝑑𝜒2(𝑝, 𝑞) = 𝑚2

∑︁
𝑖∈𝒜

(𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖
≤ 𝑂

(︁
𝑚2 ·

(︁ 𝑛
𝜀2

)︁
· 𝑑2ℓ2(𝑝, 𝑞)

)︁
≤ 𝑂(𝑚2𝜀

2).

We note that this is the same bound as in Lemma 4. With this bound on the mean, the rest

of the analysis is identical to that of Theorem 4, giving us Theorem 6.

2.4 Upper Bounds for Equivalence Testing

In this section, we prove the following theorems for equivalence testing.

Theorem 7. There exists an algorithm for equivalence testing between 𝑝 and 𝑞 distinguishing

the cases:

∙ 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀
2
√
𝑛
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∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀

The algorithm uses 𝑂
(︁

max
{︁

𝑛2/3

𝜀4/3
, 𝑛

1/2

𝜀2

}︁)︁
samples.

Theorem 8. There exists an algorithm for equivalence testing between 𝑝 and 𝑞 distinguishing

the cases:

∙ 𝑑ℓ2(𝑝, 𝑞) ≤ 𝜀2

32
√
𝑛

∙ 𝑑H(𝑝, 𝑞) ≥ 𝜀

The algorithm uses 𝑂
(︁

min
{︁

𝑛2/3

𝜀8/3
, 𝑛

3/4

𝜀2

}︁)︁
samples.

Consider drawing Poisson(𝑚) samples from two unknown distributions 𝑝 = (𝑝1, . . . , 𝑝𝑛)

and 𝑞 = (𝑞1, . . . , 𝑞𝑛). Given the resulting histograms 𝑋 and 𝑌 , [CDVV14] define the follow-

ing statistic:

𝑍 =
𝑛∑︁

𝑖=1

(𝑋𝑖 − 𝑌𝑖)
2 −𝑋𝑖 − 𝑌𝑖

𝑋𝑖 + 𝑌𝑖

. (2.5)

This can be viewed as a modification to the empirical triangle distance applied to 𝑋 and 𝑌 .

Both of our equivalence testing upper bounds will be obtained by appropriate thresholding

of the statistic 𝑍.

The organization of this section is as follows. We proceed to prove some basic properties

of 𝑍. In Section 2.4.1, we prove Theorem 7. In Section 2.4.2, we prove Theorem 8.

Some facts about Z. Chan et al. [CDVV14] give the following expressions for the mean

and variance of 𝑍.

Proposition 6 ([CDVV14]). Consider the function

𝑓(𝑥) =

(︂
1− 1− 𝑒−𝑥

𝑥

)︂
.

Then for any subset 𝐴 ⊆ [𝑛],

E[𝑍𝐴] =
∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑚 · 𝑓(𝑚(𝑝𝑖 + 𝑞𝑖)). (2.6)
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As a result, 𝑍 is mean-zero when 𝑝 = 𝑞. Furthermore,

Var[𝑍] ≤ 2 min{𝑚,𝑛}+
𝑛∑︁

𝑖=1

5𝑚
(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
.

Applying Proposition 3, we immediately have the following corollary.

Corollary 1. Var[𝑍] ≤ 2 min{𝑚,𝑛}+ 20𝑚𝑑H(𝑝, 𝑞)2.

Without the corrective factor of 𝑓(𝑚(𝑝𝑖 + 𝑞𝑖)), Equation (2.6) would just be 𝑚 times the

triangle distance between 𝑝 and 𝑞. Our goal then is to understand the function 𝑓(𝑥) and how

it affects this quantity. Aside from the removable discontinuity at 𝑥 = 0, 𝑓 is a monotonically

increasing function, and for 𝑥 > 0, it is strictly bounded between 0 and 1. Furthermore,

for 𝑥 > 0 there are roughly two “regimes" that 𝑓(𝑥) exhibits: when 𝑥 < 1, where 𝑓(𝑥) is

well-approximated by 𝑥/2, and when 𝑥 ≥ 1, where 𝑓(𝑥) is “morally the constant one,” slowly

increasing from 𝑒−1 to 1. In fact, we have the following explicit bound on 𝑓(𝑥).

Fact 1. For all 𝑥 > 0, 𝑓(𝑥) ≤ min{1, 𝑥}.

In terms of 𝑓(𝑚(𝑝𝑖 + 𝑞𝑖)), these regimes correspond to whether 𝑝𝑖 + 𝑞𝑖 is less than or greater

than 1
𝑚

. Hence, the expression for the mean of 𝑍 (i.e. Equation (2.6) for 𝐴 = [𝑛]) splits in

two: those terms for “large" 𝑝𝑖 + 𝑞𝑖 look roughly like the triangle distance (times 𝑚), and

those terms for “small" 𝑝𝑖 + 𝑞𝑖 look roughly like the ℓ22 distance (times 𝑚2). This is why we

have given ourselves the flexibility to consider subsets 𝐴 of the domain.

We will now prove several upper and lower bounds on E[𝑍𝐴], based in part on whether

we will apply them in the large or small 𝑝𝑖 + 𝑞𝑖 regime. Let us begin with a pair of upper

bounds.

Proposition 7. Suppose for every 𝑖 ∈ 𝐴, 𝑝𝑖 + 𝑞𝑖 ≥ 𝛿. Then

E[𝑍𝐴] ≤ 𝑚

𝛿
𝑑2ℓ2(𝑝𝐴, 𝑞𝐴).
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Proof. Because 𝑓(𝑥) ≤ 1 for all 𝑥 > 0,

E[𝑍𝐴] =
∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑚 ·𝑓(𝑚(𝑝𝑖 +𝑞𝑖)) ≤

∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑚 ≤ 𝑚

𝛿

∑︁
𝑖∈𝐴

(𝑝𝑖−𝑞𝑖)2 =
𝑚

𝛿
𝑑2ℓ2(𝑝𝐴, 𝑞𝐴).

Proposition 8. E[𝑍] ≤ 𝑚2𝑑2ℓ2(𝑝, 𝑞).

Proof. Let 𝐿 be the set of 𝑖 such that 𝑚(𝑝𝑖 + 𝑞𝑖) ≥ 1. Then E[𝑍] = E[𝑍𝐿] + E[𝑍𝐿], and

by Proposition 7, E[𝑍𝐿] ≤ 𝑚2𝑑2ℓ2(𝑝𝐿, 𝑞𝐿). On the other hand, by Fact 1, 𝑓(𝑥) ≤ 𝑥, and

therefore

E[𝑍𝐿] =
∑︁
𝑖∈𝐿

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑚 · 𝑓(𝑚(𝑝𝑖 + 𝑞𝑖)) ≤

∑︁
𝑖∈𝐿

(𝑝𝑖 − 𝑞𝑖)2𝑚2 = 𝑚2𝑑2ℓ2(𝑝𝐿, 𝑞𝐿).

The proof is completed by noting that 𝑑2ℓ2(𝑝𝐿, 𝑞𝐿) + 𝑑2ℓ2(𝑝𝐿, 𝑞𝐿) = 𝑑2ℓ2(𝑝, 𝑞).

Now we give a pair of lower bounds.

Proposition 9. Suppose for every 𝑖 ∈ 𝐴, 𝑚(𝑝𝑖 + 𝑞𝑖) ≥ 1. Then

E[𝑍𝐴] ≥ 2𝑚

3
𝑑2H(𝑝𝐴, 𝑞𝐴).

Proof. Because 𝑓(𝑥) is monotonically increasing and 𝑓(1) = 1/𝑒,

E[𝑍𝐴] = 𝑚
∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑓(𝑚(𝑝𝑖 + 𝑞𝑖)) ≥ 𝑚

∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑝𝑖 + 𝑞𝑖
𝑓(1) ≥ 2𝑚

𝑒
𝑑2H(𝑝𝐴, 𝑞𝐴),

where the first step is by Proposition 6 and the last is by Proposition 3. The result follows

from 𝑒 ≤ 3.

The next proposition is essentially the second half of the proof of Lemma 4 from [CDVV14].

Proposition 10. For any subset 𝐴,

E[𝑍𝐴] ≥
(︂

4𝑚2

2|𝐴|+𝑚 · (𝑝(𝐴) + 𝑞(𝐴))

)︂
· 𝑑2TV(𝑝𝐴, 𝑞𝐴),

where we write 𝑝(𝐴) =
∑︀

𝑖∈𝐴 𝑝(𝑖) and likewise for 𝑞(𝐴).
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Proof. Consider the function 𝑔(𝑥) = 𝑥𝑓(𝑥)−1. Then 𝑔(𝑥) ≤ 2 + 𝑥 for nonnegative 𝑥. Fur-

thermore,
(𝑝𝑖 − 𝑞𝑖)2

𝑔(𝑚(𝑝𝑖 + 𝑞𝑖))
=

(𝑝𝑖 − 𝑞𝑖)2

𝑚(𝑝𝑖 + 𝑞𝑖)

(︂
1− 1− 𝑒−𝑚(𝑝𝑖+𝑞𝑖)

𝑚(𝑝𝑖 + 𝑞𝑖)

)︂
,

which, from Proposition 6, is 1
𝑚2 · E[𝑍{𝑖}]. As a result,

𝑑2TV(𝑝𝐴, 𝑞𝐴) =
1

4

(︃∑︁
𝑖∈𝐴

|𝑝𝑖 − 𝑞𝑖|

)︃2

=
1

4

(︃∑︁
𝑖∈𝐴

|𝑝𝑖 − 𝑞𝑖| ·
√︀
𝑔(𝑚(𝑝𝑖 + 𝑞𝑖))√︀
𝑔(𝑚(𝑝𝑖 + 𝑞𝑖))

)︃2

≤ 1

4

(︃∑︁
𝑖∈𝐴

(𝑝𝑖 − 𝑞𝑖)2

𝑔(𝑚(𝑝𝑖 + 𝑞𝑖))

)︃
·

(︃∑︁
𝑖∈𝐴

𝑔(𝑚(𝑝𝑖 + 𝑞𝑖))

)︃
≤ 1

4𝑚2
·E[𝑍𝐴] · (2|𝐴|+𝑚 · (𝑝(𝐴)+𝑞(𝐴))),

where the first inequality is Cauchy-Schwarz. Rearranging finishes the proof.

2.4.1 Equivalence Testing with ℓ2 Tolerance

In this section, we prove Theorem 7. We will take the number of samples to be

𝑚 = max

{︂
𝐶 · 𝑛

2/3

𝜀4/3
, 𝐶3/2 · 𝑛

1/2

𝜀2

}︂
, (2.7)

where 𝐶 is some constant which can be taken to be 1010.

Rather than drawing samples from 𝑝 or 𝑞, our algorithm draws samples from 𝑝+1/2

and 𝑞+1/2. By Proposition 4, we have the following guarantees in the two cases:

(Case 1): 𝑑ℓ2(𝑝
+1/2, 𝑞+1/2) ≤ 𝜀

4
√
𝑛
, (Case 2): 𝑑TV(𝑝+1/2, 𝑞+1/2) ≥ 𝜀

2
.

Furthermore, for any 𝑖 ∈ [𝑛], we know the 𝑖-th coordinates of 𝑝+1/2 and 𝑞+1/2 are both at

least 1
2𝑛

. Henceforth, we will write 𝑝′ and 𝑞′ for 𝑝+1/2 and 𝑞+1/2, respectively.

In Case 1, if we apply Proposition 7 with 𝐴 = [𝑛] and 𝛿 = 1
𝑛

and Proposition 8,

E[𝑍] ≤ min{𝑚2,𝑚𝑛} · 𝑑2ℓ2(𝑝
′, 𝑞′) ≤ min{𝑚2,𝑚𝑛} · 𝜀

2

16𝑛
≤ 𝑚2

4(2𝑚+ 2𝑛)
· 𝜀2.
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On the other hand, in Case 2, applying Proposition 10 with 𝐴 = [𝑛],

E[𝑍] ≥ 4𝑚2

2𝑚+ 2𝑛
· 𝑑TV(𝑝′, 𝑞′)2 ≥ 𝑚2

2𝑚+ 2𝑛
· 𝜀2.

Our algorithm therefore thresholds 𝑍 on the value 5𝑚2

8(2𝑚+2𝑛)
𝜀2, outputting “close" if it’s below

this value and “far" otherwise.

The two bounds in (2.7) meet when 𝐶3𝜀−4 = 𝑛, which is exactly when 𝑚 = 𝑛. When

𝑚 ≤ 𝑛, the first bound applies, and when 𝑚 > 𝑛 the second bound applies. As a result, we

will split our analysis into the two cases.

Lemma 6. The tester succeeds in the 𝑚 ≤ 𝑛 case of Theorem 7.

Proof. By Corollary 1

Var[𝑍] ≤ 2 min{𝑚,𝑛}+ 20𝑚𝑑H(𝑝′, 𝑞′)2 ≤ 22𝑚,

where we used the fact that 𝑑H(𝑝′, 𝑞′) ≤ 1. In Case 1, by Chebyshev’s inequality,

Pr

[︂
𝑍 ≥ 5𝑚2

8(2𝑚+ 2𝑛)
𝜀2
]︂
≤ Var[𝑍](︁

3𝑚2

8(2𝑚+2𝑛)
𝜀2
)︁2 = 𝑂

(︃
𝑚

𝑚4

𝑛2 𝜀4

)︃
= 𝑂

(︂
𝑛2

𝑚3𝜀4

)︂
.

In Case 2,

Pr

[︂
𝑍 ≤ 5𝑚2

8(2𝑚+ 2𝑛)
𝜀2
]︂
≤ 64Var[𝑍]

9E[𝑍]2
= 𝑂

(︃
𝑚

𝑚4

𝑛2 𝜀4

)︃
= 𝑂

(︂
𝑛2

𝑚3𝜀4

)︂
.

Both of these bounds can be made arbitrarily small constants by setting 𝐶 sufficiently

large.

Lemma 7. The tester succeeds in the 𝑚 ≥ 𝑛 case of Theorem 7.

Proof. We first consider Case 1. By Proposition 6,

Var[𝑍] ≤ 2 min{𝑚,𝑛}+
𝑛∑︁

𝑖=1

5𝑚
(𝑝′𝑖 − 𝑞′𝑖)2

𝑝′𝑖 + 𝑞′𝑖
≤ 2𝑛+ 5𝑚𝑛𝑑2ℓ2(𝑝

′, 𝑞′) ≤ 2𝑛+ 5
16
𝑚𝜀2.
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Then, we have that

Pr

[︂
𝑍 ≥ 5𝑚2

8(2𝑚+ 2𝑛)
𝜀2
]︂
≤ Var[𝑍](︁

3𝑚2

8(2𝑚+2𝑛)
𝜀2
)︁2 = 𝑂

(︂
𝑛

𝑚2𝜀4
+

𝑚𝜀2

𝑚2𝜀4

)︂
= 𝑂

(︂
𝑛

𝑚2𝜀4
+

1

𝑚𝜀2

)︂
.

Next, we focus on Case 2. Write 𝐿 for the set of 𝑖 ∈ [𝑛] such that 𝑚(𝑝′𝑖 + 𝑞′𝑖) ≥ 1. Then

𝑑2H(𝑝′
𝐿
, 𝑞′

𝐿
) ≤ 1

2

∑︀
𝑖∈𝐿(𝑝′𝑖 + 𝑞′𝑖) ≤ 𝑛/2𝑚. As a result, by Corollary 1

Var[𝑍] ≤ 2 min{𝑚,𝑛}+ 20𝑚𝑑2H(𝑝′, 𝑞′) ≤ 12𝑛+ 20𝑚𝑑2H(𝑝′𝐿, 𝑞
′
𝐿).

By Proposition 9, E[𝑍] ≥ 2𝑚
3
𝑑2H(𝑝′𝐿, 𝑞

′
𝐿). Hence,

Pr

[︂
𝑍 ≤ 5𝑚2

8(2𝑚+ 2𝑛)
𝜀2
]︂
≤ 64Var[𝑍]

9E[𝑍]2
= 𝑂

(︂
𝑛

E[𝑍]2
+
𝑚𝑑2H(𝑝′𝐿, 𝑞

′
𝐿)

E[𝑍]2

)︂
= 𝑂

(︂
𝑛

E[𝑍]2
+

1

E[𝑍]

)︂
= 𝑂

(︂
𝑛

𝑚2𝜀4
+

1

𝑚𝜀2

)︂
.

Both of these bounds can be made arbitrarily small constants by setting 𝐶 sufficiently

large.

2.4.2 Equivalence Testing with Hellinger Distance

In this section, we prove Theorem 8. We will take the number of samples to be

𝑚 = min

{︂
𝐶 · 𝑛

2/3

𝜀8/3
, 𝐶3/4 · 𝑛

3/4

𝜀2

}︂
,

where 𝐶 is some constant which can be taken to be 1010.

Rather than drawing samples from 𝑝 or 𝑞, our algorithm draws samples from 𝑝+𝛿 and 𝑞+𝛿

for 𝛿 = 𝜀2/32. By Proposition 4, we have the following guarantees in the two cases:

(Case 1): 𝑑ℓ2(𝑝, 𝑞) ≤
𝜀2

32
√
𝑛
, (Case 2): 𝑑H(𝑝, 𝑞) ≥ 1

2
𝜀.

Furthermore, for any 𝑖 ∈ [𝑛], we know the 𝑖-th coordinates of 𝑝+𝛿 and 𝑞+𝛿 are both at

least 𝜀2

32𝑛
. Henceforth, we will write 𝑝′ and 𝑞′ for 𝑝+𝛿 and 𝑞+𝛿, respectively.
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The two bounds meet when 𝐶3/4𝜀−2 = 𝑛1/4, which is exactly when 𝑚 = 𝑛. When 𝑚 ≤ 𝑛,

the first bound applies, and when 𝑚 > 𝑛 the second bound applies. As a result, we will split

our analysis into the two cases.

Lemma 8. The tester succeeds in the 𝑚 ≤ 𝑛 case of Theorem 8.

Proof. In Case 1, if we apply Proposition 8,

E[𝑍] ≤ 𝑚2 · 𝑑2ℓ2(𝑝
′, 𝑞′) ≤ 𝑚2𝜀4

322𝑛
.

On the other hand, in Case 2, applying Proposition 10 with 𝐴 = [𝑛],

E[𝑍] ≥
(︂

4𝑚2

2𝑛+ 2𝑚

)︂
· 𝑑TV(𝑝′, 𝑞′)2 ≥

(︂
4𝑚2

2𝑛+ 2𝑚

)︂
· 𝑑H(𝑝′, 𝑞′)4 ≥ 𝑚2𝜀4

16𝑛
.

Our algorithm therefore thresholds 𝑍 on the value 𝑚2𝜀4

128𝑛
, outputting “close" if it’s below this

value and “far" otherwise.

By Corollary 1

Var[𝑍] ≤ 2 min{𝑚,𝑛}+ 20𝑚𝑑H(𝑝′, 𝑞′)2 ≤ 22𝑚,

where we used the fact that 𝑑H(𝑝′, 𝑞′) ≤ 1. In Case 1,

Pr

[︂
𝑍 ≥ 𝑚2𝜀4

128𝑛

]︂
≤ Var[𝑍](︀

𝑚2𝜀4

256𝑛

)︀2 = 𝑂

(︃
𝑚

𝑚4

𝑛2 𝜀8

)︃
= 𝑂

(︂
𝑛2

𝑚3𝜀8

)︂
.

In Case 2,

Pr

[︂
𝑍 ≤ 𝑚2𝜀4

128𝑛

]︂
≤ 64Var[𝑍]

49E[𝑍]2
= 𝑂

(︃
𝑚

𝑚4

𝑛2 𝜀8

)︃
= 𝑂

(︂
𝑛2

𝑚3𝜀8

)︂
.

Both of these bounds can be made arbitrarily small constants by setting 𝐶 sufficiently

large.

Lemma 9. The tester succeeds in the 𝑚 > 𝑛 case of Theorem 8.
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Proof. In Case 1, if we apply Proposition 7 with 𝐴 = [𝑛] and 𝛿 = 𝜀2

16𝑛
and Proposition 8,

E[𝑍] ≤ min
{︁
𝑚2, 16

𝑚𝑛

𝜀2

}︁
· 𝑑2ℓ2(𝑝

′, 𝑞′) ≤ min
{︁
𝑚2, 16

𝑚𝑛

𝜀2

}︁
· 𝜀4

322𝑛
= min

{︂
𝑚2𝜀4

322𝑛
,
𝑚𝜀2

64

}︂
.

Case 2 is more complicated. We will need to define the set of “large" coordinates 𝐿 = {𝑖 :

𝑚(𝑝′𝑖 + 𝑞′𝑖) ≥ 1} and the set of “small" coordinates 𝑆 = [𝑛] ∖ 𝐿. Applying Proposition 10

to 𝑆, we have

E[𝑍𝑆] ≥
(︂

4𝑚2

2|𝑆|+𝑚 · (𝑝′(𝑆) + 𝑞′(𝑆))

)︂
· 𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆) ≥ 4𝑚2

3𝑛
𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆),

where 𝑚 · (𝑝′(𝑆) + 𝑞′(𝑆)) ≤ 𝑛 by the definition of 𝑆. If we also apply Proposition 9 to 𝐿, we

get

E[𝑍] = E[𝑍𝑆] + E[𝑍𝐿] ≥ 4𝑚2

3𝑛
𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆) +

2𝑚

3
𝑑2H(𝑝′𝐿, 𝑞

′
𝐿) ≥ min

{︂
𝑚2𝜀4

48𝑛
,
𝑚𝜀2

12

}︂
,

where the last step follows because 𝑑2H(𝑝′𝑆, 𝑞
′
𝑆) + 𝑑2H(𝑝′𝐿, 𝑞

′
𝐿) = 𝑑2H(𝑝′, 𝑞′) and 𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆) ≥

𝑑4H(𝑝′𝑆, 𝑞
′
𝑆). As a result, we threshold 𝑍 on the value

1

2
·min

{︂
𝑚2𝜀4

48𝑛
,
𝑚𝜀2

12

}︂
,

outputting “close" if it’s below this value and “far" otherwise.

In Case 1, by Proposition 6,

Var[𝑍] ≤ 2 min{𝑚,𝑛}+
𝑚∑︁
𝑖=1

5𝑚
(𝑝′𝑖 − 𝑞′𝑖)2

𝑝′𝑖 + 𝑞′𝑖
≤ 2𝑛+

80𝑚𝑛

𝜀2
‖𝑝′ − 𝑞′‖22 ≤ 2𝑛+

5

64
𝑚𝜀2.
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Hence, by Chebyshev’s inequality,

Pr

[︂
𝑍 ≥ 1

2
·min

{︂
𝑚2𝜀4

48𝑛
,
𝑚𝜀2

12

}︂]︂
≤ Var[𝑍]

(1
8
·min

{︀
𝑚2𝜀4

48𝑛
, 𝑚𝜀2

12

}︀
)2

≤ 𝑂

(︃
𝑛

(𝑚
2𝜀4

𝑛
)2

+
𝑛

(𝑚𝜀2)2
+

𝑚𝜀2

(𝑚
2𝜀4

𝑛
)2

+
𝑚𝜀2

(𝑚𝜀2)2

)︃

= 𝑂

(︂
𝑛3

𝑚4𝜀8
+

𝑛

𝑚2𝜀4
+

𝑛2

𝑚3𝜀6
+

1

𝑚𝜀2

)︂
.

This can be made an arbitrarily small constant by setting 𝐶 sufficiently large.

In Case 2, by Corollary 1,

Pr

[︂
𝑍 ≤ E[𝑍]

2

]︂
≤ 4Var[𝑍]

E[𝑍]2
≤ 8𝑛+ 80𝑚𝑑H(𝑝′, 𝑞′)2

E[𝑍]2
. (2.8)

Because 𝑑H(𝑝′, 𝑞′)2 = 𝑑2H(𝑝′𝑆, 𝑞
′
𝑆) + 𝑑2H(𝑝′𝐿, 𝑞

′
𝐿), either 𝑑2H(𝑝′𝑆, 𝑞

′
𝑆) or 𝑑2H(𝑝′𝐿, 𝑞

′
𝐿) is at least

1
2
𝑑2H(𝑝′, 𝑞′). Suppose that 𝑑2H(𝑝′𝑆, 𝑞

′
𝑆) ≥ 1

2
𝑑2H(𝑝′, 𝑞′). We note that

𝑚𝑑2H(𝑝′𝑆, 𝑞
′
𝑆) =

𝑚

2

∑︁
𝑖∈𝑆

(
√︀
𝑝′𝑖 −

√︀
𝑞′𝑖)

2 ≤ 𝑚

2

∑︁
𝑖∈𝑆

|𝑝′𝑖 + 𝑞′𝑖| ≤
𝑛

2
,

by the definition of 𝑆. Thus,

(2.8) ≤ 8𝑛+ 160𝑚𝑑2H(𝑝′𝑆, 𝑞
′
𝑆)

(4𝑚
2

3𝑛
𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆))2

≤ 88𝑛

(4𝑚
2

3𝑛
𝑑2TV(𝑝′𝑆, 𝑞

′
𝑆))2

= 𝑂

(︂
𝑛3

𝑚4𝑑4TV(𝑝′𝑆, 𝑞
′
𝑆)

)︂
≤ 𝑂

(︂
𝑛3

𝑚4𝜀8

)︂
,

where the last step used the fact that 𝑑TV(𝑝′𝑆, 𝑞
′
𝑆) ≥ 𝑑2H(𝑝′𝑆, 𝑞

′
𝑆) ≥ 1

2
𝑑2H(𝑝′, 𝑞′) ≥ 1

2
𝜀2.

In the case when 𝑑2H(𝑝′𝐿, 𝑞
′
𝐿) ≥ 1

2
𝑑2H(𝑝′, 𝑞′),

(2.8) ≤ 8𝑛+ 160𝑚𝑑2H(𝑝′𝐿, 𝑞
′
𝐿)

(2𝑚
3
𝑑2H(𝑝′𝐿, 𝑞

′
𝐿))2

= 𝑂

(︂
𝑛

𝑚2𝑑4H(𝑝′𝐿, 𝑞
′
𝐿)

+
1

𝑚𝑑2H(𝑝′𝐿, 𝑞
′
𝐿)

)︂
≤ 𝑂

(︂
𝑛

𝑚2𝜀4
+

1

𝑚𝜀2

)︂
.

This can be made an arbitrarily small constant by setting 𝐶 sufficiently large.
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2.5 Upper Bounds Based on Estimation

We start by showing a simple meta-algorithm – in short, it says that if a testing problem is

well-defined (i.e., has appropriate separation between the cases) and we can estimate one of

the distances, it can be converted to a testing algorithm.

Theorem 9. Suppose there exists an 𝑚(𝑛, 𝜀)-sample algorithm which, given sample access

to distributions 𝑝 and 𝑞 over [𝑛] and parameter 𝜀, estimates some distance 𝑑(𝑝, 𝑞) up to an

additive 𝜀 with probability at least 2/3. Consider distances 𝑑𝑋(·, ·), 𝑑𝑌 (·, ·) and 𝜀1, 𝜀2 > 0

such that 𝑑𝑌 (𝑝, 𝑞) ≥ 𝜀2 → 𝑑𝑋(𝑝, 𝑞) > 3𝜀1/2 and 𝑑𝑋(𝑝, 𝑞) ≤ 𝜀1 → 𝑑𝑌 (𝑝, 𝑞) < 2𝜀2/3, and 𝑑(·, ·)

is either 𝑑𝑋(·, ·) or 𝑑𝑌 (·, ·).

Then there exists an algorithm for equivalence testing between 𝑝 and 𝑞 distinguishing the

cases:

∙ 𝑑𝑋(𝑝, 𝑞) ≤ 𝜀1;

∙ 𝑑𝑌 (𝑝, 𝑞) ≥ 𝜀2.

The algorithm uses either 𝑚(𝑛,𝑂(𝜀1)) or 𝑚(𝑛,𝑂(𝜀2)) samples, depending on whether 𝑑 = 𝑑𝑋

or 𝑑𝑌 .

Proof. Suppose that 𝑑 = 𝑑𝑋 , the other case follows similarly. Using the 𝑚(𝑛, 𝜀1/4) samples,

obtain an estimate 𝜏 of 𝑑𝑋(𝑝, 𝑞), accurate up to an additive 𝜀1/4. If 𝜏 ≤ 5𝜀1/4, output

that 𝑑𝑋(𝑝, 𝑞) ≤ 𝜀1, else output that 𝑑𝑌 (𝑝, 𝑞) ≥ 𝜀2. Conditioning on the correctness of

the estimation algorithm, correctness for the case when 𝑑𝑋(𝑝, 𝑞) ≤ 𝜀1 is immediate, and

correctness for the case when 𝑑𝑌 (𝑝, 𝑞) ≥ 𝜀2 follows from the separation between the cases.

It is folklore that a distribution over [𝑛] can be 𝜀-learned in ℓ2-distance with 𝑂(1/𝜀2)

samples (see, e.g., [CDVV14, Wag15] for a reference). By triangle inequality, this implies

that we can estimate the ℓ2 distance between 𝑝 and 𝑞 up to an additive 𝑂(𝜀) with 𝑂(1/𝜀2)

samples, leading to the following corollary.

Corollary 2. There exists an algorithm for equivalence testing between 𝑝 and 𝑞 distinguishing

the cases:
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∙ 𝑑(𝑝, 𝑞) ≤ 𝑓(𝑛, 𝜀);

∙ 𝑑ℓ2(𝑝, 𝑞) ≥ 𝜀,

where 𝑑(·, ·) is a distance and 𝑓(𝑛, 𝜀) is such that 𝑑ℓ2(𝑝, 𝑞) ≥ 𝜀 → 𝑑(𝑝, 𝑞) ≥ 3𝑓(𝑛, 𝜀)/2 and

𝑑(𝑝, 𝑞) ≤ 𝑓(𝑛, 𝜀)→ 𝑑ℓ2(𝑝, 𝑞) ≤ 2𝜀/3. The algorithm uses 𝑂(1/𝜀2) samples.

Finally, we note that total variation distance between 𝑝 and 𝑞 can be additively estimated

up to a constant using 𝑂(𝑛/ log 𝑛) samples [LC06, VV11b, JHW16], leading to the following

corollary:

Corollary 3. For constant 𝜀 > 0, there exists an algorithm for equivalence testing between

𝑝 and 𝑞 distinguishing the cases:

∙ 𝑑TV(𝑝, 𝑞) ≤ 𝜀2/4;

∙ 𝑑H(𝑝, 𝑞) ≥ 𝜀/
√

2.

The algorithm uses 𝑂(𝑛/ log 𝑛) samples.

2.6 Lower Bounds for Testing with Tolerance and Alter-

native Distances

We start with a simple lower bound, showing that identity testing with respect to KL diver-

gence is impossible. A similar observation was made in [BFR+00].

Theorem 10. No finite sample test can perform identity testing between 𝑝 and 𝑞 distin-

guishing the cases:

∙ 𝑝 = 𝑞;

∙ 𝑑KL(𝑝, 𝑞) ≥ 𝜀2.

Proof. Simply take 𝑞 = (1, 0) and let 𝑝 be either (1, 0) or (1− 𝛿, 𝛿), for 𝛿 > 0 tending to zero.

Then 𝑝 = 𝑞 in the first case and 𝑑KL(𝑝, 𝑞) = ∞ in the second, but distinguishing between

these two possibilities for 𝑝 takes Ω(𝛿−1)→∞ samples.
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Next, we prove our lower bound for KL tolerant identity testing.

Theorem 11. There exist constants 0 < 𝑠 < 𝑐, such that any algorithm for identity testing

between 𝑝 and 𝑞 distinguishing the cases:

∙ 𝑑KL(𝑝, 𝑞) ≤ 𝑠;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝑐;

requires Ω(𝑛/ log 𝑛) samples.

Proof. Let 𝑞 = ( 1
𝑛
, . . . , 1

𝑛
) be the uniform distribution. Let 𝑅(·, ·) denote the relative earth-

mover distance (see [VV10a] for the definition). By Theorem 1 of [VV10a], for any 𝛿 < 1
4

there exist sets of distributions 𝒞 and ℱ (for close and far) such that:

∙ For every 𝑝 ∈ 𝒞, 𝑅(𝑝, 𝑞) = 𝑂(𝛿| log 𝛿|).

∙ For every 𝑝 ∈ ℱ there exists a distribution 𝑟 which is uniform over 𝑛/2 elements such

that 𝑅(𝑝, 𝑟) = 𝑂(𝛿| log 𝛿|).

∙ Distinguishing between 𝑝 ∈ 𝒞 and 𝑝 ∈ ℱ requires Ω( 𝛿𝑛
log(𝑛)

) samples.

Now, if 𝑝 ∈ 𝒞 then

𝑑KL(𝑝, 𝑞) =
𝑛∑︁

𝑖=1

𝑝𝑖 log

(︂
𝑝𝑖

1/𝑛

)︂
= log(𝑛)−𝐻(𝑝) ≤ 𝑂(𝛿| log(𝛿)|),

where 𝐻(𝑝) is the Shannon entropy of 𝑝, and here we used the fact that |𝐻(𝑝) − 𝐻(𝑞)| ≤

𝑅(𝑝, 𝑞), which follows from Fact 5 of [VV10a]. On the other hand, if 𝑞 ∈ ℱ , let 𝑟 be the

corresponding distribution which is uniform over 𝑛/2 elements. Then

1

2
= 𝑑TV(𝑝, 𝑞) ≤ 𝑑TV(𝑞, 𝑝) + 𝑑TV(𝑝, 𝑟) ≤ 𝑑TV(𝑞, 𝑝) +𝑂(𝛿| log 𝛿|),

where we used the triangle inequality and the fact that 𝑑TV(𝑝, 𝑟) ≤ 𝑅(𝑝, 𝑟) (see [VV10a]

page 4). As a result, if we set 𝛿 to be some small constant, 𝑠 = 𝑂(𝛿| log(𝛿)|), and 𝑐 =

1
2
−𝑂(𝛿| log 𝛿|), then this argument shows that distinguish 𝑑KL(𝑝, 𝑞) ≤ 𝑠 versus 𝑑TV(𝑝, 𝑞) ≥ 𝑐

requires Ω(𝑛/ log 𝑛) samples.
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Finally, we conclude with our lower bound for 𝜒2-tolerant equivalence testing.

Theorem 12. There exists a constant 𝜀 > 0 such that any algorithm for equivalence testing

between 𝑝 and 𝑞 distinguishing the cases:

∙ 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/4;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀;

requires Ω(𝑛/ log 𝑛) samples.

Proof. We reduce the problem of distinguishing 𝑑H(𝑝, 𝑞) ≤ 1√
48
𝜀 from 𝑑TV(𝑝, 𝑞) ≥ 3𝜀 to this.

Define the distributions

𝑝′ =
2

3
𝑝+

1

3
𝑞, 𝑞′ =

1

3
𝑝+

2

3
𝑞.

Then 𝑚 samples from 𝑝′ and 𝑞′ can be simulated by 𝑚 samples from 𝑝 and 𝑞. Furthermore,

𝑑H(𝑝′, 𝑞′) ≤ 1√
48
𝜀, 𝑑TV(𝑝′, 𝑞′) =

1

3
𝑑TV(𝑝, 𝑞) ≥ 𝜀,

where we used the fact that Hellinger distance satisfies the data processing inequality. But

then, in the “close" case,

𝑑𝜒2(𝑝′, 𝑞′) =
𝑛∑︁

𝑖=1

(𝑝′𝑖 − 𝑞′𝑖)2

𝑞′𝑖
≤ 3

𝑛∑︁
𝑖=1

(𝑝′𝑖 − 𝑞′𝑖)2

𝑝′𝑖 + 𝑞′𝑖
≤ 12𝑑2H(𝑝′, 𝑞′) ≤ 1

4
𝜀2,

where we used the fact that 𝑝′𝑖 ≤ 2𝑞′𝑖 and Proposition 3. Hence, this problem, which requires

Ω(𝑛/ log 𝑛) samples (by the relationship between total variation and Hellinger distance, and

the lower bound for testing total variation-close versus -far of [VV10a]), reduces to the

problem in the proposition, and so that requires Ω(𝑛/ log 𝑛) samples as well.
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Chapter 3

Testing Shape-Restricted Families of

Distributions

3.1 Introduction

In this chapter, our focus is on composite hypothesis testing. Much of prior work focuses on

testing for a single null hypothesis 𝑞. However, is a rather unrealistic scenario for hypothesis

testing – it seems implausible that we would have a precise guess for the unknown distri-

bution. In the previous chapter, we considered one natural way of relaxing this restriction,

where we considered testing whether 𝑝 is in an 𝜀1-neighborhood of 𝑞 (in distance measure

𝑑1). In this chapter, we consider an alternative relaxation: we wish to test whether the

unknown distribution belongs to some structured class of distributions: is 𝑝 ∈ 𝒞, or is it

far from all such representations (i.e., 𝑑TV(𝑝, 𝒞) ≥ 𝜀). For example, one might wish to ask

if the distribution 𝑝 follows some Binomial distribution, rather than a particular Binomial

distribution. More precisely, our problem is the following:

Given a class of distributions 𝒞, some 𝜀 > 0, and sample access to an

unknown distribution 𝑝 over a discrete support, how many samples are

required to distinguish between 𝑝 ∈ 𝒞 versus 𝑑TV(𝑝, 𝒞) > 𝜀?

In some cases, composite hypothesis testing may be rather simple. For instance, if we wish

to test whether 𝑝 is equal to one of 𝑂(1) hypotheses, this can be done with 𝑂(1) ·𝑂(
√
𝑛/𝜀2)
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samples. The real challenge arises when the class 𝒞 is infinite. In this case, perhaps the

natural extension is to generate an 𝑂(𝜀)-net over 𝒞, and perform tolerant testing against

every distribution in this net. Even disregarding the size of this net, testing against a single

hypothesis requires a testing algorithm which is tolerant in total variation distance, which

requires Ω(𝑛/ log 𝑛) samples [VV17b], so this approach seems infeasible. Another approach

is to use a generalized likelihood ratio test, but their behavior is not well-understood in our

regime, and optimizing likelihood over our classes becomes computationally intense.

In the finite sample regime we consider in this thesis, this type of question has received

relatively limited attention. The primary classes of interest have been monotonicity [BKR04,

BFRV11] and independence [BFF+01, AAK+07, LRR13, RX14]. Even then, the known

upper bounds seem to be quite distant from the information-theoretic lower bounds, and the

true sample complexity of these problems is unclear.

3.1.1 Results

In this work, we prove a framework for testing whether an unknown distribution 𝑝 belongs

to some class 𝒞, or 𝑑TV(𝑝, 𝒞) ≥ 𝜀. We apply this framework in order to obtain sample-

optimal and computationally efficient testers for a number of natural shape restrictions to a

distribution. Our contributions are the following:

1. For the class 𝒞 = ℳ𝑑
𝑛 of monotone distributions over [𝑛]𝑑 we require an optimal

Θ
(︁

𝑛𝑑/2

𝜀2

)︁
number of samples, where prior work requires Ω

(︁√
𝑛 log𝑛
𝜀4

)︁
samples for 𝑑 = 1

and Ω̃
(︁
𝑛𝑑− 1

2 poly
(︀
1
𝜀

)︀)︁
for 𝑑 > 1 [BKR04, BFRV11]. Our results improve the exponent

of 𝑛 with respect to 𝑑, shave all logarithmic factors in 𝑛, and improve the exponent of

𝜀 by at least a factor of 2.

(a) A useful building block and interesting byproduct of our analysis is extend-

ing Birgé’s oblivious decomposition for single-dimensional monotone distribu-

tions [Bir87] to monotone distributions in 𝑑 ≥ 1, and to the stronger notion

of 𝜒2-distance. See Section 3.5.1.

(b) Moreover, we show that 𝑂(log𝑑 𝑛) samples suffice to learn a monotone distribution

over [𝑛]𝑑 in 𝜒2-distance. See Lemma 11 for the precise statement.
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2. For the class 𝒞 = Π𝑑 of product distributions over [𝑛1] × · · · × [𝑛𝑑], our algorithm

requires 𝑂
(︀(︀

(
∏︀

ℓ 𝑛ℓ)
1/2 +

∑︀
ℓ 𝑛ℓ

)︀
/𝜀2
)︀

samples. We note that a product distribution is

one where all marginals are independent, so this is equivalent to testing if a collection

of random variables are all independent. In the case where 𝑛ℓ’s are large, then the first

term dominates, and the sample complexity is 𝑂((
∏︀

ℓ 𝑛ℓ)
1/2 /𝜀2). In particular, when

𝑑 is a constant and all 𝑛ℓ’s are equal to 𝑛, we achieve the optimal sample complexity

of Θ(𝑛𝑑/2/𝜀2). To the best of our knowledge, this is the first result for 𝑑 ≥ 3, and

when 𝑑 = 2, this improves the previously known complexity from 𝑂
(︀

𝑛
𝜀6

polylog(𝑛/𝜀)
)︀

[BFF+01, LRR13], significantly improving the dependence on 𝜀 and shaving all loga-

rithmic factors.

3. For the classes 𝒞 = ℒ𝒞𝒟𝑛, 𝒞 =ℳℋℛ𝑛 and 𝒞 = 𝒰𝑛 of log-concave, monotone-hazard-

rate and unimodal distributions over [𝑛], we require an optimal Θ
(︁√

𝑛
𝜀2

)︁
number of

samples. Our testers for ℒ𝒞𝒟𝑛 and 𝒞 = ℳℋℛ𝑛 are to our knowledge the first for

these classes for the low sample regime we are studying—see [HVK05] and its references

for statistics literature on the asymptotic regime. Our tester for 𝒰𝑛 improves the

dependence of the sample complexity on 𝜀 by at least a factor of 2 in the exponent, and

shaves all logarithmic factors in 𝑛, compared to testers based on testing monotonicity.

(a) A useful building block and important byproduct of our analysis are the first com-

putationally efficient algorithms for properly learning log-concave and monotone-

hazard-rate distributions, to within 𝜀 in total variation distance, from poly(1/𝜀)

samples, independent of the domain size 𝑛. See Corollaries 8 and 10. Again,

these are the first computationally efficient algorithms to our knowledge in the

low sample regime. [CDSS14, ADLS17] provide algorithms for density estimation,

which are non-proper, i.e. will approximate an unknown distribution from these

classes with a distribution that does not belong to these classes. On the other

hand, the statistics literature focuses on maximum-likelihood estimation in the

asymptotic regime—see e.g. [CS10] and its references.

4. For all the above classes we obtain matching lower bounds, showing that the sample

complexity of our testers is optimal with respect to 𝑛, 𝜀 and when applicable 𝑑. See
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Section 3.10. Our lower bounds are based on extending Paninski’s lower bound for

testing uniformity [Pan08].

Our tester follows a very intuitive “learn then test” approach, though there are some

perhaps unexpected technical twists in order to achieve the optimal sample complexity.

More precisely, we could imagine the following two-step procedure:

1. Learn: Estimate a distribution 𝑞 ∈ 𝒞 which best approximates 𝑝;

2. Test: Test whether 𝑝 and 𝑞 are close or far.

Naturally, if 𝑝 and 𝑞 are close, then we can conclude that 𝑝 ∈ 𝒞, and if they are far, we know

that 𝑑TV(𝑝, 𝒞) ≥ 𝜀. The major unspecified parameter in this approach is which distance to

use: in what metric should we try to approximate 𝑝? Arguably the most natural approach

would be to choose the total variation distance – in this case, the second step asks us to

distinguish whether 𝑝 and 𝑞 are close or far in total variation distance. Unfortunately, this

approach hits a roadblock: as shown by [VV17b] (and discussed in Chapter 2), this testing

problem requires Ω(𝑛/ log 𝑛) samples. As a result, the second step alone would seem to

preclude an 𝑂(
√
𝑛/𝜀2) sample algorithm.

To avoid this information-theoretic lower bound, we must instead consider a relaxation of

the previous testing problem. In particular, rather than learning in total variation distance,

we will instead consider the 𝜒2-distance. As a result, the second step will be realized as the

following testing problem:

∙ 𝑝 and 𝑞 are 𝑂(𝜀2)-close in 𝜒2-distance; this case corresponds to 𝑝 ∈ 𝒞.

∙ 𝑝 and 𝑞 are Ω(𝜀)-far in total variation distance; this case corresponds to 𝑑TV(𝑝, 𝒞) > 𝜀.

It can be verified (cf. Proposition 1) that this testing problem is easier than the previous

one with total variation tolerance. Indeed, this is precisely the setting in which Theorem 4

(from Chapter 2) is designed to work1, and the sample complexity of the second step drops

to 𝑂(
√
𝑛/𝜀2). Note that we achieve dramatic savings by considering the 𝜒2-distance rather

1Theorem 4 is actually designed to solve a harder problem (testing for farness in Hellinger distance), but
the result for total variation follows from Proposition 1.

74



than the total variation distance – this serves as another motivation for studying distribution

testing with alternative distances, as we have done in Chapter 2.

With this 𝜒2-tolerant identity testing primitive in place, we are ready to turn our focus to

the testing of specific classes. In particular, it turns out the first step (obtaining an estimate

𝑞 of the unknown distribution 𝑝) is quite cheap for many natural classes, including all the

ones we consider, and thus, the overall cost of our test is dominated by the second step.

While many of these learning problems have been studied significantly in the total variation

setting (see, e.g., [CDSS14, ADLS17]), there has been less exploration when one considers 𝜒2-

learning. Nonetheless, we show that this is still possible, with a mild increase in the sample

complexity. However, the cost is still very cheap: for instance, estimating log-concave or

monotone hazard rate distributions in 𝜒2-distance requires only poly(1/𝜀) samples, while

estimating monotone or unimodal distributions requires poly(log 𝑛, 1/𝜀) samples.

Our base tester is combined with the afore-mentioned extension of Birgé’s decomposition

theorem to test monotone distributions in Section 3.5 (see Theorem 14 and Corollary 4),

and is also used to test independence of distributions in Section 3.7 (see Theorem 17).

Naturally, there are several bells and whistles that we need to add to the above skeleton

to accommodate all classes of distributions that we are considering. For log-concave and

monotone-hazard distributions, we are unable to obtain a cheap (in terms of samples) learner

that 𝜒2-approximates the unknown distribution 𝑝 throughout its support. Still, we can

identify a subset of the support where the 𝜒2-approximation is tight and which captures

almost all the probability mass of 𝑝. We extend our tester to accommodate excluding subsets

of the support from the 𝜒2-approximation. See Theorems 18 and 19 in Sections 3.8 and 3.9.

For unimodal distributions, we are even unable to identify a large enough subset of the

support where the 𝜒2-approximation is guaranteed to be tight. But we can show that there

exists a light enough piece of the support (in terms of probability mass under 𝑝) that we can

exclude to make the 𝜒2-approximation tight. Given that we only use Chebyshev’s inequality

to prove the concentration of the test statistic, it would seem that our lack of knowledge

of the piece to exclude would involve a union bound and a corresponding increase in the

required number of samples. We avoid this through a careful application of Kolmogorov’s

max inequality in our setting. See Theorem 16 of Section 3.6.
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3.1.2 Related Work

Shape restrictions have played a vast role in probabilistic modeling and testing, and we

are unable to cover this area in its entirety. It suffices to say that the classes of distribu-

tions that we study are fundamental, motivating extensive literature on their learning and

testing [BBBB72]. In the recent times, there has been work on shape restricted statistics,

pioneered by Jon Wellner, and others. [JW09, BW10] study estimation of monotone and

𝑘-monotone densities, and [BJRP13, SW14] study estimation of log-concave distributions.

As we have mentioned, statistics has focused on the asymptotic regime as the number of

samples tends to infinity. Instead we are considering the low sample regime and are more

stringent about the behavior of our testers, requiring two-sided guarantees. We want to

accept if the unknown distribution is in our class of interest, and also reject if it is far from

the class. For this problem, as discussed above, there are few results when 𝒞 is a whole class of

distributions. Closer related to our work is the line of papers [BKR04, ACS10, BFRV11] for

monotonicity testing, albeit these papers have sub-optimal sample complexity as discussed

above. Testing independence of random variables has a long history in statisics [RS81,

Agr12]. The theoretical computer science community has also considered the problem of

testing independence of random variables [BFF+01, AAK+07, LRR13, RX14]. While our

results sharpen the case where the variables are over domains of equal size, they demonstrate

an interesting asymmetric upper bound when this is not the case. More recently, Acharya and

Daskalakis provide optimal testers for the family of Poisson Binomial Distributions [AD15].

Contemporaneous work of Canonne et al [CDGR16] provides a generic algorithm and

lower bounds for the single-dimensional families of distributions considered here. We note

that their algorithm has a sample complexity which is suboptimal in both 𝑛 and 𝜀, while our

algorithms are optimal. Their algorithm also extends to mixtures of these classes, though

some of these extensions are not computationally efficient. They also provide a framework

for proving lower bounds, giving the optimal bounds for many classes when 𝜀 is sufficiently

large with respect to 1/𝑛. In comparison, we provide these lower bounds unconditionally by

modifying Paninski’s construction [Pan08] to suit the classes we consider.

There has been a great deal of work on testing for structure subsequent to the initial pub-
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lication of this work as [ADK15]. Our technique was applied and extended in [Can16] for test-

ing 𝑘-histogram distributions, improving upon previous results for this problem by [ILR12].

[DK16] has improved results for testing independence on domains with different size in each

dimension. [CDS17] applies Fourier techniques for testing additional classes of distributions.

[BC17, DKS17] focus on the new problem of “generalized” uniformity testing: here, one

wishes to test against the class of all distributions which are uniform over some (unknown)

subset of [𝑛]. [OZ18] work on the hypercube, testing whether distributions are uniform when

restricted to any 𝑘 coordinates. Finally, in a relatively new direction, [CDKS18] study testing

for conditional independence.

Our work provides the first efficient algorithm for proper learning of log-concave distri-

bution, even in total variation distance. After our work, [DKS16] provided a more efficient

algorithm for this task.

The above works mentioned focus on testing for structure. There have also been a number

of works on more efficient testing with structure, which is discussed more in Chapter 4.

3.2 Preliminaries

In this work, we will consider the following classes of distributions:

∙ Monotone distributions over [𝑛]𝑑 (denoted byℳ𝑑
𝑛), for which 𝑖 . 𝑗 implies 𝑓𝑖 ≥ 𝑓𝑗

2;

∙ Unimodal distributions over [𝑛] (denoted by 𝒰ℳ𝑛), for which there exists an 𝑖* such

that 𝑓𝑖 is non-decreasing for 𝑖 ≤ 𝑖* and non-increasing for 𝑖 ≥ 𝑖*;

∙ Log-concave distributions over [𝑛] (denoted by ℒ𝒞𝒟𝑛), the sub-class of unimodal dis-

tributions for which 𝑓𝑖−1𝑓𝑖+1 ≤ 𝑓 2
𝑖 ;

∙ Monotone hazard rate (MHR) distributions over [𝑛] (denoted by ℳℋℛ𝑛), for which

𝑖 < 𝑗 implies 𝑓𝑖
1−𝐹𝑖
≤ 𝑓𝑗

1−𝐹𝑗
.

Definition 7. An 𝜂-effective support of a distribution 𝑝 is any set 𝑆 such that 𝑝(𝑆) ≥ 1−𝜂.
2This definition describes monotone non-increasing distributions. By symmetry, identical results hold for

monotone non-decreasing distributions.
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The flattening of a function 𝑓 over a subset 𝑆 is the function 𝑓 such that 𝑓𝑖 = 𝑝(𝑆)/|𝑆|.

Definition 8. Let 𝑝 be a distribution, and let 𝐼1, . . . , 𝐼𝑘 be a partition of the domain. The

flattening of 𝑝 with respect to 𝐼1, . . . , 𝐼𝑘 is the distribution 𝑝 which is the flattening of 𝑝 over

the intervals 𝐼1, . . . , 𝐼𝑘.

3.3 Overview

Our algorithm for testing a distribution 𝑝 can be decomposed into three steps.

Near-proper learning in 𝜒2-distance. Our first step requires a learning algorithm with

very specific guarantees. In proper learning, we are given sample access to a distribution

𝑝 ∈ 𝒞, where 𝒞 is some class of distributions, and we wish to output 𝑞 ∈ 𝒞 such that 𝑝

and 𝑞 are close in total variation distance. In our setting, given sample access to 𝑝 ∈ 𝒞,

we wish to output 𝑞 such that 𝑞 is close to 𝒞 in total variation distance, and 𝑝 and 𝑞 are

close in 𝜒2-distance on an effective support3 of 𝑝. From an information theoretic standpoint,

this problem is harder than proper learning, since 𝜒2-distance is more restrictive than total

variation distance. Nonetheless, this problem can be shown to have comparable sample

complexity to proper learning for the structured classes we consider.

Computation of distance to class. The next step is to see if the hypothesis 𝑞 is close

to the class 𝒞 or not. Since we have an explicit description of 𝑞, this step requires no further

samples from 𝑝, i.e. it is purely computational. If we find that 𝑞 is far from the class 𝒞, then

it must be that 𝑝 ̸∈ 𝒞, as otherwise the guarantees from the previous step would imply that

𝑞 is close to 𝒞. Thus, if it is not, we can terminate the algorithm at this point.

𝜒2-testing. At this point, the previous two steps guarantee that our distribution 𝑞 is such

that:

∙ If 𝑝 ∈ 𝒞, then 𝑝 and 𝑞 are close in 𝜒2-distance on a (known) effective support of 𝑝;

3We also require the algorithm to output a description of an effective support for which this property
holds. This requirement can be slightly relaxed, as we show in our results for testing unimodality.
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∙ If 𝑑TV(𝑝, 𝒞) ≥ 𝜀, then 𝑝 and 𝑞 are far in total variation distance.

We can distinguish between these two cases using 𝑂(
√
𝑛/𝜀2) samples with the statistical test

of Theorem 4.

Using the above three-step approach, our tester, as described in the next section, can

directly test monotonicity, log-concavity, and monotone hazard rate. With an extra modifi-

cation, using Kolmogorov’s max inequality, it can also test unimodality.

3.4 A Testing Framework

Our main result in this section is Theorem 13. This will follow from our 𝜒2-tolerant Hellinger

identity tester (Theorem 4).

Theorem 13. Suppose we are given 𝜀 ∈ (0, 1], a class of probability distributions 𝒞, sample

access to a distribution 𝑝 over [𝑛], and an explicit description of a distribution 𝑞 with the

following properties:

Property 1. 𝑑TV(𝑞, 𝒞) ≤ 𝜀
2
.

Property 2. If 𝑝 ∈ 𝒞, then 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2

500
.

Then there exists an algorithm with the following guarantees:

∙ If 𝑝 ∈ 𝒞, the algorithm outputs Accept with probability at least 2/3;

∙ If 𝑑TV(𝑝, 𝒞) ≥ 𝜀, the algorithm outputs Reject with probability at least 2/3.

The time and sample complexity of this algorithm are 𝑂
(︁√

𝑛
𝜀2

)︁
.

Proof. We note that combined with Proposition 1, Theorem 4 implies a test which can

distinguish between the following two cases:

∙ 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2/8;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀/2.
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At this point, the proof follows by using this test on 𝑝 and 𝑞. If 𝑝 ∈ 𝒞, then 𝑑𝜒2(𝑝, 𝑞) ≤ 𝜀2

500
,

and we fall into the first case. On the other hand, if 𝑑TV(𝑝, 𝒞) ≥ 𝜀, then 𝑑TV(𝑞, 𝒞) ≤ 𝜀/2,

and by triangle inequality, 𝑑TV(𝑝, 𝑞) ≥ 𝜀/2. These two conditions fall into the two cases of

the test, and hence we can distinguish them.

3.4.1 Class-Specific Modifications

As stated in Theorem 13, Property 2 requires that 𝑞 is 𝑂(𝜀2)-close in 𝜒2-distance to 𝑝 over its

entire domain. For the class of monotone distributions, we are able to efficiently obtain such

a 𝑞, which immediately implies sample-optimal learning algorithms for this class. However,

for some classes, we cannot learn a 𝑞 with such strong guarantees, and we must consider

modifications to our base testing algorithm.

For example, for log-concave and monotone hazard rate distributions, we can obtain a

distribution 𝑞 and a set 𝑆 with the following guarantees:

∙ If 𝑝 ∈ 𝒞, then 𝑑𝜒2(𝑝𝑆, 𝑞𝑆) ≤ 𝑂(𝜀2) and 𝑝(𝑆) ≥ 1−𝑂(𝜀);

∙ If 𝑑TV(𝑝, 𝒞) ≥ 𝜀, then 𝑑TV(𝑝, 𝑞) ≥ 𝜀/2.

In this scenario, the tester will simply pretend the support of 𝑝 and 𝑞 is 𝑆, ignoring any

samples and support elements in [𝑛] ∖ 𝑆. Analysis of this tester is extremely similar to what

was presented in Chapter 2. In particular, we can still show that the statistic 𝑍 will be

separated in the two cases. When 𝑝 ∈ 𝒞, excluding [𝑛] ∖ 𝑆 will only reduce 𝑍. On the other

hand, when 𝑑TV(𝑝, 𝒞) ≥ 𝜀, since 𝑝(𝑆) ≥ 1−𝑂(𝜀), 𝑝 and 𝑞 must still be far on the remaining

support, and we can show that 𝑍 is still sufficiently large. Therefore, a small modification

allows us to handle this case with the same sample complexity of 𝑂(
√
𝑛/𝜀2).

A further modification can handle even weaker learning guarantees. We could handle the

previous case because the tester “knows what we don’t know” – it can explicitly ignore the

support over which we do not have a 𝜒2-closeness guarantee. A more difficult case is when

there may be a low measure interval hidden in our effective support, over which 𝑝 and 𝑞 have

a large 𝜒2-distance. While we may have insufficient samples to reliably identify this interval,

it may still have a large effect on our statistic. A naive solution would be to consider a tester
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which tries all possible “guesses” for this “bad” interval, but a union bound would incur an

extra logarithmic factor in the sample complexity. We manage to avoid this cost through a

careful analysis involving Kolmogorov’s max inequality, maintaining the 𝑂(
√
𝑛/𝜀2) sample

complexity even in this more difficult case.

Being more precise, we can handle cases where we can obtain a distribution 𝑞 and a set

of intervals 𝑆 = {𝐼1, . . . , 𝐼𝑏} with the following guarantees:

∙ If 𝑝 ∈ 𝒞, then 𝑝(𝑆) ≥ 1−𝑂(𝜀), 𝑝(𝐼𝑗) = Θ(𝑝(𝑆)/𝑏) for all 𝑗 ∈ [𝑏], and there exists a set

𝑇 ⊆ [𝑏] such that |𝑇 | ≥ 𝑏− 𝑡 (for 𝑡 = 𝑂(1)) and 𝑑𝜒2(𝑝𝑅, 𝑞𝑅) ≤ 𝑂(𝜀2), where 𝑅 = ∪𝑇 𝐼𝑗;

∙ If 𝑑TV(𝑝, 𝒞) ≥ 𝜀, then 𝑑TV(𝑝, 𝑞) ≥ 𝜀/2.

This allows us to additionally test against the class of unimodal distributions.

The tester requires that an effective support is divided into several intervals of roughly

equal measure. It computes our statistic over each of these intervals, and we let our statistic

𝑍 be the sum of all but the largest 𝑡 of these values. In the case when 𝑝 ∈ 𝒞, 𝑍 will only

become smaller by performing this operation. We use Kolmogorov’s maximal inequality to

show that 𝑍 remains large when 𝑑TV(𝑝, 𝒞) ≥ 𝜀. More details on this tester are provided in

Section 3.6.

3.5 Testing Monotonicity

As an application of our testing framework, we will demonstrate how to test for monotonicity.

Let 𝑑 ≥ 1, and i = (𝑖1, . . . , 𝑖𝑑), j = (𝑗1, . . . , 𝑗𝑑) ∈ [𝑛]𝑑. We say i < j if 𝑖𝑙 > 𝑗𝑙 for 𝑙 = 1, . . . , 𝑑.

Definition 9. A distribution 𝑝 over [𝑛]𝑑 is monotone (decreasing) if for all i < j, 𝑝i ≤ 𝑝j.

Our main result of this section is as follows:

Theorem 14. For any 𝑑 ≥ 1, there exists an algorithm for testing monotonicity over [𝑛]𝑑

with sample complexity

𝑂

(︃
𝑛𝑑/2

𝜀2
+

(︂
𝑑 log 𝑛

𝜀2

)︂𝑑

· 1

𝜀2

)︃

and time complexity 𝑂
(︁

𝑛𝑑/2

𝜀2
+ poly(log 𝑛, 1/𝜀)𝑑

)︁
.
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In particular, this implies the following optimal algorithms for monotonicity testing for

all 𝑑 ≥ 1:

Corollary 4. Fix any 𝑑 ≥ 1, and suppose 𝜀 >
√
𝑑 log𝑛
𝑛1/4 . Then there exists an algorithm for

testing monotonicity over [𝑛]𝑑 with sample complexity 𝑂
(︀
𝑛𝑑/2/𝜀2

)︀
.

Our analysis starts with a structural lemma about monotone distributions. In [Bir87],

Birgé showed that any monotone distribution 𝑝 over [𝑛] can be obliviously decomposed

into 𝑂(log(𝑛)/𝜀) intervals, such that the flattening 𝑝 (recall Definition 8) of 𝑝 over these

intervals is 𝜀-close to 𝑝 in total variation distance. [AJOS14a] extend this result, giving a

bound between the 𝜒2-distance of 𝑝 and 𝑝. We strengthen these results by extending them

to monotone distributions over [𝑛]𝑑. In particular, we partition the domain [𝑛]𝑑 of 𝑝 into

𝑂((𝑑 log(𝑛)/𝜀2)𝑑) rectangles, and compare it with 𝑝, the flattening over these rectangles.

Lemma 10. Let 𝑑 ≥ 1. There is an oblivious decomposition of [𝑛]𝑑 into 𝑂((𝑑 log(𝑛)/𝜀2)𝑑)

rectangles such that for any monotone distribution 𝑝 over [𝑛]𝑑, its flattening 𝑝 over these

rectangles satisfy 𝑑𝜒2(𝑝, 𝑝) ≤ 𝜀2.

This effectively reduces the support size to logarithmic in 𝑛. At this point, we can

apply the Laplace estimator (along the lines of [KOPS15]) and learn a 𝑞 such that if 𝑝 was

monotone, then 𝑞 will be 𝑂(𝜀2)-close in 𝜒2-distance.

Lemma 11. Let 𝑑 ≥ 1, and 𝑝 be a monotone distribution over [𝑛]𝑑. There is an algorithm

which outputs a distribution 𝑞 such that E [𝑑𝜒2(𝑝, 𝑞)] ≤ 𝜀2

500
. The time and sample complexity

are both 𝑂((𝑑 log(𝑛)/𝜀2)𝑑/𝜀2).

The final step before we apply our 𝜒2-tester is to compute the distance between 𝑞 and

ℳ𝑑
𝑛. This subroutine is similar to the one introduced by [BKR04]. The key idea is to write

a linear program, which searches for any distribution 𝑓 which is close to 𝑞 in total variation

distance. We note that the desired properties of 𝑓 (i.e., monotonicity, normalization, and

𝜀-closeness to 𝑞) are easy to enforce as linear constraints. If we find that such an 𝑓 exists, we

will apply our 𝜒2-test to 𝑞. If not, we output Reject, as this is sufficient evidence to conclude

that 𝑝 ̸∈ ℳ𝑑
𝑛. Note that the linear program operates over the oblivious decomposition used
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in our structural result, so the complexity is polynomial in (𝑑 log(𝑛)/𝜀)𝑑, rather than the

naive 𝑛𝑑.

At this point, we have precisely the guarantees needed to apply Theorem 13, directly

implying Theorem 14. The proof of Lemmas 10 and 11 are in in Sections 3.5.1 and 3.5.2,

respectively.

3.5.1 Structure of Monotone Distributions

Birgé [Bir87] showed that any monotone distribution is estimated to a total variation 𝜀 with a

𝑂(log(𝑛)/𝜀)-piecewise constant distribution. Moreover, the intervals over which the output is

constant is independent of the distribution 𝑝. This result, was strengthened to the Kullback-

Leibler divergence by [AJOS14a] to study the compression of monotone distributions. They

upper bound the KL divergence by 𝜒2-distance and then bound the 𝜒2-distance. We extend

this result to [𝑛]𝑑. We divide [𝑛]𝑑 into 𝑏𝑑 rectangles as follows. Let {𝐼1, . . . , 𝐼𝑏} be a partition

of [𝑛] into consecutive intervals defined as:

|𝐼𝑗| =

⎧⎪⎨⎪⎩1 for 1 ≤ 𝑗 ≤ 𝑏
2
,

⌊2(1 + 𝛾)𝑗−𝑏/2⌋ for 𝑏
2
< 𝑗 ≤ 𝑏.

For j = (𝑗1, . . . , 𝑗𝑑) ∈ [𝑏]𝑑, let 𝐼j , 𝐼𝑗1 × 𝐼𝑗2 × . . .× 𝐼𝑗𝑑 .

The 𝜒2-distance between 𝑝 and 𝑝 can be bounded as

𝑑𝜒2(𝑝, 𝑝) =

⎡⎣∑︁
j∈[𝑏]𝑑

∑︁
i∈𝐼j

𝑝2i
𝑝2i

⎤⎦− 1

≤

⎡⎣∑︁
j∈[𝑏]𝑑

𝑝+j |𝐼j|

⎤⎦− 1
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For j = (𝑗1, . . . , 𝑗𝑑) ∈ [𝑏]𝑑, let j* = (𝑗*1 , . . . , 𝑗
*
𝑑) be

𝑗*𝑖 =

⎧⎪⎨⎪⎩𝑗𝑖 if 𝑗𝑖 ≤ 𝑏/2 + 1

𝑗𝑖 − 1 otherwise.

We bound the expression above as follows.

Let 𝑇 ⊆ [𝑑] be any subset of 𝑑. Suppose the size of 𝑇 is ℓ. Let 𝑇 be the set of all j that

satisfy j𝑖 = 𝑏/2 + 1 for 𝑖 ∈ 𝑇 . In other words, over the dimensions determined by 𝑇 , the

value of the index is equal to 𝑑/2 + 1. The map j → j* restricted to 𝑇 is one-to-one, and

since at most 𝑑− ℓ of the coordinates drop,

|𝐼j| ≤ |𝐼j*| · (1 + 𝛾)𝑑−ℓ.

Since there are ℓ coordinates that do not change, and each of them have 2(1+𝛾) coordinates,

we obtain

∑︁
j∈𝑇

𝑝j ≤
∑︁
j∈𝑇

𝑝−j* · |𝐼j| · (2(1 + 𝛾))ℓ · (1 + 𝛾)𝑑−ℓ

=
∑︁
j∈𝑇

𝑝−j* · |𝐼j*| · 2
ℓ(1 + 𝛾)𝑑.

Since the mapping is one-to-one, the probability of observing as element in 𝑇 is the

probability of observing 𝑏/2 + 1 in ℓ coordinates, which is at most (2/(𝑏 + 2))ℓ under any

monotone distribution. Therefore,

∑︁
j∈𝑇

𝑝j ≤
(︂

2

𝑏+ 2

)︂ℓ

· 2ℓ(1 + 𝛾)𝑑.
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For any ℓ there are
(︀
𝑑
ℓ

)︀
choices for 𝑇 . Therefore,

𝑑𝜒2(𝑝, 𝑝) ≤
𝑑∑︁

ℓ=0

(︂
𝑑

ℓ

)︂(︂
4

𝑏+ 2

)︂ℓ

(1 + 𝛾)𝑑 − 1

= (1 + 𝛾)𝑑
(︂

1 +
4

𝑏+ 2

)︂𝑑

− 1

=

(︂
1 + 𝛾 +

4

𝑏+ 2
+

4𝛾

𝑏+ 2

)︂𝑑

− 1

Recall that 𝛾 = 2 log(𝑛)/𝑏 > 1/𝑏, implies that the expression above is at most (1+2𝛾)𝑑−1.

This implies Lemma 10.

3.5.2 Learning Monotone Distributions

Our algorithm requires a distribution 𝑞 satisfying the properties discussed earlier. We learn

a monotone distribution from samples as follows.

Before proving this result, we prove a general result for 𝜒2-learning of arbitrary discrete

distributions, adapting the result from [KOPS15]. For a distribution 𝑝, and a partition of the

domain into 𝑏 intervals 𝐼1, . . . , 𝐼𝑏, let 𝑝𝑖 = 𝑝(𝐼𝑖)/|𝐼𝑖| be the flattening of 𝑝 over these intervals.

We saw that for monotone distributions there exists a partition of the domain such that 𝑝

is close to the underlying distribution in 𝜒2-distance.

Suppose we are given 𝑚 samples from a distribution 𝑝 and a partition 𝐼1, . . . , 𝐼𝑏. Let 𝑚𝑗

be the number of samples that fall in 𝐼𝑗. For 𝑖 ∈ 𝐼𝑗, let

𝑞𝑖 ,
1

|𝐼𝑗|
𝑚𝑗 + 1

𝑚+ 𝑏
.
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Let 𝑆𝑗 =
∑︀

𝑖∈𝐼𝑗 𝑝
2
𝑖 . The expected 𝜒2-distance between 𝑝 and 𝑞 can be bounded as follows.

E [𝑑𝜒2(𝑝, 𝑞)] =

⎡⎣ 𝑏∑︁
𝑗=1

∑︁
𝑖∈𝐼𝑗

𝑚∑︁
ℓ=0

(︂
𝑚

ℓ

)︂
(𝑝(𝐼𝑗))

ℓ(1− 𝑝(𝐼𝑗))𝑚−ℓ 𝑝2𝑖
(ℓ+ 1)/(|𝐼𝑗|(𝑚+ 𝑏))

⎤⎦− 1

=

[︃
𝑚+ 𝑏

𝑚+ 1

𝑏∑︁
𝑗=1

𝑆𝑗

𝑝(𝐼𝑗)/|𝐼𝑗|

(︃
𝑚∑︁
ℓ=0

(︂
𝑚+ 1

ℓ+ 1

)︂
(𝑝(𝐼𝑗))

ℓ+1(1− 𝑝(𝐼𝑗))𝑚+1−ℓ+1

)︃]︃
− 1

=

[︃
𝑚+ 𝑏

𝑚+ 1

𝑏∑︁
𝑗=1

𝑆𝑗

𝑝(𝐼𝑗)/|𝐼𝑗|
(︀
1− (1− 𝑝(𝐼𝑗)𝑚+1

)︀]︃
− 1

≤

[︃
𝑚+ 𝑏

𝑚+ 1

𝑏∑︁
𝑗=1

𝑆𝑗

𝑝(𝐼𝑗)/|𝐼𝑗|

]︃
− 1

=

[︂
𝑚+ 𝑏

𝑚+ 1
(𝑑𝜒2(𝑝, 𝑝) + 1)

]︂
− 1

=
𝑚+ 𝑏

𝑚+ 1
· 𝑑𝜒2(𝑝, 𝑝) +

𝑏

𝑚+ 1
. (3.1)

Suppose 𝛾 = 𝑂(log(𝑛)/𝑏), and 𝑏 = 𝑂(𝑑 · log(𝑛)/𝜀2). Then, by Lemma 10,

𝑑𝜒2(𝑝, 𝑝) ≤ 𝜀2. (3.2)

Combining this with (3.1) gives Lemma 11.

3.6 Testing Unimodality

One striking feature of Birgé’s result is that the decomposition of the domain is oblivious

to the samples, and therefore to the unknown distribution. However, such an oblivious

decomposition will not work for the unimodal distribution, since the mode is unknown.

Suppose we know where the mode of the unknown distribution might be, then the problem

can be decomposed into monotone functions over two intervals. Therefore, in theory, one

can modify the monotonicity testing algorithm by iterating over all the possible 𝑛 modes.

Indeed, by applying a union bound, it then follows that

Theorem 15 (Follows from Theorem 14). For 𝜀 > 1/𝑛1/4, there exists an algorithm for

testing unimodality over [𝑛] with sample complexity 𝑂
(︁√

𝑛
𝜀2

log 𝑛
)︁
.
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However, this is unsatisfactory, since our lower bound (and as we will demonstrate, the

true complexity of this problem) is
√
𝑛/𝜀2. We overcome the logarithmic barrier introduced

by the union bound, by employing a non-oblivious decomposition of the domain, and using

Kolmogorov’s max-inequality.

Our main result for testing unimodality is the following theorem.

Theorem 16. Suppose 𝜀 > 𝑛−1/4. Then there exists an algorithm for testing unimodality

over [𝑛] with sample complexity 𝑂(
√
𝑛/𝜀2).

Proof. Recall that to circumvent Birgé’s decomposition, we want to decompose the interval

into disjoint intervals such that the probability of each interval is about 𝑂(1/𝑏), where 𝑏

is a parameter, specified later. In particular we consider a decomposition of [𝑛] with the

following properties:

1. For each element 𝑖 with probability at least 1/𝑏, there is an 𝐼ℓ = {𝑖}.

2. There are at most two intervals with 𝑝(𝐼) ≤ 1/2𝑏.

3. Every other interval 𝐼 satisfies 𝑝(𝐼) ∈
[︀

1
2𝑏
, 2
𝑏

]︀
.

Let 𝐼1, . . . , 𝐼𝐿 denote the partition of [𝑛] corresponding to these intervals. Note that

𝐿 = 𝑂(𝑏).

Claim 1. There is an algorithm that takes 𝑂(𝑏 log 𝑏) samples and outputs 𝐼1, . . . , 𝐼𝐿 satisfying

the properties above.

The first step in our algorithm is to estimate the total probability within each of these

intervals. In particular,

Lemma 12. There is an algorithm that takes 𝑚′ = 𝑂(𝑏 log 𝑏/𝜀2) samples from a distribution

𝑝, and with probability at least 9/10 outputs a distribution 𝑞 that is constant on each 𝐼𝐿.

Moreover, for any 𝑗 such that 𝑝(𝐼𝑗) > 1/2𝑏, 𝑞(𝐼𝑗) ∈ (1± 𝜀)𝑝(𝐼𝑗).

Proof. Consider any interval 𝐼𝑗 with 𝑝(𝐼𝑗) ≥ 1/2𝑏. The number of samples 𝑁𝐼𝑗 that fall

in that interval is distributed as 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚′, 𝑝(𝐼𝑗)). Then by Chernoff bounds for 𝑚′ >
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12𝑏 log 𝑏/𝜀2,

Pr
[︀
|𝑁𝐼𝑗 −𝑚′𝑝(𝐼𝑗)| > 𝜀𝑚′𝑝(𝐼𝑗)

]︀
≤2 exp

(︀
𝜀2𝑚′𝑝(𝐼𝑗)/2

)︀
(3.3)

≤ 1

𝑏2
, (3.4)

where the last inequality uses the fact that 𝑝(𝐼𝑗) ≥ 1/2𝑏.

The next step is estimate the distance of 𝑞 from 𝒰𝑛. This is possible by a simple dynamic

program, similar to the one used for monotonicity. If the estimated distance is more than

𝜀/2, we output Reject.

Our next step is to remove certain intervals. This will be to ensure that when the

underlying distribution is unimodal, we are able to estimate the distribution multiplicatively

over the remaining intervals. In particular, we do the following preprocessing step:

∙ 𝐴 = ∅.

∙ For interval 𝐼𝑗,

– If

𝑞(𝐼𝑗) /∈ ((1− 𝜀) · 𝑞(𝐼𝑗+1), (1 + 𝜀) · 𝑞(𝐼𝑗+1)) OR (3.5)

𝑞(𝐼𝑗) /∈ ((1− 𝜀) · 𝑞(𝐼𝑗−1), (1 + 𝜀) · 𝑞(𝐼𝑗−1)) , (3.6)

add 𝐼𝑗 to 𝐴.

∙ Add the (at most 2) intervals with mass at most 1/2𝑏 to 𝐴.

∙ Add all intervals 𝑗 with 𝑞(𝐼𝑗)/|𝐼𝑗| < 𝜀/50𝑛 to 𝐴

If the distribution is unimodal, we can prove the following about the set of intervals 𝐴𝑐.

Lemma 13. If 𝑝 is unimodal then,

∙ 𝑝(𝐼𝐴𝑐) ≥ 1− 𝜀/25− 1/𝑏−𝑂 (log 𝑛/(𝜀𝑏)) .
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∙ Except at most one interval in 𝐴𝑐 every other interval 𝐼𝑗 satisfies,

𝑝+𝑗
𝑝−𝑗
≤ (1 + 𝜀).

If this holds, then the 𝜒2-distance between 𝑝 and 𝑞 constrained to 𝐴𝑐, is at most 𝜀2. This

lemma follows from the following result.

Lemma 14. Let 𝐶 > 2. For a unimodal distribution over [𝑛], there are at most 4 log(50𝑛/𝜀)
𝐶𝜀

intervals 𝐼𝑗 that satisfy 𝑝+𝑗

𝑝−𝑗
< (1 + 𝜀/𝐶).

Proof. To the contrary, if there are more than 4 log(50𝑛/𝜀)
𝐶𝜀

intervals, then at least half of them

are on one side of the mode, however this implies that the ratio of the largest probability

and smallest probability is at least (1 + 𝜀/𝐶)𝑗, and if 𝑗 > 2 log(50𝑛/𝜀)
𝐶𝜀

, is at least 50𝑛/𝜀,

contradicting that we have removed all such elements.

We have one additional pre-processing step here. We compute 𝑞(𝐴𝑐) and if it is smaller

than 1− 𝜀/25, we output Reject.

Suppose there are 𝐿′ intervals in 𝐴𝑐. Then, except at most one interval in 𝐿′ we know

that the 𝜒2-distance between 𝑝 and 𝑞 is at most 𝜀2 when 𝑝 is unimodal, and the TV distance

between 𝑝 and 𝑞 is at least 𝜀/2 over 𝐴𝑐. We propose the following simple modification to

take into account, the one interval that might introduce a high 𝜒2-distance in spite of having

a small total variation. If we knew the interval, we can simply remove it and proceed. Since

we do not know where the interval lies, we do the following.

1. Let 𝑍𝑗 be the 𝜒2-statistic over the 𝑖th interval in 𝐴𝑐, computed with 𝑂(
√
𝑛/𝜀2) samples.

2. Let 𝑍𝑙 be the largest among all 𝑍𝑗’s.

3. If
∑︀

𝑗,𝑗 ̸=𝑙 𝑍𝑗 > 𝑚𝜀2/10, output Reject.

4. Output Accept.

The objective of removing the largest 𝜒2-statistic is our substitute for not knowing the

largest interval. We now prove the correctness of this algorithm.
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Case 1 𝑝 ∈ 𝒰ℳ𝑛: We only concentrate on the final step. The 𝜒2-statistic over all but one

interval are at most 𝑐 · 𝑚𝜀2, and the variance is bounded as before. Since we remove the

largest statistic, the expected value of the new statistic is strictly dominated by that of these

intervals. Therefore, the algorithm outputs Accept with at least the same probability as if

we removed the spurious interval.

Case 2 𝑝 /∈ 𝒰ℳ𝑛: This is the hard case to prove for unimodal distributions. We know

that the 𝜒2-statistic is large in this case, and we therefore have to prove that it remains large

even after removing the largest test statistic 𝑍𝑙.

We invoke Kolmogorov’s Maximal Inequality to this end.

Lemma 15 (Kolmogorov’s Maximal Inequality). For independent zero mean random vari-

ables 𝑋1, . . . , 𝑋𝐿 with finite variance, let 𝑆ℓ = 𝑋1 + . . . 𝑋ℓ. Then for any 𝜆 > 0,

Pr

[︂
max
1≤ℓ≤𝐿

|𝑆ℓ| ≥ 𝜆

]︂
≤ 1

𝜆2
·Var (𝑆𝐿) . (3.7)

As a corollary, it follows that Pr[ maxℓ |𝑋ℓ| > 2𝜆 ] ≤ 1
𝜆2 ·Var (𝑆𝐿).

In the case we are interested in, we let𝑋𝑖 = 𝑍ℓ−E [𝑍ℓ]. Then, similar to the computations

before, and the fact that each interval has a small mass, it follows that that the variance of

the summation is at most E [𝑍ℓ]
2 /100. Taking 𝜆 = E [𝑆𝐿 −𝑚𝜀2/3]

2
/100, it follows that the

statistic does not fall below to
√
𝑛.

3.7 Testing Independence

Let 𝒳 , [𝑛1]× . . .× [𝑛𝑑], and let Π𝑑 be the class of all product distributions over 𝒳 . We first

bound the 𝜒2-distance between product distributions in terms of the individual coordinates.

Lemma 16. Let 𝑝 = 𝑝1 × 𝑝2 . . . × 𝑝𝑑, and 𝑞 = 𝑞1 × 𝑞2 . . . × 𝑞𝑑 be two distributions in Π𝑑.

Then

𝑑𝜒2 (𝑝, 𝑞) =
𝑑∏︁

ℓ=1

(1 + 𝑑𝜒2

(︀
𝑝ℓ, 𝑞ℓ

)︀
)− 1.
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Proof. By the definition of 𝜒2-distance

𝑑𝜒2 (𝑝, 𝑞) =
∑︁
i∈𝒳

(︀
𝑝ℓ𝑖
)︀2
𝑞ℓ𝑖
− 1 (3.8)

=
𝑑∏︁

ℓ=1

⎡⎣∑︁
𝑖∈[𝑛ℓ]

(︀
𝑝ℓ𝑖
)︀2
𝑞ℓ𝑖

⎤⎦− 1 (3.9)

=
𝑑∏︁

ℓ=1

(︀
1 + 𝑑𝜒2

(︀
𝑝ℓ, 𝑞ℓ

)︀)︀
− 1. (3.10)

Along the lines of learning monotone distributions in 𝜒2-distance we obtain the following

result.

Lemma 17. There is an algorithm that takes

𝑂

(︃
𝑑∑︁

ℓ=1

𝑛ℓ

𝜀2

)︃

samples from a distribution 𝑝 in Π𝑑 and outputs a distribution 𝑞 ∈ Π𝑑 such that with proba-

bility at least 5/6,

𝑑𝜒2 (𝑝, 𝑞) ≤ 𝑂(𝜀2).

This fits precisely in our framework of tolerant 𝜒2-ℓ1 testing. In particular, applying

Theorem 13, we obtain the following result.

Theorem 17. For any 𝑑 ≥ 1, there exists an algorithm for testing independence of random

variables over [𝑛1]× . . . [𝑛𝑑] with sample and time complexity

𝑂

(︃
(
∏︀𝑑

ℓ=1 𝑛ℓ)
1/2 +

∑︀𝑑
ℓ=1 𝑛ℓ

𝜀2

)︃
.

The following corollaries are immediate.

Corollary 5. Suppose
∏︀𝑑

ℓ=1 𝑛
1/2
ℓ ≥

∑︀𝑑
ℓ=1 𝑛ℓ. Then there exists an algorithm for testing

independence over [𝑛1]× · · · × [𝑛𝑑] with sample complexity Θ((
∏︀𝑑

ℓ=1 𝑛ℓ)
1/2/𝜀2).
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In particular,

Corollary 6. There exists an algorithm for testing if two distributions over [𝑛] are indepen-

dent with sample complexity Θ(𝑛/𝜀2).

We conclude by proving Lemma 17.

Proof of Lemma 17: In this section we prove Lemma 17. The proof is analogous to the proof

for learning monotone distributions, and hinges on the following result of [KOPS15]. Given

𝑚 samples from a distribution 𝑞 over 𝑛 elements, the add-1 estimator (Laplace estimator) 𝑞

satisfies:

E [𝑑𝜒2(𝑝, 𝑞)] ≤ 𝑛

𝑚+ 1
.

Now, suppose 𝑝 is a product distribution over 𝒳 = [𝑛1]× · · · × [𝑛𝑑]. We simply perform

the add-1 estimation over each coordinate independently, giving a distribution 𝑞1× · · · × 𝑞𝑑.

Since 𝑝 is a product distribution the estimates in each coordinate is independent. Therefore,

a simple application of the previous result and independence of the coordinates implies

E [𝑑𝜒2(𝑝, 𝑞)] =
𝑑∏︁

𝑙=1

(︀
1 + E

[︀
𝑑𝜒2(𝑝𝑙, 𝑞𝑙)

]︀)︀
− 1

≤
𝑑∏︁

𝑙=1

(︂
1 +

𝑛𝑙

𝑚+ 1

)︂
− 1

≤ exp

(︂∑︀
𝑙 𝑛𝑙

𝑚+ 1

)︂
− 1, (3.11)

where (3.11) follows from 𝑒𝑥 ≥ 1 + 𝑥. Using 𝑒𝑥 ≤ 1 + 2𝑥 for 0 ≤ 𝑥 ≤ 1, we have

E [𝑑𝜒2(𝑝, 𝑞)] ≤ 2

∑︀
𝑙 𝑛𝑙

𝑚+ 1
, (3.12)

when 𝑚 ≥
∑︀

𝑙 𝑛𝑙. Therefore, following an application of Markov’s inequality, when 𝑚 =

Ω((
∑︀

𝑙 𝑛𝑙)/𝜀
2), Lemma 17 is proved.
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3.8 Testing Log-Concavity

In this section we describe our results for testing log-concavity of distributions. Our main

result is as follows:

Theorem 18. There exists an algorithm for testing log-concavity over [𝑛] with sample com-

plexity

𝑂

(︂√
𝑛

𝜀2
+

1

𝜀5

)︂
and time complexity poly(𝑛, 1/𝜀).

In particular, this implies the following optimal tester for this class:

Corollary 7. Suppose 𝜀 > 1/𝑛1/5. Then there exists an algorithm for testing log-concavity

over [𝑛] with sample complexity 𝑂 (
√
𝑛/𝜀2).

Our algorithm will fit into the structure of our general framework. We first perform a

very particular type of learning algorithm, whose guarantees are summarized in the following

lemma:

Lemma 18. Given 𝜀 > 0 and sample access to a distribution 𝑝, there exists an algorithm

with the following guarantees:

∙ If 𝑝 ∈ ℒ𝒞𝒟𝑛, the algorithm outputs a distribution 𝑞 ∈ ℒ𝒞𝒟𝑛 and an 𝑂(𝜀)-effective

support 𝑆 of 𝑝 such that 𝑑𝜒2(𝑝𝑆, 𝑞𝑆) ≤ 𝜀2

500
with probability at least 5/6;

∙ If 𝑑TV(𝑝,ℒ𝒞𝒟𝑛) ≥ 𝜀, the algorithm either outputs a distribution 𝑞 ∈ ℒ𝒞𝒟𝑛 or Reject.

The sample complexity is 𝑂(1/𝜀5) and the time complexity is poly(𝑛, 1/𝜀).

We note that as a corollary, one immediately obtains a 𝑂(1/𝜀5) proper learning algorithm

for log-concave distributions. The result is immediate from the first item of Lemma 18 and

Proposition 1. We can actually do a bit better – in the proof of Lemma 18, we partition

[𝑛] into intervals of probability mass Θ(𝜀3/2). If one instead partitions into intervals of

probability mass Θ(𝜀/ log(1/𝜀)) and works directly with total variation distance instead of

𝜒2-distance, one can show that 𝑂̃(1/𝜀4) samples suffice.
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Corollary 8. Given 𝜀 > 0 and sample access to a distribution 𝑝 ∈ ℒ𝒞𝒟𝑛, there exists

an algorithm which outputs a distribution 𝑞 ∈ ℒ𝒞𝒟𝑛 such that 𝑑TV(𝑝, 𝑞) ≤ 𝜀. The sample

complexity is 𝑂̃(1/𝜀4) and the time complexity is poly(𝑛, 1/𝜀).

Then, given the guarantees of Lemma 18, Theorem 18 follows from Theorem 134.

Proof of Lemma 18: We first draw samples from 𝑝 and obtain a 𝑂(1/𝜀3/2)-piecewise constant

distribution 𝑓 by appropriately flattening the empirical distribution. The proof is now in

two parts. In the first part, we show that if 𝑝 ∈ ℒ𝒞𝒟𝑛 then 𝑓 will be close to 𝑝 in 𝜒2-distance

over its effective support. The second part involves proper learning of 𝑝. We will use a linear

program on 𝑓 to find a distribution 𝑞 ∈ ℒ𝒞𝒟𝑛. This distribution is such that if 𝑝 ∈ ℒ𝒞𝒟𝑛,

then 𝑑𝜒2(𝑝, 𝑞) is small, and otherwise the algorithm will either output some 𝑞 ∈ ℒ𝒞𝒟𝑛 (with

no other relevant guarantees) or Reject.

We first construct 𝑓 . Let 𝑝 be the empirical distribution obtained by sampling 𝑂(1/𝜀5)

samples from 𝑝. By Lemma 1, with probability at least 5/6, 𝑑K(𝑝, 𝑝) ≤ 𝜀5/2/10. In particular,

note that |𝑝𝑖 − 𝑝𝑖| ≤ 𝜀5/2/10. Condition on this event in the remainder of the proof.

Let 𝑎 be the minimum 𝑖 such that 𝑝𝑖 ≥ 𝜀3/2/5, and let 𝑏 be the maximum 𝑖 satisfying the

same condition. Let 𝑀 = {𝑎, . . . , 𝑏} or ∅ if 𝑎 and 𝑏 are undefined. By the guarantee provided

by the DKW inequality, 𝑝𝑖 ≥ 𝜀3/2/10 for all 𝑖 ∈𝑀 . Furthermore, 𝑝𝑖 ∈ 𝑝𝑖±𝜀3/2/10 ∈ (1±𝜀)·𝑝𝑖.

For each 𝑖 ∈𝑀 , let 𝑓𝑖 = 𝑝𝑖. We note that |𝑀 | = 𝑂(1/𝜀), so this contributes 𝑂(1/𝜀) constant

pieces to 𝑓 .

We now divide the rest of the domain into 𝑡 intervals, all but constantly many of measure

Θ(𝜀3/2) (under 𝑝). This is done via the following iterative procedure. As a base case,

set 𝑟0 = 0. Define 𝐼𝑗 as [𝑙𝑗, 𝑟𝑗], where 𝑙𝑗 = 𝑟𝑗−1 + 1 and 𝑟𝑗 is the largest 𝑗 ∈ [𝑛] such

that 𝑝(𝐼𝑗) ≤ 9𝜀3/2/10. The exception is if 𝐼𝑗 would intersect 𝑀 – in this case, we “skip”

𝑀 : set 𝑟𝑗 = 𝑎 − 1 and 𝑙𝑗+1 = 𝑏 + 1. If such a 𝑗 exists, denote it by 𝑗*. We note that

𝑝(𝐼𝑗) ≤ 𝑝(𝐼𝑗) + 𝜀5/2/10 ≤ 𝜀3/2. Furthermore, for all 𝑗 except 𝑗* and 𝑡, 𝑟𝑗 + 1 ̸∈ 𝑀 , so

𝑝(𝐼𝑗) ≥ 9𝜀3/2/10 − 𝜀3/2/5 − 𝜀5/2/10 ≥ 3𝜀3/2/5. Observe that this lower bound implies that

𝑡 ≤ 2
𝜀3/2

for 𝜀 sufficiently small.

4To be more precise, we require the modification of Theorem 13 which is described in Section 3.4.1, in
order to handle the case where the 𝜒2-distance guarantees only hold for a known effective support.
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Part 1. For this part of the algorithm, we only care about the guarantees when 𝑝 ∈ ℒ𝒞𝒟𝑛,

so we assume this is the case.

For the domain [𝑛]∖𝑀 , we let 𝑓 be the flattening of 𝑝 over the intervals 𝐼1, . . . 𝐼𝑡. To ana-

lyze 𝑓 , we need a structural property of log-concave distributions due to Chan, Diakonikolas,

Servedio, and Sun [CDSS14]. This essentially states that a log-concave distribution cannot

have a sudden increase in probability.

Lemma 19 (Lemma 4.1 in [CDSS14]). Let 𝑝 be a distribution over [𝑛] that is non-decreasing

and log-concave on [1, 𝑥] ⊆ [𝑛]. Let 𝐼 = [𝑥, 𝑦] be an interval of mass 𝑃 (𝐼) = 𝜏 , and suppose

that the interval 𝐽 = [1, 𝑥− 1] has mass 𝑝(𝐽) = 𝜎 > 0. Then

𝑝(𝑦)/𝑝(𝑥) ≤ 1 + 𝜏/𝜎.

Recall that any log-concave distribution is unimodal, and suppose the mode of 𝑝 is at 𝑖0.

We will first focus on the intervals 𝐼1, . . . , 𝐼𝑡𝐿 which lie entirely to the left of 𝑖0 and 𝑀 . We

will refer to 𝐼𝑗 as 𝐿𝑗 for all 𝑗 ≤ 𝑡𝐿. Note that 𝑝 is non-decreasing over these intervals.

The next steps to the analysis are as follows. First we show that the flattening of 𝑝 over

𝐿𝑗 is a multiplicative (1 +𝑂(1/𝑗)) estimate for each 𝑝𝑖 ∈ 𝐿𝑗. Then, we show that flattening

the empirical distribution 𝑝 over 𝐿𝑗 is a multiplicative (1 +𝑂(1/𝑗)) estimate of 𝑝(𝑖) for each

𝑖 ∈ 𝐿𝑗. Finally, we exclude a small number of intervals (those corresponding to 𝑂(𝜀) mass

at the left and right side of the domain, as well as 𝑗*) in order to get the 𝜒2-approximation

we desire on an effective support.

∙ First, recall that 𝑝(𝐿𝑗) ≤ 𝜀3/2 for all 𝑗. Also, letting 𝐽𝑗 = [1, 𝑟𝑗−1], we have that

𝑝(𝐽𝑗) ≥ (𝑗 − 1) · 3𝜀3/2/5. Thus by Lemma 19, 𝑝(𝑟𝑗) ≤ 𝑝(𝑙𝑗)(1 + 2/(𝑗 − 1)). Since the

distribution is non-decreasing in 𝐿𝑗, the flattening 𝑝 of 𝑝 is such that 𝑝(𝑖) ∈ 𝑝(𝑖)(1± 2
𝑗−1

)

for all 𝑖 ∈ 𝐿𝑗.

∙ We have that 𝑝(𝐿𝑗) ≥ 3𝜀3/2/5, and 𝑝(𝐿𝑗) ∈ 𝑝(𝐿𝑗)± 𝜀5/2/10, so 𝑝(𝐿𝑗) ∈ 𝑝(𝐿𝑗) · (1± 𝜀
6
),

and hence 𝑝(𝑖) ∈ 𝑝(𝑖) · (1 ± 𝜀
6
) for all 𝑖 ∈ 𝐿𝑗. Combining with the previous point, we
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have that

𝑝(𝑖) ∈ 𝑝(𝑖) ·
(︂

1±
(︂

2𝜀

3(𝑗 − 1)
+
𝜀

6
+

2

𝑗 − 1

)︂)︂
∈ 𝑝(𝑖) ·

(︂
1± 11

3(𝑗 − 1)

)︂
.

A symmetric statement holds for the intervals that lie entirely to the right of 𝑖0 and 𝑀 .

We will refer to 𝐼𝑗 as 𝑅𝑡−𝑗 for all 𝑗 > 𝑡𝐿.

To summarize, we have the following guarantees for the distribution 𝑓 :

∙ For all 𝑖 ∈𝑀 , 𝑓(𝑖) ∈ 𝑝(𝑖) · (1± 𝜀);

∙ For all 𝑖 ∈ 𝐿𝑗 (except 𝐿1 and 𝐿𝑗*), 𝑓(𝑖) ∈ 𝑝(𝑖) ·
(︁

1± 22
3𝑗

)︁
;

∙ For all 𝑖 ∈ 𝑅𝑗 (except 𝑅1), 𝑓(𝑖) ∈ 𝑝(𝑖) ·
(︁

1± 22
3𝑗

)︁
;

Note that, in particular, we have multiplicative estimates for all intervals, except those in

𝐿1, 𝐿𝑗* , 𝑅1 and the interval containing 𝑖0. Let 𝑆 be the set of all intervals except 𝐿𝑗* , 𝐿𝑗

and 𝑅𝑗 for 𝑗 ≤ 1/
√
𝜀, and the one containing 𝑖0 Then, since each interval has probability

mass at most 𝑂(𝜀3/2) and we are excluding 𝑂(1/
√
𝜀) intervals, 𝑝(𝑆) > 1−𝑂(𝜀).

We now compute the 𝜒2-distance induced by this approximation for elements in 𝑆. For

an element 𝑖 ∈ 𝐿𝑗 ∩ 𝑆, we have

(𝑓(𝑖)− 𝑝(𝑖))2

𝑝(𝑖)
≤ 60𝑝(𝑖)

𝑗2
.

Summing over all 𝑖 ∈ 𝐿𝑗 ∩ 𝑆 gives
60𝜀3/2

𝑗2

since the probability mass of 𝐿𝑗 is at most 𝜀3/2. Summing this over all 𝐿𝑗 for 𝑗 ≥ 1/
√
𝜀 and

𝑗 ̸= 𝑗* gives

60𝜀3/2
2/𝜀3/2∑︁
𝑗=1/

√
𝜀

1

𝑗2
≤ 60𝜀3/2

∫︁ ∞

1/
√
𝜀

1

𝑥2
𝑑𝑥

= 60𝜀3/2(
√
𝜀)

= 𝑂(𝜀2)
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as desired.

Part 2. To obtain a distribution 𝑞 ∈ ℒ𝒞𝒟𝑛, we write a linear program. We will work in

the log domain, so our variables will be 𝑄𝑖, representing log 𝑞(𝑖) for 𝑖 ∈ [𝑛]. We will use

𝐹𝑖 = log 𝑓(𝑖) as parameters in our LP. There will be no objective function, we simply search

for a feasible point. Our constraints will be

𝑄𝑖−1 +𝑄𝑖+1 ≤ 2𝑄𝑖 ∀𝑖 ∈ [𝑛− 1]

𝑄𝑖 ≤ 0 ∀𝑖 ∈ [𝑛]

log(1 + 𝜀) ≤ |𝑄𝑖 − 𝐹𝑖| ≤ log(1 + 𝜀) for 𝑖 ∈𝑀

log

(︂
1− 22

3𝑗

)︂
≤ |𝑄𝑖 − 𝐹𝑖| ≤ log

(︂
1 +

22

3𝑗

)︂
for 𝑖 ∈ 𝐿𝑗, 𝑗 ≥ 1/

√
𝜀 and 𝑗 ̸= 𝑗*

log

(︂
1− 22

3𝑗

)︂
≤ |𝑄𝑖 − 𝐹𝑖| ≤ log

(︂
1 +

22

3𝑗

)︂
for 𝑖 ∈ 𝑅𝑗, 𝑗 ≥ 1/

√
𝜀

If we run the linear program, then after a rescaling and summing the error over all the

intervals in the LP gives us that the distance between 𝑝 and 𝑞 to be 𝑂(𝜀2) 𝜒2-distance in a

set 𝑆 which has measure 𝑝(𝑆) ≥ 1− 4𝜀, as desired.

If the linear program finds a feasible point, then we obtain a 𝑞 ∈ ℒ𝒞𝒟𝑛. Furthermore, if

𝑝 ∈ ℒ𝒞𝒟𝑛, this also tells us that (after a rescaling of 𝜀), summing the error over all intervals

implies that 𝑑𝜒2(𝑝𝑆, 𝑞𝑆) ≤ 𝜀2

500
for a known set 𝑆 with 𝑝(𝑆) ≥ 1−𝑂(𝜀), as desired. If 𝑀 ̸= ∅,

this algorithm works as described. The issue is if 𝑀 = ∅, then we don’t know when the 𝐿

intervals end and the 𝑅 intervals begin. In this case, we run 𝑂(1/𝜀) LPs, using each interval

as the one containing 𝑖0, and thus acting as the barrier between the 𝐿 intervals (to its left)

and the 𝑅 intervals (to its right). If 𝑝 truly was log-concave, then one of these guesses will

be correct and the corresponding LP will find a feasible point.

3.9 Testing Monotone Hazard Rate

In this section, we obtain our main result for testing for monotone hazard rate:

97



Theorem 19. There exists an algorithm for testing monotone hazard rate over [𝑛] with

sample complexity

𝑂

(︂√
𝑛

𝜀2
+

log(𝑛/𝜀)

𝜀4

)︂
and time complexity poly(𝑛, 1/𝜀).

This implies the following optimal tester for the class:

Corollary 9. Suppose 𝜀 >
√︀

log(𝑛/𝜀)/𝑛1/4. Then there exists an algorithm for testing

monotone hazard rate over [𝑛] with sample complexity 𝑂 (
√
𝑛/𝜀2).

We obey the same framework as before, first applying a 𝜒2-learner with the following

guarantees:

Lemma 20. Given 𝜀 > 0 and sample access to a distribution 𝑝, there exists an algorithm

with the following guarantees:

∙ If 𝑝 ∈ℳℋℛ𝑛, the algorithm outputs a distribution 𝑞 ∈ℳℋℛ𝑛 and an 𝑂(𝜀)-effective

support 𝑆 of 𝑝 such that 𝑑𝜒2(𝑝𝑆, 𝑞𝑆) ≤ 𝜀2

500
with probability at least 5/6;

∙ If 𝑑TV(𝑝,ℳℋℛ𝑛) ≥ 𝜀, the algorithm either outputs a distribution 𝑞 ∈ ℳℋℛ𝑛 and a

set 𝑆 ⊆ [𝑛] or Reject.

The sample complexity is 𝑂(log(𝑛/𝜀)/𝜀4) and the time complexity is poly(𝑛, 1/𝜀).

As with log-concave distributions, this implies the following proper learning result:

Corollary 10. Given 𝜀 > 0 and sample access to a distribution 𝑝 ∈ ℳℋℛ𝑛, there exists

an algorithm which outputs a distribution 𝑞 ∈ ℳℋℛ𝑛 such that 𝑑TV(𝑝, 𝑞) ≤ 𝜀. The sample

complexity is 𝑂(log(𝑛/𝜀)/𝜀4) and the time complexity is poly(𝑛, 1/𝜀).

Again, combining the learning guarantees of Lemma 20 with the appropriate variant of

Theorem 13 (cf. Section 3.4.1), we obtain Theorem 19.

Proof of Lemma 20: As with log-concave distributions, our method for MHR distributions

can be split into two parts. In the first step, if 𝑝 ∈ ℳℋℛ𝑛, we obtain a distribution 𝑞

which is 𝑂(𝜀2)-close to 𝑝 in 𝜒2-distance on a set 𝒜 of intervals such that 𝑝(𝒜) ≥ 1−𝑂(𝜀). 𝑞
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will achieve this by being a multiplicative (1 +𝑂(𝜀)) approximation for each element within

these intervals. This step is very similar to the decomposition used for unimodal distributions

(described in Section 3.6), so we sketch the argument and highlight the key differences.

The second step will be to find a feasible point in a linear program. If 𝑝 ∈ℳℋℛ𝑛, there

should always be a feasible point, indicating that 𝑞 is close to a distribution inℳℋℛ𝑛 (lever-

aging the particular guarantees for our algorithm for generating 𝑞). If 𝑑TV(𝑝,ℳℋℛ𝑛) ≥ 𝜀,

there may or may not be a feasible point, but when there is, it should imply the existence

of a distribution 𝑝* ∈ℳℋℛ𝑛 such that 𝑑TV(𝑞, 𝑝*) ≤ 𝜀/2.

The analysis will rely on the following lemma from [CDSS14], which roughly states that

an MHR distribution is “almost” non-decreasing.

Lemma 21 (Lemma 5.1 in [CDSS14]). Let 𝑝 be an MHR distribution over [𝑛]. Let 𝐼 =

[𝑎, 𝑏] ⊂ [𝑛] be an interval, and 𝑅 = [𝑏 + 1, 𝑛] be the elements to the right of 𝐼. Let 𝜂 =

𝑝(𝐼)/𝑝(𝑅). Then 𝑝(𝑏+ 1) ≥ 1
1+𝜂

𝑝(𝑎).

Part 1. As before, with unimodal distributions, we start by taking 𝑂( 𝑏 log 𝑏
𝜀2

) samples, with

the goal of partitioning the domain into intervals of mass approximately Θ(1/𝑏). First, we

will ignore the left and rightmost intervals of mass Θ(𝜀). For all “heavy” elements with mass

≥ Θ(1/𝑏), we consider them as singletons. We note that Lemma 21 implies that there will

be at most 𝑂(1/𝜀) contiguous intervals of such elements. The rest of the domain is greedily

divided (from left to right) into intervals of mass Θ(1/𝑏), cutting an interval short if we reach

one of the heavy elements. This will result in the guarantee that all but potentially 𝑂(1/𝜀)

intervals have Θ(1/𝑏) mass.

Next, similar to unimodal distributions, considering the flattened distribution, we discard

all intervals for which the per-element probability is not within a (1 ± 𝑂(𝜀)) multiplicative

factor of the same value for both neighboring intervals. The claim is that all remaining

intervals will have the property that the per-element probability is within a (1 ± 𝑂(𝜀))

multiplicative factor of the true probability. This is implied by Lemma 21. If there were a

point in an interval which was above this range, the distribution must decrease slowly, and

the next interval would have a much larger per-element weight, thus leading to the removal

of this interval. A similar argument forbids us from missing an interval which contains a
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point that lies outside this range. Relying on the fact that truncating the left and rightmost

intervals eliminates elements with low probability mass, similar to the unimodal case, one can

show that we will remove at most log(𝑛/𝜀)/𝜀 intervals, and thus a log(𝑛/𝜀)/𝑏𝜀 probability

mass. Choosing 𝑏 = Ω(𝜀2/ log(𝑛/𝜀)) limits this to be 𝑂(𝜀), as desired. At this point, if

𝑝 is indeed MHR, the multiplicative estimates guarantee that the result is 𝑂(𝜀2)-close in

𝜒2-distance among the remaining intervals.

Part 2. We note that an equivalent condition for distribution 𝑓 being MHR is log-concavity

of log(1−𝐹 ), where 𝐹 is the CDF of 𝑓 . Therefore, our approach for this part will be similar

to the approach used for log-concave distributions.

Given the output distribution 𝑞 from the previous part of this algorithm, our goal will

be check if there exists an MHR distribution 𝑓 which is 𝑂(𝜀)-close to 𝑞. We will run a linear

program with variables f𝑖 = log(1− 𝐹𝑖). First, we ensure that 𝑓 is a distribution. This can

be done with the following constraints:

f𝑖 ≤ 0 ∀𝑖 ∈ [𝑛]

f𝑖 ≥ f𝑖+1 ∀𝑖 ∈ [𝑛− 1]

f𝑛 = −∞

To ensure that 𝑓 is MHR, we use the following constraint:

f𝑖−1 + f𝑖+1 ≤ 2f𝑖 ∀𝑖 ∈ [2, 𝑛− 1]

Now, ideally, we would like to ensure 𝑓 and 𝑞 are 𝜀-close in total variation distance by

ensuring they are pointwise within a multiplicative (1± 𝜀) factor of each other:

(1− 𝜀) ≤ 𝑓𝑖/𝑞𝑖 ≤ (1 + 𝜀)

We note that this is a stronger condition than 𝑓 and 𝑞 being 𝜀-close, but if 𝑝 ∈ℳℋℛ𝑛, the

guarantees of the previous step would imply the existence of such an 𝑓 .

We have a separate treatment for the identified singletons (i.e., those with probability
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≥ 1/𝑏) and the remainder of the support. For each element 𝑞𝑖 identified to have ≥ 1/𝑏 mass,

we add two constraints:

log((1− 𝜀/2𝑏)(1−𝑄𝑖)) ≤ f𝑖 ≤ log((1 + 𝜀/2𝑏)(1−𝑄𝑖))

log((1− 𝜀/2𝑏)(1−𝑄𝑖−1)) ≤ f𝑖−1 ≤ log((1 + 𝜀/2𝑏)(1−𝑄𝑖−1))

If we satisfy these constraints, it implies that

𝑞𝑖 − 𝜀/𝑏 ≤ 𝑓𝑖 ≤ 𝑞𝑖 + 𝜀/𝑏.

Since 𝑞𝑖 ≥ 1/𝑏, this implies

(1− 𝜀)𝑞𝑖 ≤ 𝑓𝑖 ≤ (1 + 𝜀)𝑞𝑖

as desired.

Now, the remaining elements each have ≤ 1/𝑏 mass. For each such element 𝑞𝑖, we create

a constraint

(1−𝑂(𝜀))
𝑞𝑖

1−𝑄𝑖−1

≤ f𝑖−1 − f𝑖 ≤ (1 +𝑂(𝜀))
𝑞𝑖

1−𝑄𝑖−1

Note that the middle term is

− log

(︂
1− 𝐹𝑖

1− 𝐹𝑖−1

)︂
= − log

(︂
1− 𝑓𝑖

1− 𝐹𝑖−1

)︂
∈ 𝑓𝑖

1− 𝐹𝑖−1

(1± 2𝜀) ,

where the second equality uses the Taylor expansion and the facts that 𝑓𝑖 ≤ 1/𝑏 and 1 −

𝐹𝑖−1 ≥ 𝜀 (since during the previous part, we ignored the rightmost 𝑂(𝜀) probability mass).

If we satisfy the desired constraints, it implies that

𝑓𝑖 ∈
1

(1± 2𝜀)

1− 𝐹𝑖−1

1−𝑄𝑖−1

(1∓𝑂(𝜀))𝑞𝑖.

Since we are taking Ω(1/𝜀4) samples and 1−𝐹𝑖−1 ≥ Ω(𝜀), Lemma 1 implies that 𝑓𝑖 is indeed

a multiplicative (1± 𝜀) approximation for these points as well.

We note that all points which do not fall into these two cases make up a total of 𝑂(𝜀)

probability mass. Therefore, 𝑓 may be arbitrary at these points and only incur 𝑂(𝜀) cost in
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total variation distance.

If we find a feasible point for this linear program, it implies the existence of an MHR

distribution within 𝑂(𝜀) total variation distance. In this case, we continue to the testing

portion of the algorithm. Furthermore, if 𝑝 ∈ℳℋℛ𝑛, our method for generating 𝑞 certifies

that such a distribution exists, and we continue on to the testing portion of the algorithm.

3.10 Lower Bounds for Testing Classes

We now prove sharp lower bounds for the classes of distributions we consider. We show that

the example studied by Paninski [Pan08] to prove lower bounds on testing uniformity can be

used to prove lower bounds for the classes we consider. They consider a class 𝒬 consisting

of 2𝑛/2 distributions defined as follows. Without loss of generality assume that 𝑛 is even.

For each of the 2𝑛/2 vectors 𝑧0𝑧1 . . . 𝑧𝑛/2−1 ∈ {−1, 1}𝑛/2, define a distribution 𝑞 ∈ 𝒬 over [𝑛]

as follows.

𝑞𝑖 =

⎧⎪⎨⎪⎩
(1+𝑧ℓ𝑐𝜀)

𝑛
for 𝑖 = 2ℓ+ 1

(1−𝑧ℓ𝑐𝜀)
𝑛

for 𝑖 = 2ℓ.

(3.13)

Each distribution in 𝒬 has a total variation distance 𝑐𝜀/2 from 𝒰𝑛, the uniform distribu-

tion over [𝑛]. By choosing 𝑐 to be an appropriate constant, Paninski [Pan08] showed that a

distribution picked uniformly at random from 𝒬 cannot be distinguished from 𝒰𝑛 with fewer

than
√
𝑛/𝜀2 samples with probability at least 2/3.

Suppose 𝒞 is a class of distributions such that

∙ The uniform distribution 𝒰𝑛 is in 𝒞,

∙ For appropriately chosen 𝑐, 𝑑TV(𝒞,𝒬) ≥ 𝜀,

then testing 𝒞 is not easier than distinguishing 𝒰𝑛 from 𝒬. Invoking [Pan08] immediately

implies that testing the class 𝒞 requires Ω(
√
𝑛/𝜀2) samples.

The lower bounds for all the one dimensional distributions will follow directly from this

construction, and for testing monotonicity and independence in higher dimensions, we extend
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this construction to 𝑑 ≥ 1, appropriately. These arguments are proved in the following

subsections, leading to lower bounds for testing these classes:

Theorem 20.

∙ For any 𝑑 ≥ 1, any algorithm for testing monotonicity over [𝑛]𝑑 requires Ω(𝑛𝑑/2/𝜀2)

samples.

∙ For 𝑑 ≥ 1, any algorithm for testing independence over [𝑛1] × · · · × [𝑛𝑑] requires

Ω
(︁

(𝑛1·𝑛2...·𝑛𝑑)
1/2

𝜀2

)︁
samples.

∙ Any algorithm for testing unimodality, log-concavity, or monotone hazard rate over [𝑛]

requires Ω(
√
𝑛/𝜀2) samples.

3.10.1 Monotone Distributions

We first consider 𝑑 = 1 and prove that for appropriately chosen 𝑐, any monotone distribution

over [𝑛] is 𝜀-far from all distributions in 𝒬. Consider any 𝑞 ∈ 𝒬. For this distribution, we

say that 𝑖 ∈ [𝑛] is a raise-point if 𝑞𝑖 < 𝑞𝑖+1. Let 𝑅𝑞 be the set of raise points of 𝑞. For

𝑞 ∈ 𝒬, (3.13) implies at least one in every four consecutive integers in [𝑛] is a raise point,

and therefore, |𝑅𝑞| ≥ 𝑛/4. Moreover, note that if 𝑖 is a raise-point, then 𝑖+ 1 is not a raise

point. For any monotone (decreasing) distribution 𝑝, 𝑝𝑖 ≥ 𝑝𝑖+1. For any raise-point 𝑖 ∈ 𝑅𝑞,

by the triangle inequality,

|𝑝𝑖 − 𝑞𝑖|+ |𝑝𝑖+1 − 𝑞𝑖+1| ≥ |𝑝𝑖 − 𝑝𝑖+1 + 𝑞𝑖+1 − 𝑞𝑖| ≥ 𝑞𝑖+1 − 𝑞𝑖 =
2𝑐𝜀

𝑛
. (3.14)

Summing over the set 𝑅𝑞, we obtain 𝑑TV(𝑝, 𝑞) ≥ 1
2
|𝑅𝑞| · 2𝑐𝜀𝑛 ≥ 𝑐𝜀/4. Therefore, if 𝑐 ≥ 4, then

𝑑TV(ℳ𝑛, 𝑞) ≥ 𝜀. This proves the lower bound for 𝑑 = 1.

This argument can be extended to [𝑛]𝑑. Consider the following class of distributions on

[𝑛]𝑑. For each point i = (𝑖1, . . . , 𝑖𝑑) ∈ [𝑛]𝑑, where 𝑖1 is even, generate a random 𝑧 ∈ {−1, 1},

and assign to i a probability of (1 + 𝑧𝑐𝜀)/𝑛𝑑. Let e1 , (1, 0, . . . , 0). Similar to 𝑑 = 1, assign

a probability (1− 𝑧𝑐𝜀)/𝑛𝑑 to the point i+e1 = (𝑖1 + 1, 𝑖2, . . . , 𝑖𝑑). This class consists of 2
𝑛𝑑/2

2

distributions, and Paninski’s arguments extend to give a lower bound of Ω(𝑛𝑑/2/𝜀2) samples
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to distinguish this class from the uniform distribution over [𝑛]𝑑. It remains to show that all

these distributions are 𝜀 far fromℳ𝑑
𝑛. Call a point i as a raise point if 𝑝i < 𝑝i+e1 . For any i,

one of the points i, i + e1, i + 2e1, i + 3e1 is a raise point, and the number of raise points is

at least 𝑛𝑑/4. Invoking the triangle inequality (identical to (3.14)) over the raise-points, in

the first dimension shows that any monotone distribution over [𝑛]𝑑 is at a distance 𝑐𝜀
4

from

any distribution in this class. Choosing 𝑐 = 4 yields a bound of 𝜀.

3.10.2 Product Distributions

Our idea for testing independence is similar to the previous section. We sketch the con-

struction of a class of distributions on 𝒳 = [𝑛1] × · · · × [𝑛𝑑]. Then |𝒳 | = 𝑛1 · 𝑛2 . . . · 𝑛𝑑.

For each element in 𝒳 assign a value (1± 𝑐𝜀) and then for each such assignment, normalize

the values so that they add to 1, giving rise to a distribution. This gives us a class of 2|𝒳 |

distributions. The key argument is to show that a large fraction of these distributions are

far from being a product distribution. This follows since the degrees of freedom of a product

distribution is exponentially smaller than the number of possible distributions. The second

step is to simply apply Paninski’s argument, now over the larger set of distributions, where

we show that distinguishing the collection of distributions we constructed from the uniform

distribution over 𝒳 (which is a product distribution) requires
√︀
|𝒳 |/𝜀2 samples.

3.10.3 Log-concave and Unimodal Distributions

We will show that any log-concave or unimodal distribution is 𝜀-far from all distributions in

𝒬. Since ℒ𝒞𝒟𝑛 ⊂ 𝒰𝑛, it will suffice to show this for every unimodal distribution. Consider

any unimodal distribution 𝑝, with mode ℓ. Then, 𝑝 is monotone non-decreasing over the

interval [ℓ] and non-increasing over {ℓ+ 1, . . . , 𝑛}. By the argument for monotone distribu-

tions, the total variation distance between 𝑝 and any distribution 𝑞 over elements greater

than ℓ is at least 𝑛−ℓ−1
𝑛

𝑐𝜀
4
, and over elements less than ℓ is at least ℓ−1

𝑛
𝑐𝜀
4
. Summing these

two gives the desired bound.
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3.10.4 Monotone Hazard Distributions

We will show that any monotone hazard rate distribution is 𝜀-far from all distributions in

𝒬.

Let 𝑝 be any monotone-hazard distribution. Any distribution 𝑞 ∈ 𝒬 has mass at least 1/2

over the interval 𝐼 = [𝑛/4, 3𝑛/4]. Therefore, by Lemma 21, for any 𝑖 ∈ 𝐼, 𝑝𝑖+1

(︁
1 + 𝑝𝑖

1/4

)︁
≥ 𝑝𝑖.

As noted before, at least 𝑛/8 of the raise-points are in 𝐼.

For any 𝑖 ∈ 𝐼 ∩𝑅𝑞, 𝑞𝑖 = (1 + 𝑐𝜀)/𝑛, 𝑞𝑖+1 = (1− 𝑐𝜀)/𝑛

𝑑𝑖 = |𝑝𝑖 − 𝑞𝑖|+ |𝑝𝑖+1 − 𝑞𝑖+1|. (3.15)

If 𝑝𝑖 ≥ (1 + 2𝑐𝜀)/𝑛 or 𝑝𝑖 ≤ 1/𝑛, then the first term, and therefore 𝑑𝑖 is at least 𝑐𝜀/𝑛. If

𝑝𝑖 ∈ (1/𝑛, (1 + 2𝑐𝜀)/𝑛), then for 𝑛 > 5/(𝑐𝜀)

𝑝𝑖+1 ≥
1

𝑛
· 1

1 + 4
𝑛

≥ 1− 𝑐𝜀/2
𝑛

.

Therefore the second term of 𝑑𝑖 is at 𝑐𝜀/2𝑛. Since there are at least 𝑛/8 raise points in 𝐼,

𝑑TV(𝑝, 𝑞) ≥ 1

2

𝑛

8
· 𝑐𝜀

2𝑛
≥ 𝑐𝜀

16
. (3.16)

Thus any MHR distribution is 𝜀-far from 𝒬 for 𝑐 ≥ 16.
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Chapter 4

Testing High-Dimensional Ising Models

4.1 Introduction

Data analysis has become more prevalent in settings with multivariate data, which brings

with it a host of new challenges. In particular, the dimensionality of modern datasets is

much greater than what has been faced classically. We outline a few situation in which

multivariate data arises naturally:

∙ In natural language processing and information retrieval, the bag-of-words model maps

a text document to a vector, where each dimension corresponds to a word, and the

projection of the vector in a dimension is the multiplicity of that word in the document.

The dimensionality of the data corresponds to the number of unique words, which, in

English, can correspond to hundreds of thousands of dimensions.

∙ Recently, online services like Netflix have turned to statistical data analysis to under-

stand user behavior and optimize the user experience. For instance, recommendation

engines use machine learning to determine what users will like, based on what they

have liked in the past. Netflix takes this a step further, as it uses user data to decide

which shows to green-light: famously, it chose to produce the hit show House of Cards

based on the fact that there was a large number of users who simultaneously enjoyed

the British version of "House of Cards," films featuring Kevin Spacey, and films di-

rected by David Fincher. However, the dimensionality of the data is prohibitive for
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the application of naive methods, as Netflix has tens of thousands of titles. Similar

challenges are faced by online retailers like Amazon, which sells hundreds of millions

of products.

∙ Data analysis is frequently performed on large-scale social networks, in order to un-

derstand the complex structure of user interactions and the spread of information. In

this setting, the behavior of each user can be considered as a separate dimension. The

challenge lies in the scale of the data: modern social networks can be incredibly large,

with Facebook having over two billion active users.

Given the ubiquity of multivariate data, it is natural to ask whether distribution test-

ing can be efficiently performed in high-dimensional settings. Unfortunately, in general, the

answer is no: in an 𝑛-dimensional setting, the cost of most distribution testing problems

necessarily scales exponentially with 𝑛.1 One easy way to see this is to consider testing

uniformity over the domain [𝑟]𝑛. As shown by Paninski [Pan08] (Theorem 2), testing unifor-

mity over a domain Σ requires Ω

(︂√
|Σ|
𝜀2

)︂
samples. In this setting, this result implies a lower

bound of Ω(𝑟𝑛/2). This intractability is not specific to testing uniformity; as we showed in

Theorem 20, testing for monotonicity or independence also requires a number of samples

which is exponential in the dimension. Very roughly speaking, this exponential dependence

on the dimension arises because the size of the support also increases exponentially – this

results in more space in which an adversary can pack exponentially many distributions which

are difficult to distinguish. As a consequence, even in moderate dimensions, the cost of most

standard distribution testing algorithms will be prohibitively expensive.

Given the importance of performing data analysis in high-dimensional settings, it is nat-

ural to ask whether we can develop tools which circumvent these statistical lower bounds.

A common way of doing so is by assuming the underlying distribution possesses some ad-

ditional structure. This can be seen as a way of going beyond worst-case analysis : phrased

differently, assuming some underlying structure limits the type of distributions an adversary

could ask an algorithm to distinguish. Stated yet another way, this assumption attempts to

1In this chapter alone, we use 𝑛 to refer to the dimension of the data, rather than the size of the support.
For instance, on the 𝑛-dimensional hypercube, the size of the support is 2𝑛, rather than 𝑛.
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capture the notion that nature is not “evil” in the problems which it presents us with. Per-

haps the most common type of structural restriction is that the data enjoys some notion of

sparsity. This direction is far too broad to do justice, but perhaps the prototypical example

of exploiting sparsity in data analysis is the Lasso for regression problems [Tib96]. In our

work, we focus on a different type of structural restriction: graphical models.

Motivated by the above considerations and the ubiquity of Markov Random Fields

(MRFs) in the modeling of high-dimensional distributions (see [Jor10] for the basics of MRFs

and the references [STW10, KNS07] for a sample of applications), we initiate the study of

distribution testing for the prototypical example of MRFs: the Ising Model, which captures

all binary MRFs with node and edge potentials.2 Recall that the Ising model is a distribution

over {−1, 1}𝑛, defined in terms of a graph 𝐺 = (𝑉,𝐸) with 𝑛 nodes. It is parameterized by

a scalar parameter 𝜃𝑢,𝑣 for every edge (𝑢, 𝑣) ∈ 𝐸, and a scalar parameter 𝜃𝑣 for every node

𝑣 ∈ 𝑉 , in terms of which it samples a vector 𝑥 ∈ {±1}𝑉 with probability:

𝑝(𝑥) = exp

⎛⎝∑︁
𝑣∈𝑉

𝜃𝑣𝑥𝑣 +
∑︁

(𝑢,𝑣)∈𝐸

𝜃𝑢,𝑣𝑥𝑢𝑥𝑣 − Φ(𝜃)

⎞⎠ , (4.1)

where 𝜃 is the parameter vector and Φ(𝜃) is the log-partition function, ensuring that the

distribution is normalized. Intuitively, there is a random variable 𝑋𝑣 sitting on every node

of 𝐺, which may be in one of two states, or spins: up (+1) or down (−1). The scalar

parameter 𝜃𝑣 models a local (or “external”) field at node 𝑣. The sign of 𝜃𝑣 represents whether

this local field favors 𝑋𝑣 taking the value +1, i.e. the up spin, when 𝜃𝑣 > 0, or the value −1,

i.e. the down spin, when 𝜃𝑣 < 0, and its magnitude represents the strength of the local field.

We will say a model is “without external field” when 𝜃𝑣 = 0 for all 𝑣 ∈ 𝑉 . Similarly, 𝜃𝑢,𝑣

represents the direct interaction between nodes 𝑢 and 𝑣. Its sign represents whether it favors

equal spins, when 𝜃𝑢,𝑣 > 0, or opposite spins, when 𝜃𝑢,𝑣 < 0, and its magnitude corresponds

to the strength of the direct interaction. Of course, depending on the structure of the Ising

model and the edge parameters, there may be indirect interactions between nodes, which

may overwhelm local fields or direct interactions.

2This follows trivially by the definition of MRFs, and elementary Fourier analysis of Boolean functions.
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The Ising model has a rich history, starting with its introduction by statistical physicists

as a probabilistic model to study phase transitions in spin systems [Isi25]. Since then it has

found a myriad of applications in diverse research disciplines, including probability theory,

Markov chain Monte Carlo, computer vision, theoretical computer science, social network

analysis, game theory, and computational biology [LPW09, Cha05, Fel04, DMR11, GG86,

Ell93, MS10]. The ubiquity of these applications motivate the problem of inferring Ising

models from samples, or inferring statistical properties of Ising models from samples. This

type of problem has enjoyed much study in statistics, machine learning, and information

theory, see, i.e., [CL68, AKN06, CT06b, RWL10, JJR11, SW12, BGS14, Bre15, VMLC16,

BK16, Bha16, BM16, MdCCU16, HKM17, KM17]. Much of prior work has focused on

parameter learning, where the goal is to determine the parameters of an Ising model to

which sample access is given. In contrast to this type of work, which focuses on discerning

parametrically distant Ising models, our goal is to discern statistically distant Ising models,

in the hopes of dramatic improvements in the sample complexity. (We will come to a detailed

comparison between the two inference goals shortly, after we have stated our results.) To be

precise, we study the following problems:

Ising Model Goodness-of-fit (or Identity) Testing: Given sample access to an unknown

Ising model 𝑝 (with unknown parameters over an unknown graph) and a parameter

𝜀 > 0, the goal is to distinguish with probability at least 2/3 between 𝑝 = 𝑞 and

𝑑SKL(𝑝, 𝑞) > 𝜀, for some specific Ising model 𝑞.

Ising Model Independence Testing: Given sample access to an unknown Ising model

𝑝 (with unknown parameters over an unknown graph) and a parameter 𝜀 > 0, the

goal is to distinguish with probability at least 2/3 between 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) > 𝜀,

where ℐ are all product distributions over {±1}𝑛.

We note that there are several potential notions of statistical distance one could consider

— classically, total variation distance and the Kullback-Leibler (KL) divergence have seen

the most study. As our focus here is on upper bounds, we consider the symmetrized KL

divergence 𝑑SKL, which is a “harder” notion of distance than both: in particular, testers

for 𝑑SKL immediately imply testers for both total variation distance and the KL divergence

(cf. Proposition 1). Moreover, by virtue of the fact that 𝑑SKL upper-bounds KL in both
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directions, our tests offer useful information-theoretic interpretations of rejecting a model 𝑞,

such as data differencing and large deviation bounds in both directions.

Sample Applications: As an instantiation of our proposed testing problems for the Ising

model one may maintain the study of strategic behavior on a social network. To offer

a little bit of background, a body of work in economics has modeled strategic behavior

on a social network as the evolution of the Glauber dynamics of an Ising model, whose

graph is the social network, and whose parameters are related to the payoffs of the nodes

under different selections of actions by them and their neighbors. For example, [Ell93, MS10]

employ this model to study the adoption of competing technologies with network effects, e.g.

iPhone versus Android phones. Glauber dynamics, as described in Section 4.2, define the

canonical Markov chain for sampling an Ising model. Hence an observation of the actions

(e.g. technologies) used by the nodes of the social network should offer us a sample from

the corresponding Ising model (at least if the Glauber dynamics have mixed). An analyst

may not know the underlying social network or may know the social network but not the

parameters of the underlying Ising model. In either case, how many independent observations

would he need to test, e.g., whether the nodes are adopting technologies independently,

or whether their adoptions conform to some conjectured parameters? Our results offer

algorithms for testing such hypotheses in this stylized model of strategic behavior on a

network.

As another application, we turn to the field of computer vision. In the Bayesian setting,

it is assumed that images are generated according to some prior distribution. Often, practi-

tioners take this prior to be an Ising model in the binary case, or, in general, a higher-order

MRF [GG86]. As such, a dataset of images can be pictured as random samples from this

prior. A natural question to ask is, given some distribution, does a set of images conform to

this prior? This problem corresponds to goodness-of-fit testing for Ising models.

A third application comes up in the field of medicine and computational biology. In

order to improve diagnosis, symptom prediction and classification, as well as to improve

overall healthcare outcomes, graphical models are trained on data, often using heuristic

methods [FLNP00] and surgeon intuition, thereby incorporating hard-wired expert knowl-

edge; see, i.e., the pneumonia graphical model identified in [LAFH01]. Our methods give
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efficient algorithms for testing the accuracy of such models. Furthermore, when the dis-

crepancy is large, we expect that our algorithms could reveal the structural reasons for the

discrepancy, i.e., blaming a large portion of the error on a misspecified edge.

Main Results and Techniques: Our main result is the following:

Theorem 21. Both Ising Model Goodness-of-fit Testing and Ising Model Independence Test-

ing can be solved from poly
(︀
𝑛, 1

𝜀

)︀
samples in polynomial time.

There are several variants of our testing problems, resulting from different knowledge that

the analyst may have about the structure of the graph (connectivity, density), the nature

of the interactions (attracting, repulsing, or mixed), as well as the temperature (low vs

high). We proceed to discuss all these variants, instantiating the resulting polynomial sample

complexity in the above theorem. We also illuminate the techniques involved to prove these

theorems. This discussion should suffice in evaluating the merits of the results and techniques

of this work.

A. Our Baseline Result. In the least favorable regime, i.e. when the analyst is oblivious

to the structure of the Ising model 𝑝, the signs of the interactions, and their strength, the

polynomial in Theorem 21 becomes 𝑂
(︁

𝑛4𝛽2+𝑛2ℎ2

𝜀2

)︁
. In this expression, 𝛽 = max{|𝜃𝑝𝑢,𝑣|}

for independence testing, and 𝛽 = max{max{|𝜃𝑝𝑢,𝑣|},max{|𝜃𝑞𝑢,𝑣|}} for goodness-of-fit testing,

while ℎ = 0 for independence testing, and ℎ = max{max{|𝜃𝑝𝑢|},max{|𝜃𝑞𝑢|}} for goodness-of-fit

testing; see Theorem 22. If the analyst has an upper bound on the maximum degree 𝛿max (of

all Ising models involved in the problem) the dependence improves to 𝑂
(︁

𝑛2𝛿2max𝛽
2+𝑛𝛿maxℎ2

𝜀2

)︁
,

while if the analyst has an upper bound on the total number of edges 𝑚, then max{𝑚,𝑛}

takes the role of 𝑛𝛿max in the previous bound; see Theorem 22.

Technical Discussion 1.0: “Testing via Localization.” All the bounds mentioned

so far are obtained via a simple localization argument showing that, whenever two Ising

models 𝑝 and 𝑞 satisfy 𝑑SKL(𝑝, 𝑞) > 𝜀, then “we can blame it on a node or an edge;” i.e. there

exists a node with significantly different bias under 𝑝 and 𝑞 or a pair of nodes 𝑢, 𝑣 whose

covariance is significantly different under the two models. Pairwise correlation tests are a

simple screening that is often employed in practice. For our setting, there is a straighforward

and elegant way to show that pair-wise (and not higher-order) correlation tests suffice; see
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Lemma 24.

For more details about our baseline localization tester see Section 4.3.

B. Anchoring Our Expectations. Our next results aim at improving the afore-described

baseline bound. Before stating these improvements, however, it is worth comparing the

sample complexity of our baseline results to the sample complexity of learning. Indeed, one

might expect and it is often the case that testing problems can be solved in a two-step fash-

ion, by first learning a hypothesis 𝑝 that is statistically close to the true 𝑝 and then using the

learned hypothesis 𝑝 as a proxy for 𝑝 to determine whether it is close to or far from some 𝑞,

or some set of distributions. Given that the KL divergence and its symmetrized version do

not satisfy the triangle inequality, however, it is not clear how such an approach would work.

Even if it could, the only algorithm that we are aware of for proper learning Ising models,

which offers KL divergence guarantees but does not scale exponentially with the maximum

degree and 𝛽, is a straightforward net-based algorithm. This algorithm, explained in Sec-

tion 4.11, requires Ω
(︁

𝑛6𝛽2+𝑛4ℎ2

𝜀2

)︁
samples and is time inefficient. In particular, our baseline

algorithm already beats this sample complexity and is also time-efficient. Alternatively, one

could aim to parameter-learn 𝑝; see, e.g., [VMLC16, KM17] and their references. However,

these algorithms require sample complexity that is exponential in the maximum degree, and

they typically use samples exponential in 𝛽 as well. For instance, if we use [VMLC16], which

is one of the state-of-the-art algorithms, to do parameter learning prior to testing, we would

need 𝑂̃(𝑛
4·2𝛽·𝑑max

𝜀2
) samples to learn 𝑝’s parameters closely enough to be able to do the testing

afterwards. Our baseline result beats this sample complexity, dramatically so if the degrees

are unbounded.

The problem of learning the structure of Ising models (i.e., determining which edges are

present in the graph) has enjoyed much study, especially in information theory – see [SW12,

Bre15, VMLC16, HKM17, KM17] for some recent results. At a first glance, one may hope

that these results have implications for testing Ising models. However, thematic similarities

aside, the two problems are qualitatively very different – our problem focuses on statistical

estimation, while theirs looks at structural estimation. To point out some qualitative dif-

ferences for these two problems, the complexity of structure learning is exponential in the

maximum degree and 𝛽, while only logarithmic in 𝑛. On the other hand, for testing Ising
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models, the complexity has a polynomial dependence in all three parameters, which is both

necessary and sufficient.

C. Trees and Ferromagnets. When 𝑝 is a tree-structured (or forest-structured) Ising

model, then independence testing can be performed computationally efficiently without any

dependence on 𝛽, with an additional quadratic improvement with respect to the other pa-

rameters. In particular, without external fields, i.e. max{|𝜃𝑝𝑢|} = 0, independence can be

solved from 𝑂(𝑛
𝜀
) samples, and this result is tight when 𝑚 = 𝑂(𝑛); see Theorem 23 for an

upper bound and Theorem 40 for a lower bound. Interestingly, we show the dependence

on 𝛽 cannot be avoided in the presence of external fields, or if we switch to the problem

of identity testing; see Theorem 41. In the latter case, we can at least maintain the linear

dependence on 𝑛; see Theorem 24. Similar results hold when 𝑝 is a ferromagnet, i.e. 𝜃𝑝𝑢,𝑣 ≥ 0,

with no external fields, even if it is not a tree. In particular, the sample complexity becomes

𝑂(max{𝑚,𝑛}
𝜀

) (which is again tight when 𝑚 = 𝑂(𝑛)), see Theorem 25.

Technical Discussion 2.0: “Testing via Strong Localization.” The improvements

that we have just discussed are obtained via the same localization approach discussed earlier,

which resulted into our baseline tester. That is, we are still going to “blame it on a node

or an edge.” The removal of the 𝛽 dependence and the improved running times are due

to the proof of a structural lemma, which relates the parameter 𝜃𝑢,𝑣 on some edge (𝑢, 𝑣)

of the Ising model to the E[𝑋𝑢𝑋𝑣]. We show that for forest-structured Ising models with

no external fields, E[𝑋𝑢𝑋𝑣] = tanh(𝜃𝑢,𝑣), see Lemma 28. A similar statement holds for

ferromagnets with no external field, i.e., E[𝑋𝑢𝑋𝑣] ≥ tanh(𝜃𝑢,𝑣), see Lemma 31. The proof

of the structural lemma for trees/forests is straightforward. Intuitively, the only source of

correlation between the endpoints 𝑢 and 𝑣 of some edge (𝑢, 𝑣) of the Ising model is the edge

itself, as besides this edge there are no other paths between 𝑢 and 𝑣 that would provide

alternative avenues for correlation. Significant more work is needed to prove the inequality

for ferromagnets on arbitrary graphs. Now, there may be several paths between 𝑢 and 𝑣

besides the edge connecting them. Of course, because the model is a ferromagnet, these

paths should intuitively only contribute to increase E[𝑋𝑢𝑋𝑣] beyond tanh(𝜃𝑢,𝑣). But making

this formal is not easy, as calculations involving the Ising model quickly become unwieldy
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beyond trees.3 Our argument uses a coupling between (an appropriate generalization of)

the Fortuin-Kasteleyn random cluster model and the Ising model. The coupling provides an

alternative way to sample the Ising model by first sampling a random clustering of the nodes,

and then assigning uniformly random spins to the sampled clusters. Moreover, it turns out

that the probability that two nodes 𝑢 and 𝑣 land in the same cluster increases as the vector

of parameters 𝜃 of the Ising model increases. Hence, we can work inductively. If only edge

(𝑢, 𝑣) were present, then E[𝑋𝑢𝑋𝑣] = tanh(𝜃𝑢,𝑣). As we start adding edges, the probability

that 𝑢, 𝑣 land in the same cluster increases, hence the probability that they receive the same

spin increases, and therefore E[𝑋𝑢𝑋𝑣] increases.

A slightly more detailed discussion of the structural result for ferromagnets is in Sec-

tion 4.1.1.1, and full details about our testers for trees and ferromagnets can be found in

Sections 4.4.1 and 4.4.2, respectively.

D. Dobrushin’s Uniqueness Condition and the High-Temperature Regime. Moti-

vated by phenomena in the physical world, the study of Ising models has identified phase

transitions in the behavior of the model as its parameters vary. A common transition occurs

as the temperature of the model changes from low to high. As the parameters 𝜃 corre-

spond to inverse (individualistic) temperatures, this corresponds to a transition of these

parameters from low values (high temperature) to high values (low temperature). Often

the transition to high temperature is identified with the satisfaction of Dobrushin-type con-

ditions [Geo11]. Under such conditions, the model enjoys a number of good properties,

including rapid mixing of the Glauber dynamics, spatial mixing properties, and unique-

ness of measure. The Ising model has been studied extensively in such high-temperature

regimes [Dob56, Cha05, Hay06, DGJ08], and it is a regime that is often used in practice.

In the high-temperature regime, we show that we can improve our baseline result without

making ferromagnetic or tree-structure assumptions, using a non-localization based argu-

ment, explained next. In particular, we show in Theorem 27 that under high temperature

and with no external fields independence testing can be done computationally efficiently

from 𝑂̃
(︁

𝑛10/3

𝜀2𝛿2max

)︁
samples, which improves upon our baseline result if 𝛿max is large enough.

For instance, when 𝛿max = Ω(𝑛), the sample complexity becomes 𝑂̃
(︁

𝑛4/3

𝜀2

)︁
. Other tradeoffs

3We note that the partition function is #P-hard to compute[JS93].
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between 𝛽, 𝛿max and the sample complexity are explored in Theorem 26. Similar improve-

ments hold when external fields are present (Theorem 29), as well as for identity testing,

without and with external fields (Theorems 30 and 31).

We offer some intuition about the improvements in Figures 4-1 and 4-2 (appearing in

Section 4.6), which are plotted for high temperature and no external fields. In Figure 4-1,

we plot the number of samples required for testing Ising models with no external fields when

𝛽 = Θ( 1
𝑑max

) as 𝑑max varies. The horizontal axis is log𝑛 𝛿max. We see that localization is

the better algorithm for degrees smaller than 𝑂(𝑛2/3), above which its complexity can be

improved. In particular, the sample complexity is 𝑂(𝑛2/𝜀2) until degree 𝛿max = 𝑂(𝑛2/3),

beyond which it drops inverse quadratically in 𝛿max. In Figure 4-2, we consider a different

tradeoff. We plot the number of samples required when 𝛽 = 𝑛−𝛼 and the degree of the graph

varies. In particular, we see three regimes as a function of whether the Ising model is in

high temperature (𝑑max = 𝑂(𝑛𝑎)) or low temperature (𝑑max = 𝜔(𝑛𝑎)), and also which of our

techniques localization vs non-localization gives better sample complexity bounds.

We note that in the special case when the Ising model is both high-temperature and

ferromagnetic, we can use a similar algorithm to achieve a sample complexity of 𝑂̃(𝑛/𝜀)

(Theorem 36)4. This is nearly-tight for this case, as the lower bound instance of Theorem 40

(which requires Ω(𝑛/𝜀) samples) is both high-temperature and ferromagnetic.

Technical Discussion 3.0: “Testing via a Global Statistic, and Variance Bounds.”

One way or another all our results up to this point had been obtained via localization,

namely blaming the distance of 𝑝 from independence, or from some distribution 𝑞 to a

node or an edge. Our improved bounds employ non-localized statistics that look at all

the nodes of the Ising model simultaneously. Specifically, we employ statistics of the form

𝑍 =
∑︀

𝑒=(𝑢,𝑣)∈𝐸 𝑐𝑒𝑋𝑢𝑋𝑣 for some appropriately chosen signs 𝑐𝑒.

The first challenge we encounter here involves selecting the signs 𝑐𝑒 in accordance with

the sign of each edge marginal’s expectation, E[𝑋𝑢𝑋𝑣]. This is crucial to establish that

the resulting statistic will be able to discern between the two cases. While the necessary

estimates of these signs could be computed independently for each edge, this would incur

4We note that prior work of [GLP17] proves a qualitatively similar upper bound to ours, using a 𝜒2-style
statistic. We show that our existing techniques suffice to give a near-optimal sample complexity.
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an unnecessary overhead of 𝑂(𝑛2) in the number of samples. Instead we try to learn signs

that have a non-trivial agreement with the correct signs, from fewer samples. Despite the

𝑋𝑢𝑋𝑣 terms potentially having nasty correlations with each other, a careful analysis using

anti-concentration calculations allows us to sidestep this 𝑂(𝑛2) cost and generate satisfactory

estimates with a non-negligible probability, from fewer samples.

The second and more significant challenge involves bounding the variance of a statistic

𝑍 of the above form. Since 𝑍’s magnitude is at most 𝑂(𝑛2), its variance can trivially be

bounded by 𝑂(𝑛4). However, applying this bound in our algorithm gives a vacuous sample

complexity. As the 𝑋𝑢’s will experience a complex correlation structure, it is not clear how

one might arrive at non-trivial bounds for the variance of such statistics, leading to the

following natural question:

Question 6. How can one bound the variance of statistics over high-dimensional distribu-

tions?

This meta-question is at the heart of many high-dimensional statistical tasks, and we

believe it is important to develop general-purpose frameworks for such settings. In the

context of the Ising model, in fairly general regimes, we can show the variance to be 𝑂̃(𝑛2).

We consider this to be surprising – stated another way, despite the complex correlations

which may be present in the Ising model, the summands in 𝑍 behave roughly as if they were

pairwise independent.

This question has been studied in-depth in three recent works [DDK17, GLP17, GSS18],

which prove concentration of measure for 𝑑-linear statistics over the Ising model. We note

that these results are stronger than what we require in this work – we need only variance

bounds (which are implied by concentration of measure) for bilinear statistics. Despite these

stronger bounds, for completeness, we present a proof of the variance bounds for bilinear

statistics which we require5. This approach uses tools from [LPW09]. It requires a bound

on the spectral gap of the Markov chain, and an expected Lipschitz property of the statistic

when a step is taken at stationarity. The technique is described in Section 4.8, and the

variance bounds are given in Theorems 37 and 38.
5We thank Yuval Peres for directing us towards the reference [LPW09] and the tools required to prove

these bounds.
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E. Our Main Lower Bound. The proof of our linear lower bound applies Le Cam’s

method [LC73]. Our construction is inspired by Paninski’s lower bound for uniformity test-

ing [Pan08], which involves pairing up domain elements and jointly perturbing their prob-

abilities. This style of construction is ubiquitous in univariate testing lower bounds. A

naive application of this approach would involve choosing a fixed matching of the nodes and

randomly perturbing the weight of the edges, which leads to an Ω(
√
𝑛) lower bound. We

analyze a construction of a similar nature as a warm-up for our main lower bound, while also

proving a lower bound for uniformity testing on product distributions over a binary alphabet

(which are a special case of the Ising model where no edges are present), see Theorem 39. To

achieve the linear lower bound, we instead consider a random matching of the nodes. The

analysis of this case turns out to be much more involved due to the complex structure of

the probability function which corresponds to drawing 𝑘 samples from an Ising model on a

randomly chosen matching. Indeed, our proof turns out to have a significantly combinatorial

flavor, and we believe that our techniques might be helpful for proving stronger lower bounds

in combinatorial settings for multivariate distributions. Our analysis of this construction is

tight, as uniformity testing on forests can be achieved with 𝑂(𝑛) samples. We believe that a

super-linear lower bound would be very interesting, but also quite difficult to obtain. Proving

our linear lower bound already required a very careful analysis for a relatively simple con-

struction, and an improved lower bound would require analyzing a distribution over dense

constructions, for which an improved structural understanding is needed. A further technical

discussion of this lower bound is in Section 4.1.1.2, see Section 4.9 and Theorem 40 for a

formal statement and full analysis of our main lower bound. As mentioned before, we also

show that the sample complexity must depend on 𝛽 and ℎ in certain cases, see Theorem 41

for a formal statement.

Table 4.1 summarizes our algorithmic results.

The High-Dimensional Frontier and Related Work: We emphasize that we believe

the study of high-dimensional distribution testing to be of significant importance, as real-

world applications often involve multivariate data. As univariate distribution testing is now

very well understood, with a thorough set of tools and techniques, this is the natural next

frontier to attack. However, multivariate distributions pose several new technical challenges,
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Testing Problem No External Field Arbitrary External Field

Independence

using Localization
𝑂̃
(︁

𝑛2𝛿2max𝛽
2

𝜀2

)︁
𝑂̃
(︁

𝑛2𝛿2max𝛽
2

𝜀2

)︁
Identity

using Localization
𝑂̃
(︁

𝑛2𝛿2max𝛽
2

𝜀2

)︁
𝑂̃
(︁

𝑛2𝛿2max𝛽
2

𝜀2
+ 𝑛2ℎ2

𝜀2

)︁
Independence

under Dobrushin/high-temperature
using Learn-Then-Test

𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
Identity

under Dobrushin/high-temperature
using Learn-Then-Test

𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
𝑂̃
(︁

𝑛11/3𝛽2

𝜀2
+ 𝑛5/3ℎ2

𝜀2

)︁
Independence on Forests

using Improved Localization
𝑂̃
(︀
𝑛
𝜀

)︀
𝑂̃
(︁

𝑛2𝛽2

𝜀2

)︁
Identity on Forests

using Improved Localization
𝑂̃
(︁

𝑛·𝑐(𝛽)
𝜀

)︁
𝑂̃
(︁

𝑛2𝛽2

𝜀2
+ 𝑛2ℎ2

𝜀2

)︁
Independence on Ferromagnets

using Improved Localization
𝑂̃
(︀
𝑛𝛿max

𝜀

)︀
𝑂̃
(︁

𝑛2𝛿2max𝛽
2

𝜀2

)︁
Independence on Ferromagnets

under Dobrushin/high-temperature
using Globalization

𝑂̃
(︀
𝑛
𝜀

)︀
𝑂̃
(︁

𝑛11/3𝛽2

𝜀2
+ 𝑛5/3ℎ2

𝜀2

)︁

Table 4.1: Summary of our results in terms of the sample complexity upper bounds for
the various problems studied. 𝑛 = number of nodes in the graph, 𝛿max = maximum degree,
𝛽 = maximum absolute value of edge parameters, ℎ = maximum absolute value of node
parameters (when applicable), and 𝑐 is a function discussed in Theorem 24.

and many of these univariate tools are rendered obsolete – as such, we must extend these

methods, or introduce new techniques entirely. It is important to develop approaches which

may be applicable in much more general high-dimensional distribution testing settings, when

there may be complex correlations between random variables. First, it is important to get

a grasp on the concentration and variance of statistics in these settings, and we provide

exposition of a technique for bounding the variance of some simple statistics. Additionally,

our linear lower bound’s construction and analysis give insight into which instances cause

intractability to arise, and provide a recipe for the style of combinatorics required to analyze
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them.

In further works, the authors and other groups have investigated more properties of

multilinear functions over the Ising model [DDK17, GLP17, GSS18]. In the present work,

we require and prove variance bounds for bilinear functions of the Ising model. These other

works prove concentration bounds (which are qualitatively stronger than variance bounds)

for multilinear functions of arbitrary degree 𝑑 (rather than just bilinear functions, which are

of degree 𝑑 = 2).

High-dimensional distribution testing has recently attracted the interest of the theoretical

computer science community, with work concurrent to ours on testing Bayesian networks6

[CDKS17, DP17]. There is also a more recent work on learning and testing causal Bayesian

networks with interventions [ABDK18]. One may also consider testing problems in settings

involving Markov Chains, of which there has been interest in testing standard properties as

well as domain specific ones (i.e., the mixing time) [BFF+01, BV15, DDG18, HKS15, LP16,

HKL+17, BK18]. There have also been other recent works on learning and testing Ising

models, in both the statistical and structural sense [GNS17, DMR18, BN18]. It remains to

be seen which other multivariate distribution classes of interest allow us to bypass the curse

of dimensionality.

We note that the paradigm of distribution testing under structural assumptions has been

explored in the univariate setting, where we may assume the distribution satisfies some

shape restriction: for example, we could assume the distribution is log-concave or 𝑘-modal.

This often allows exponential savings in the sample complexity [BKR04, DDS+13, DKN15b,

DKN15a, DKN17, DKP18]. Note that this testing with structure is not to be confused with

the problem of testing for structure (as was covered in Chapter 3).

4.1.1 Further Technical Discussion and Highlights

In this section, we give a slightly more in-depth discussion of some of the technical highlights

of our work. For full details and more discussion, the interested reader can refer to the

corresponding sections in the body.

6Bayes nets are another type of graphical model, and are in general incomparable to Ising models.

120



4.1.1.1 Structural Results for Ferromagnetic Ising Models

Our general-purpose testing algorithm is a localization-based algorithm – in particular, it

operates based on the structural property that if two Ising models (with no external field)

are far from each other, they will have a distant edge marginal. We convert this structural

property to an algorithm by estimating each edge marginal and testing whether they match

for the two models. However, the underlying structural property is quantitatively weak, and

leads to sub-optimal testing bounds. In some cases of interest, we can derive quantitatively

stronger versions of this structural result, giving us more efficient algorithms.

For instance, one can consider the ferromagnetic case, where one has all edge parameters

𝜃𝑒 ≥ 0. We would like to derive a relationship between an edge marginal (i.e., E[𝑋𝑢𝑋𝑣] for

an edge 𝑒 = (𝑢, 𝑣)) and the parameter on that edge 𝜃𝑒. For a tree-structured Ising model

with no external field (ferromagnetic or not), it is not hard to show that E[𝑋𝑢𝑋𝑣] = tanh(𝜃𝑒)

– for small edge parameters, this indicates a linear relationship between the edge marginal

and the edge parameter. Intuitively, if a model is ferromagnetic and contains cycles, these

cycles should only increase the correlation between adjacent nodes, i.e., we would expect that

E[𝑋𝑢𝑋𝑣] ≥ tanh(𝜃𝑒). While this is true, it proves surprisingly difficult to prove directly, and

we must instead view the Ising model through the Fortuin-Kastelyn random cluster model.

At a high level, the Fortuin-Kastelyn random cluster model is defined for a graph 𝐺 =

(𝑉,𝐸) with a probability parameter 0 < 𝑟𝑒 < 1 on each edge. This parameter indicates

the probability of a bond being present on edge 𝑒 (i.e., the distribution gives a measure over

{0, 1}𝐸), placing this model into the space of bond percolation models (see Section 4.4.2.1 and

(4.20) for the formal definition). It turns out that an alternative way to draw a sample from

the Ising model is through this random cluster model. Namely, we first draw a sample from

the Fortuin-Kastelyn model (defined with appropriate parameters), and for each connected

component in the resulting graph, we flip a fair coin to determine whether all the nodes in

the component should be −1 or +1.

With this correspondence in hand, we can apply results for the Fortuin-Kastelyn model

– crucial for our purposes is that the fact that the FK model’s measure is stochastically

increasing. Roughly, this means that if we increase the values of the 𝑟𝑒’s, the probability of
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an edge having a 1 can only increase. Intuitively, this leads to an increase in E[𝑋𝑢𝑋𝑣] in the

Ising model, since it increases the probability that the nodes are connected in the FK model,

and thus the expectation of any edge can only increase as we increase the ferromagnetic edge

parameters. Careful work is needed to carry through the implications of this correspondence,

but it allows us to conclude the nearly-optimal sample complexity of 𝑂̃(𝑚/𝜀), and under the

additional constraint that the Ising model is in the high-temperature regime, 𝑂̃(𝑛/𝜀).

Full details are provided in Sections 4.4.2 and 4.7.

4.1.1.2 A Linear Lower Bound for Testing Ising Models

As a starting point for our lower bound, we use Le Cam’s classical two-point method. This

is the textbook method for proving lower bounds in distribution testing. It involves defining

two families of distributions 𝒫 and 𝒬, such that every distribution 𝑝 ∈ 𝒫 is 𝜀-far from every

distribution 𝑞 ∈ 𝒬. We consider selecting a uniformly random pair (𝑝, 𝑞) ∈ (𝒫 ,𝒬) and then

drawing 𝑘 independent samples from each of 𝑝 and 𝑞. If we can show that the resulting two

transcripts of 𝑘 samples are close in total variation distance, then 𝑘 samples are insufficient

to distinguish these two cases.

While this method is fairly well-understood in the univariate setting, it proves more

difficult to apply in some multivariate settings. This difficulty arises in the definition of

the set 𝒬7. In the univariate setting, we often decompose the domain into several disjoint

sets, and define 𝒬 by applying perturbations to each of these sets independently. This style

of construction allows us to analyze each subset locally and compose the results. In the

multivariate setting, constructions of this local nature are still possible and are not too hard

to analyze – see Theorem 39. In this construction, we consider an Ising model defined by

taking a fixed perfect matching on the graph and selecting a distribution from 𝒬 by applying

a random sign vector to the edge potentials of this matching. This allows us to prove an

Ω(
√
𝑛) lower bound on the complexity of uniformity testing.

However, such local constructions prove to be limited in the multivariate setting. In

order to prove stronger lower bounds, we instead must consider an Ising model generated by

taking a random perfect matching on the graph. This construction is more global in nature,

7We note that for simplicity, 𝒫 is often chosen to be a singleton.
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since the presence of an edge gives us information about the presence of other edges in the

graph. As a result, the calculations no longer decompose elegantly over the (known) edges

in the matching. While at a first glance, the structure of such a construction may seem too

complex to analyze, we reduce it to analyzing the structure of a random pair of matchings

by exploiting combinatorial symmetries. An important step in the proof requires us to

understand the random variable representing the number of edges shared by two random

perfect matchings. This analysis allows us to prove a quadratically-better lower bound

of Ω(𝑛). We believe our analysis may be useful in proving lower bounds for such global

constructions in other multivariate settings.

Full details are provided in Section 4.9.

4.1.2 Organization

In Section 4.2, we discuss preliminaries and the notation that we use throughout the chapter.

In Section 4.3, we give a simple localization-based algorithm for independence testing and its

corresponding variant for goodness-of-fit testing. In Section 4.4, we present improvements

to our localization-based algorithms for forest-structured and ferromagnetic Ising models. In

Section 4.5, we describe our main algorithm for the high-temperature regime which uses a

global statistic on the Ising model. In Section 4.6, we compare our algorithms from Sections

4.3 and 4.5. In Section 4.7, we give a global statistic for testing models which are both

ferromagnetic and high-tempearture. In Section 4.8, we discuss the bounds in [LPW09] and

apply them to bounding the variance of bilinear statistics over the Ising model. In Section

4.9, we describe our lower bounds.

4.2 Preliminaries

In this chapter, we have a few differences in notation from the rest of the thesis, which we

outline here. Rather than considering distributions over the domain [𝑛], we instead consider

distributions over the domain {±1}𝑛. While before, our goal was to design algorithms

which were sublinear in the size of the domain, we now desire algorithms which are (poly)-

logarithmic: this will correspond to algorithms with sample complexity poly(𝑛). As the
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symbol 𝑚 is used to refer to the number of edges in a graph, we instead use 𝑘 for the number

of samples used by an algorithm.

Recall the definition of the Ising model from Eq. (4.1). We will abuse notation, referring

to both the probability distribution 𝑝 and the random vector 𝑋 that it samples in {±1}𝑉

as the Ising model. That is, 𝑋 ∼ 𝑝. We will use 𝑋𝑢 to denote the variable corresponding

to node 𝑢 in the Ising model 𝑋. When considering multiple samples from an Ising model

𝑋, we will use 𝑋(𝑙) to denote the 𝑙𝑡ℎ sample. We will use ℎ to denote the largest node

parameter in absolute value and 𝛽 to denote the largest edge parameter in absolute value.

That is, |𝜃𝑣| ≤ ℎ for all 𝑣 ∈ 𝑉 and |𝜃𝑒| ≤ 𝛽 for all 𝑒 ∈ 𝐸. Depending on the setting, our

results will depend on ℎ and 𝛽. Furthermore, in this chapter we will use the convention that

𝐸 = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ̸= 𝑣} and 𝜃𝑒 may be equal to 0, indicating that edge 𝑒 is not present

in the graph. We use 𝑚 to denote the number of edges with non-zero parameters in the

graph, and 𝛿max to denote the maximum degree of a node.

Throughout this chapter, we will use the notation 𝜇𝑣 , E[𝑋𝑣] for the marginal expec-

tation of a node 𝑣 ∈ 𝑉 (also called node marginal), and similarly 𝜇𝑢𝑣 , E[𝑋𝑢𝑋𝑣] for the

marginal expectation of an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (also called edge marginal). In case a context

includes multiple Ising models, we will use 𝜇𝑝
𝑒 to refer to the marginal expectation of an edge

𝑒 under the model 𝑝.

We will use 𝒰𝑛 to denote the uniform distribution over {±1}𝑛, which also corresponds to

the Ising model with 𝜃 = 0⃗. Similarly, we use ℐ for the set of all product distributions over

{±1}𝑛.

We will consider Rademacher random variables, where 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) takes value 1 with

probability 𝑝, and −1 otherwise.

When 𝑝 and 𝑞⃗ are vectors, we will write 𝑝 ≤ 𝑞⃗ to mean that 𝑝𝑖 ≤ 𝑞𝑖 for all 𝑖.

Definition 10. In the setting with no external field, 𝜃𝑣 = 0 for all 𝑣 ∈ 𝑉 .

Definition 11. In the ferromagnetic setting, 𝜃𝑒 ≥ 0 for all 𝑒 ∈ 𝐸.

Definition 12 (Dobrushin’s Uniqueness Condition). Consider an Ising model 𝑝 defined on a

graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 and parameter vector 𝜃. Suppose max𝑣∈𝑉
∑︀

𝑢̸=𝑣 tanh (|𝜃𝑢𝑣|) ≤

1 − 𝜂 for some constant 𝜂 > 0. Then 𝑝 is said to satisfy Dobrushin’s uniqueness condition,
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or be in the high temperature regime. Note that since tanh(|𝑥|) ≤ |𝑥| for all 𝑥, the above

condition follows from more simplified conditions which avoid having to deal with hyperbolic

functions. For instance, either of the following two conditions:

max
𝑣∈𝑉

∑︁
𝑢̸=𝑣

|𝜃𝑢𝑣| ≤ 1− 𝜂 or

𝛽𝛿max ≤ 1− 𝜂

are sufficient to imply Dobrushin’s condition (where 𝛽 = max𝑢,𝑣 |𝜃𝑢𝑣| and 𝛿max is the maxi-

mum degree of 𝐺).

In general, when one refers to the temperature of an Ising model, a high temperature

corresponds to small 𝜃𝑒 values, and a low temperature corresponds to large 𝜃𝑒 values. In this

work, we will only use the precise definition as given in Definition 12.

Remark 2. We note that high-temperature is not strictly needed for our results to hold – we

only need Hamming contraction of the “greedy coupling.” This condition implies rapid mixing

of the Glauber dynamics (in 𝑂(𝑛 log 𝑛) steps) via path coupling (Theorem 15.1 of [LPW09]).

See [DDK17, GLP17, GSS18] for further discussion of this weaker condition.

Lipschitz functions of the Ising model have the following variance bound, which is in

Chatterjee’s thesis [Cha05]:

Lemma 22 (Lipschitz Concentration Lemma). Suppose that 𝑓(𝑋1, . . . , 𝑋𝑛) is a function

of an Ising model in the high-temperature regime. Suppose the Lipschitz constants of 𝑓 are

𝑙1, 𝑙2, . . . , 𝑙𝑛 respectively. That is,

|𝑓(𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝑛)− 𝑓(𝑋1, . . . , 𝑋
′
𝑖, . . . , 𝑋𝑛)| ≤ 𝑙𝑖

for all values of 𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑛 and for any 𝑋𝑖 and 𝑋 ′
𝑖. Then for some absolute

constant 𝑐1,

Pr [|𝑓(𝑋)− E[𝑓(𝑋)]| > 𝑡] ≤ 2 exp

(︂
− 𝑐1𝑡

2

2
∑︀𝑛

𝑖=1 𝑙
2
𝑖

)︂
.
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In particular, for some absolute constant 𝑐2,

Var(𝑓(𝑋)) ≤ 𝑐2
∑︁
𝑖

𝑙2𝑖 .

We will use the following folklore result on estimating the parameter of a Rademacher

random variable.

Lemma 23. Given i.i.d. random variables 𝑋1, . . . , 𝑋𝑘 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) for 𝑘 = 𝑂(log(1/𝛿)/𝜀2),

there exists an algorithm which obtains an estimate 𝑝 such that |𝑝 − 𝑝| ≤ 𝜀 with probability

1− 𝛿.

In Section 4.8 we use the Glauber dynamics on the Ising model. Glauber dynamics is

the canonical Markov chain for sampling from an Ising model. We consider the basic variant

known as single-site Glauber dynamics. The dynamics are a Markov chain defined on the

set Σ𝑛 where Σ = {±1}. They proceed as follows:

1. Start at any state 𝑋(0) ∈ Σ𝑛. Let 𝑋(𝑡) denote the state of the dynamics at time 𝑡.

2. Let 𝑁(𝑢) denote the set of neighbors of node 𝑢. Pick a node 𝑢 uniformly at random

and update 𝑋 as follows:

𝑋(𝑡+1)
𝑢 = 1 w.p.

exp
(︁
𝜃𝑢 +

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
exp

(︁
𝜃𝑢 +

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
+ exp

(︁
−𝜃𝑢 −

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
𝑋(𝑡+1)

𝑢 = −1 w.p.
exp

(︁
−𝜃𝑢 −

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
exp

(︁
𝜃𝑢 +

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
+ exp

(︁
−𝜃𝑢 −

∑︀
𝑣∈𝑁(𝑢) 𝜃𝑢𝑣𝑋

(𝑡)
𝑣

)︁
𝑋(𝑡+1)

𝑣 = 𝑋(𝑡)
𝑣 ∀ 𝑣 ̸= 𝑢.

Glauber dynamics define a reversible, ergodic Markov chain whose stationary distribution

is identical to the corresponding Ising model. In many relevant settings, such as, for instance,

the high-temperature regime, the dynamics are fast mixing, i.e., they mix in time 𝑂(𝑛 log 𝑛)

and hence offer an efficient way to sample from Ising models.
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Input to Goodness-of-Fit Testing Algorithms. To solve the goodness-of-fit testing or

identity testing problem with respect to a discrete distribution 𝑞, a description of 𝑞 is given

as part of the input along with sample access to the distribution 𝑝 which we are testing.

In case 𝑞 is an Ising model, its support has exponential size and specifying the vector of

probability values at each point in its support is inefficient. Since 𝑞 is characterized by the

edge parameters between every pair of nodes and the node parameters associated with the

nodes, a succinct description would be to specify the parameters vectors {𝜃𝑢𝑣}, {𝜃𝑢}. In many

cases, we are also interested in knowing the edge and node marginals of the model. Although

these quantities can be computed from the parameter vectors, there is no efficient method

known to compute the marginals exactly for general regimes. A common approach is to use

MCMC sampling to generate samples from the Ising model. However, for this technique

to be efficient we require that the mixing time of the Markov chain be small which is not

true in general. Estimating and exact computation of the marginals of an Ising model is a

well-studied problem but is not the focus of this work. Hence, to avoid such computational

complications we will assume that for the identity testing problem the description of the

Ising model 𝑞 includes both the parameter vectors {𝜃𝑢𝑣}, {𝜃𝑢} as well as the edge and node

marginal vectors {𝜇𝑢𝑣 = E[𝑋𝑢𝑋𝑣]}, {𝜇𝑢 = E[𝑋𝑢]}.

Symmetric KL Divergence Between Two Ising Models. We note that the symmetric

KL divergence between two Ising models 𝑝 and 𝑞 admits a very convenient expression [SW12]:

𝑑SKL(𝑝, 𝑞) =
∑︁
𝑣∈𝑉

(𝜃𝑝𝑣 − 𝜃𝑞𝑣) (𝜇𝑝
𝑣 − 𝜇𝑞

𝑣) +
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(𝜃𝑝𝑒 − 𝜃𝑞𝑒) (𝜇𝑝
𝑒 − 𝜇𝑞

𝑒) . (4.2)

This expression will form the basis for all our algorithms.

4.3 Testing via Localization

Our first algorithm is a general purpose “localization” algorithm. While extremely simple,

this serves as a proof-of-concept that testing on Ising models can avoid the curse of di-

mensionality, while simultaneously giving a very efficient algorithm for certain parameter
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regimes. The main observation which enables us to do a localization based approach is

stated in the following Lemma, which allows us to “blame” a difference between models 𝑝

and 𝑞 on a discrepant node or edge.

Lemma 24. Given two Ising models 𝑝 and 𝑞, if 𝑑SKL(𝑝, 𝑞) ≥ 𝜀, then either

∙ There exists an edge 𝑒 = (𝑢, 𝑣) such that (𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣) (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣) ≥ 𝜀
2𝑚

; or

∙ There exists a node 𝑢 such that (𝜃𝑝𝑢 − 𝜃𝑞𝑢) (𝜇𝑝
𝑢 − 𝜇𝑞

𝑢) ≥ 𝜀
2𝑛

.

Proof of Lemma 24: We have,

𝑑SKL(𝑝, 𝑞) =
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(𝜃𝑝𝑒 − 𝜃𝑞𝑒) (𝜇𝑝
𝑒 − 𝜇𝑞

𝑒) +
∑︁
𝑣∈𝑉

(𝜃𝑝𝑣 − 𝜃𝑞𝑣) (𝜇𝑝
𝑣 − 𝜇𝑞

𝑣) ≥ 𝜀

=⇒
∑︁

𝑒=(𝑢,𝑣)∈𝐸

(𝜃𝑝𝑒 − 𝜃𝑞𝑒) (𝜇𝑝
𝑒 − 𝜇𝑞

𝑒) ≥ 𝜀/2 or
∑︁
𝑣∈𝑉

(𝜃𝑝𝑣 − 𝜃𝑞𝑣) (𝜇𝑝
𝑣 − 𝜇𝑞

𝑣) ≥ 𝜀/2

In the first case, there has to exist an edge 𝑒 = (𝑢, 𝑣) such that (𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣) (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣) ≥ 𝜀
2𝑚

and in the second case there has to exist a node 𝑢 such that (𝜃𝑝𝑢 − 𝜃𝑞𝑢) (𝜇𝑝
𝑢 − 𝜇𝑞

𝑢) ≥ 𝜀
2𝑛

thereby

proving the lemma.

Before giving a description of the localization algorithm, we state its guarantees.

Theorem 22. Given 𝑂̃
(︁

𝑚2𝛽2

𝜀2

)︁
samples from an Ising model 𝑝, there exists a polynomial-time

algorithm which distinguishes between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability

at least 2/3. Furthermore, given 𝑂̃
(︁

𝑚2𝛽2

𝜀2
+ 𝑛2ℎ2

𝜀2

)︁
samples from an Ising model 𝑝 and a

description of an Ising model 𝑞, there exists a polynomial-time algorithm which distinguishes

between the cases 𝑝 = 𝑞 and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability at least 2/3 where 𝛽 = max{|𝜃𝑢𝑣|}

and ℎ = max{|𝜃𝑢|}. The above algorithms assume that 𝑚, an upper bound on the number of

edges, is known. If no upper bound is known, we may use the trivial upper bound of
(︀
𝑛
2

)︀
. If

we are given as input the maximum degree of nodes in the graph 𝛿max, 𝑚 in the above bounds

is substituted by 𝑛𝛿max.

Note that the sample complexity achieved by the localization algorithm gets worse as the

graph becomes denser. This is because as the number of possible edges in the graph grows,
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the contribution to the distance by any single edge grows smaller thereby making it harder

to detect.

We describe the algorithm for independence testing in Section 4.3.1. The algorithm for

testing identity is similar, its description and correctness proofs are given in Section 4.3.2.

4.3.1 Testing Independence via Localization

We start with a high-level description of the algorithm. Given sample access to Ising model

𝑋 ∼ 𝑝 it will first obtain empirical estimates of the node marginals 𝜇𝑢 for each node 𝑢 ∈ 𝑉

and edge marginals 𝜇𝑢𝑣 for each pair of nodes (𝑢, 𝑣). Denote these empirical estimates by 𝜇̂𝑢

and 𝜇̂𝑢𝑣 respectively. Using these empirical estimates, the algorithm computes the empirical

estimate for the covariance of each pair of variables in the Ising model. That is, it computes

an empirical estimate of 𝜆𝑢𝑣 = E[𝑋𝑢𝑋𝑣]−E[𝑋𝑢]E[𝑋𝑣] for all pairs (𝑢, 𝑣). If they are all close

to zero, then we can conclude that 𝑝 ∈ ℐ. If there exists an edge for which 𝜆𝑢𝑣 is far from 0,

this indicates that 𝑝 is far from ℐ. The reason for this follows from the expression Lemma

24 and is described in further detail in the proof of Lemma 26. A precise description of the

test is given in in Algorithm 2 and its correctness is proven via Lemmas 25 and 26. We note

that this algorithm is phrased as if an upper bound on the number of edges 𝑚 is known. If

we instead know an upper bound on the maximum degree 𝛿max, then we can replace 𝑚 by

𝑛𝛿max.

Algorithm 2 Test if an Ising model 𝑝 is product
1: function LocalizationTest(sample access to Ising model 𝑝, accuracy parameter
𝜀, 𝛽,𝑚)

2: Draw 𝑘 = 𝑂
(︁

𝑚2𝛽2 log𝑛
𝜀2

)︁
samples from 𝑝. Denote the samples by 𝑋(1), . . . , 𝑋(𝑘)

3: Compute empirical estimates 𝜇̂𝑢 = 1
𝑘

∑︀
𝑖𝑋

(𝑖)
𝑢 for each node 𝑢 ∈ 𝑉 and 𝜇̂𝑢𝑣 =

1
𝑘

∑︀
𝑖𝑋

(𝑖)
𝑢 𝑋

(𝑖)
𝑣 for each pair of nodes (𝑢, 𝑣)

4: Using the above estimates compute the covariance estimates 𝜆̂𝑢𝑣 = 𝜇̂𝑢𝑣 − 𝜇̂𝑢𝜇̂𝑣 for
each pair of nodes (𝑢, 𝑣)

5: If for any pair of nodes (𝑢, 𝑣),
⃒⃒⃒
𝜆̂𝑢𝑣

⃒⃒⃒
≥ 𝜀

4𝑚𝛽
return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀

6: Otherwise, return that 𝑝 ∈ ℐ
7: end function

To prove correctness of Algorithm 2, we will require the following lemma, which allows
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us to detect pairs 𝑢, 𝑣 for which 𝜆𝑢𝑣 is far from 0.

Lemma 25. Given 𝑂
(︀
log𝑛
𝜀2

)︀
samples from an Ising model 𝑋 ∼ 𝑝, there exists a polynomial-

time algorithm which, with probability at least 9/10, can identify all pairs of nodes (𝑢, 𝑣) ∈ 𝑉 2

such that |𝜆𝑢𝑣| ≥ 𝜀, where 𝜆𝑢𝑣 = E[𝑋𝑢𝑋𝑣] − E[𝑋𝑢]E[𝑋𝑣]. Namely, the algorithm computes

the empirical value of |𝜆𝑢𝑣| for each pair of nodes and identifies pairs such that this value is

sufficiently far from 0.

Proof. This lemma is a direct consequence of Lemma 23. Note that for any edge 𝑒 =

(𝑢, 𝑣) ∈ 𝐸, 𝑋𝑢𝑋𝑣 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟((1 + 𝜇𝑒)/2). Also 𝑋𝑢 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟((1 + 𝜇𝑢)/2) and

𝑋𝑣 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟((1 + 𝜇𝑣)/2). We will use Lemma 23 to show that 𝑂(log 𝑛/𝜀2) samples

suffice to detect whether 𝜆𝑒 = 0 or |𝜆𝑒| ≥ 𝜀 with probability at least 1 − 1/10𝑛2. With

𝑂(log 𝑛/𝜀2) samples, Lemma 23 implies we can obtain estimates 𝜇̂𝑢𝑣, 𝜇̂𝑢 and 𝜇̂𝑣 for 𝜇𝑢𝑣, 𝜇𝑢

and 𝜇𝑣 respectively such that |𝜇̂𝑢𝑣 − 𝜇𝑢𝑣| ≤ 𝜀
10

, |𝜇̂𝑢 − 𝜇𝑢| ≤ 𝜀
10

and |𝜇̂𝑣 − 𝜇𝑣| ≤ 𝜀
10

with

probability at least 1 − 1/10𝑛2. Let 𝜆̂𝑢𝑣 = 𝜇̂𝑢𝑣 − 𝜇̂𝑢𝜇̂𝑣. Then from the above, it follows by

triangle inequality that |𝜆𝑢𝑣 − 𝜆̂𝑢𝑣| ≤ 3𝜀
10

+ 𝜀2

100
. It can be seen that in the case when the

latter term in the previous inequality dominates the first, 𝜀 is large enough that 𝑂(log 𝑛)

samples suffice to distinguish the two cases. In the more interesting case, 𝜀2

100
≤ 𝜀

10
, and

|𝜆𝑢𝑣 − 𝜆̂𝑢𝑣| ≤ 4𝜀
10

. Therefore if |𝜆𝑢𝑣| ≥ 𝜀, then
⃒⃒⃒
𝜆̂𝑢𝑣

⃒⃒⃒
≥ 6𝜀

10
, and if |𝜆𝑢𝑣| = 0, then

⃒⃒⃒
𝜆̂𝑢𝑣

⃒⃒⃒
≤ 4𝜀

10

thereby implying that with probability at least 1 − 1/10𝑛2 we can detect whether 𝜆𝑢𝑣 = 0

or |𝜆𝑢𝑣| ≥ 𝜀. Taking a union bound over all edges, the probability that we correctly identify

all such edges is at least 9/10.

With this lemma in hand, we now prove the first part of Theorem 22.

Lemma 26. Given 𝑂̃
(︁

𝑚2𝛽2

𝜀2

)︁
samples from an Ising model 𝑋 ∼ 𝑝, Algorithm 2 distinguishes

between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 2/3.

Proof. We will run Algorithm 2 on all pairs 𝑋𝑢, 𝑋𝑣 to identify any pair such that |𝜆𝑢𝑣| is

large. This will involve using the algorithm of Lemma 25 with parameter “𝜀” as 𝜀/2𝛽𝑚. If

no such pair is identified, output that 𝑝 ∈ ℐ, and otherwise, output that 𝑑SKL(𝑝, ℐ) ≥ 𝜀.

If 𝑝 ∈ ℐ, we know that E[𝑋𝑢𝑋𝑣] = E[𝑋𝑢]E[𝑋𝑣] for all edges (𝑢, 𝑣), and therefore, with

probability 9/10, there will be no edges for which the empirical estimate of |𝜆𝑒| ≥ 𝜀
2𝛽𝑚

. On
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the other hand, if 𝑑SKL(𝑝, ℐ) ≥ 𝜀, then 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 for every 𝑞 ∈ ℐ. In particular, consider

the product distribution 𝑞 on 𝑛 nodes such that 𝜇𝑞
𝑢 = 𝜇𝑝

𝑢 for all 𝑢 ∈ 𝑉 . For this particular

product distribution 𝑞, by (4.2), there must exist some 𝑒* such that |𝜆𝑒*| ≥ 𝜀
2𝛽𝑚

, and the

algorithm will identify this edge. This is because

∑︁
𝑣∈𝑉

(𝜃𝑝𝑣 − 𝜃𝑞𝑣) (𝜇𝑝
𝑣 − 𝜇𝑞

𝑣) = 0 (4.3)

∴ 𝑑SKL(𝑝, 𝑞) ≥ 𝜀

=⇒ ∃𝑒* = (𝑢, 𝑣) s.t (𝜃𝑝𝑒 − 𝜃𝑞𝑒) (𝜇𝑝
𝑒 − 𝜇𝑞

𝑒) ≥
𝜀

𝑚
(4.4)

=⇒ ∃𝑒* = (𝑢, 𝑣) s.t |(𝜇𝑝
𝑒 − 𝜇𝑞

𝑒)| ≥
𝜀

2𝛽𝑚
(4.5)

=⇒ ∃𝑒* = (𝑢, 𝑣) s.t |𝜆𝑒*| ≥
𝜀

2𝛽𝑚
.

where (4.3) follows because 𝜇𝑝
𝑣 = 𝜇𝑞

𝑣 for all 𝑣 ∈ 𝑉 , (4.4) follows from Lemma 24 and (4.5)

follows because |𝜃𝑝𝑒 − 𝜃𝑞𝑒| ≤ 2𝛽. This completes the proof of the first part of Theorem 22.

4.3.2 Testing Identity via Localization

If one wishes to test for identity of 𝑝 to an Ising model 𝑞, the quantities whose absolute

values indicate that 𝑝 is far from 𝑞 are 𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣 for all pairs 𝑢, 𝑣, and 𝜇𝑝
𝑢 − 𝜇𝑞

𝑢 for all 𝑢,

instead of 𝜆𝑢𝑣. Since 𝜇𝑞
𝑢𝑣 and 𝜇𝑞

𝑢 are given as part of the description of 𝑞, we only have to

identify whether E[𝑋𝑢𝑋𝑣] ≥ 𝑐 and E[𝑋𝑢] ≥ 𝑐 for any constant 𝑐 ∈ [−1, 1]. A variant of

Lemma 25 as stated in Lemma 27 achieves this goal. Algorithm 3 describes the localization

based identity test. Its correctness proof will imply the second part of Theorem 22 and is

similar in vein to that of Algorithm 2. It is omitted here.

Lemma 27. Given 𝑂
(︀
log𝑛
𝜀2

)︀
samples from an Ising model 𝑝, there exists a polynomial-time

algorithm which, with probability at least 9/10, can identify all pairs of nodes (𝑢, 𝑣) ∈ 𝑉 2

such that |𝜇𝑝
𝑢𝑣 − 𝑐| ≥ 𝜀 for any constant 𝑐 ∈ [−1, 1]. There exists a similar algorithm, with

sample complexity 𝑂
(︀
log𝑛
𝜀2

)︀
which instead identifies all 𝑣 ∈ 𝑉 such that |𝜇𝑝

𝑣 − 𝑐| ≥ 𝜀, where

𝜇𝑝
𝑣 = E[𝑋𝑣] for any constant 𝑐 ∈ [−1, 1].

Proof of Lemma 27: The proof follows along the same lines as Lemma 25. Let 𝑋 ∼ 𝑝. Then,
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for any pair of nodes (𝑢, 𝑣), 𝑋𝑢𝑋𝑣 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟((1+𝜇𝑝
𝑒)/2). Also 𝑋𝑢 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟((1+

𝜇𝑝
𝑢)/2) for any node 𝑢. For any pair of nodes 𝑢, 𝑣, with 𝑂(log 𝑛/𝜀2) samples, Lemma 23

implies we that the empirical estimate 𝜇̂𝑝
𝑢𝑣 is such that |𝜇̂𝑝

𝑢𝑣 − 𝜇𝑝
𝑢𝑣| ≤ 𝜀

10
with probability at

least 1 − 1/10𝑛2. By triangle inequality, we get |𝜇𝑝
𝑢𝑣 − 𝑐| − 𝜀

10
≤ |𝜇̂𝑝

𝑢𝑣 − 𝑐| ≤ |𝜇𝑝
𝑢𝑣 − 𝑐| + 𝜀

10
.

Therefore if |𝜇𝑝
𝑢𝑣 − 𝑐| = 0, then |𝜇̂𝑝

𝑢𝑣 − 𝑐| ≤ 𝜀
10

w.p. ≥ 1 − 1/10𝑛2 and if |𝜇𝑝
𝑢𝑣 − 𝑐| ≥ 𝜀, then

|𝜇̂𝑝
𝑢𝑣 − 𝑐| ≥ 9𝜀

10
w.p. ≥ 1 − 1/10𝑛2. Hence by comparing whether |𝜇̂𝑝

𝑢𝑣 − 𝑐| to 𝜀/2 we can

distinguish between the cases |𝜇𝑝
𝑢𝑣 − 𝑐| = 0 and |𝜇𝑝

𝑢𝑣 − 𝑐| ≥ 𝜀 w.p. ≥ 1 − 1/10𝑛2. Taking

a union bound over all edges, the probability that we correctly identify all such edges is at

least 9/10. The second statement of the Lemma about the nodes follows similarly.

Algorithm 3 Test if an Ising model 𝑝 is identical to 𝑞
1: function LocalizationTestIdentity(sample access to Ising model 𝑋 ∼ 𝑝, descrip-

tion of Ising model 𝑞, accuracy parameter 𝜀,𝛽,ℎ,𝑚)

2: Draw 𝑘 = 𝑂

(︂
(𝑚2𝛽2+𝑛2ℎ2) log𝑛

𝜀2

)︂
samples from 𝑝. Denote the samples by 𝑋(1), . . . , 𝑋(𝑘)

3: Compute empirical estimates 𝜇̂𝑝
𝑢 = 1

𝑘

∑︀
𝑖𝑋

(𝑖)
𝑢 for each node 𝑢 ∈ 𝑉 and 𝜇̂𝑝

𝑢𝑣 =
1
𝑘

∑︀
𝑖𝑋

(𝑖)
𝑢 𝑋

(𝑖)
𝑣 for each pair of nodes (𝑢, 𝑣)

4: If for any pair of nodes (𝑢, 𝑣), |𝜇̂𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣| ≥ 𝜀
8𝑚𝛽

return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀

5: If for any node 𝑢, if |𝜇̂𝑝
𝑢 − 𝜇𝑞

𝑢| ≥ 𝜀
8𝑛ℎ

return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀
6: Otherwise, return that 𝑝 = 𝑞
7: end function

The proof of correctness of Algorithm 3 follows along the same lines as that of Algorithm

2 and uses Lemma 27. We omit the proof here.

4.4 Improved Testing on Forests and Ferromagnets

In this section we will describe testing algorithms for two commonly studied classes of Ising

models, namely forests and ferromagnets. In these cases, the sample complexity improves

compared to the baseline result when in the regime of no external field. The testers are still

localization based (like those of Section 4.3), but we can now leverage structural properties

to obtain more efficient testers.

First, we consider the class of all forest structured Ising models, where the underlying

graph 𝐺 = (𝑉,𝐸) is a forest. Such models exhibit nice structural properties which can
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be exploited to obtain more efficient tests. In particular, under no external field, the edge

marginals 𝜇𝑒, which, in general are hard to compute, have a simple closed form expression.

This structural information enables us to improve our testing algorithms from Section 4.3

on forest graphs. We state the improved sample complexities here and defer a detailed

description of the algorithms to Section 4.4.1.

Theorem 23 (Independence testing of Forest-Structured Ising Models). Algorithm 4 takes

in 𝑂̃
(︀
𝑛
𝜀

)︀
samples from an Ising model 𝑋 ∼ 𝑝 whose underlying graph is a forest and which is

under no external field and outputs whether 𝑝 ∈ ℐ or 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability ≥ 9/10.

Remark 3. Note that Theorem 23 together with our lower bound described in Theorem 40

indicate a tight sample complexity up to logarithmic factors for independence testing on

forest-structured Ising models under no external field.

Theorem 24 (Identity Testing of Forest-Structured Ising Models). Algorithm 5 takes in the

edge parameters of an Ising model 𝑞 on a forest graph and under no external field as input,

and draws 𝑂̃
(︀
𝑐(𝛽)𝑛

𝜀

)︀
samples from an Ising model 𝑋 ∼ 𝑝 (where 𝑐(𝛽) is a function of the

parameter 𝛽) whose underlying graph is a forest and under no external field, and outputs

whether 𝑝 = 𝑞 or 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability ≥ 9/10.

Note that for identity testing, any algorithm necessarily has to have at least a 𝛽 depen-

dence due to the lower bound we show in Theorem 41.

The second class of Ising models we consider this section are ferromagnets. For a ferro-

magnetic Ising model, 𝜃𝑢𝑣 ≥ 0 for every pair of nodes 𝑢, 𝑣. Ferromagnets may potentially

contain cycles but since all interactions are ferromagnetic, the marginal of every edge is at

least what it would have been if it was a solo edge. This intuitive property turns out to be

surprisingly difficult to prove in a direct way. We prove this structural property using an

alternative view of the Ising model density which comes from the Fortuin-Kasteleyn random

cluster model. Using this structural property, we give a quadratic improvement in the de-

pendence on parameter 𝑚 for testing independence under no external field. We state our

main result in this regime here and a full description of the algorithm and the structural

lemma are provided in Section 4.4.2.
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Theorem 25 (Independence Testing of Ferromagnetic Ising Models). Algorithm 6 takes in

𝑂̃
(︀
𝑛𝛿max

𝜀

)︀
samples from a ferromagnetic Ising model 𝑋 ∼ 𝑝 which is under no external field

and outputs whether 𝑝 ∈ ℐ or 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability ≥ 9/10.

4.4.1 Testing on Forests

Before we present the improved algorithms, we will prove the following fact about the edge

marginals of an arbitrary Ising model with no external field where the underlying graph is

a forest. This result was known prior to this work by the community but we couldn’t find a

proof of the same, hence we provide our own proof of the lemma.

Lemma 28 (Structural Lemma for Forest-Structured Ising Models). If 𝑝 is an Ising model

on a forest graph with no external field, and 𝑋 ∼ 𝑝, then for any (𝑢, 𝑣) ∈ 𝐸, we have

E [𝑋𝑢𝑋𝑣] = tanh(𝜃𝑢𝑣).

Proof. Consider any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸. Consider the tree (𝑇,𝐸𝑇 ) which contains 𝑒. Let 𝑛𝑇

be the number of nodes in the tree. We partition the vertex set 𝑇 into 𝑈 and 𝑉 as follows.

Remove edge 𝑒 from the graph and let 𝑈 denote all the vertices which lie in the connected

component of node 𝑢 except 𝑢 itself. Similarly, let 𝑉 denote all the vertices which lie in

the connected component of node 𝑣 except node 𝑣 itself. Hence, 𝑇 = 𝑈 ∪ 𝑉 ∪ {𝑢} ∪ {𝑣}.

Let 𝑋𝑈 be the vector random variable which denotes the assignment of values in {±1}|𝑈 | to

the nodes in 𝑈 . 𝑋𝑉 is defined similarly. We will also denote a specific value assignment to

a set of nodes 𝑆 by 𝑥𝑆 and −𝑥𝑆 denotes the assignment which corresponds to multiplying

each coordinate of 𝑥𝑆 by −1. Now we state the following claim which follows from the tree

structure of the Ising model.

Claim 2. Pr [𝑋𝑈 = 𝑥𝑈 , 𝑋𝑢 = 1, 𝑋𝑣 = 1, 𝑋𝑉 = 𝑥𝑉 ] = exp(2𝜃𝑢𝑣) Pr [𝑋𝑈 = 𝑥𝑈 , 𝑋𝑢 = 1, 𝑋𝑣 = −1, 𝑋𝑉 = −𝑥𝑉 ].

In particular the above claim implies the following corollary which is obtained by marginal-

ization of the probability to nodes 𝑢 and 𝑣.

Corollary 11. If 𝑋 is an Ising model on a forest graph 𝐺 = (𝑉,𝐸) with no external field,

then for any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, Pr [𝑋𝑢 = 1, 𝑋𝑣 = 1] = exp(2𝜃𝑢𝑣) Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1].
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Now,

E [𝑋𝑢𝑋𝑣] = Pr [𝑋𝑢𝑋𝑣 = 1]− Pr [𝑋𝑢𝑋𝑣 = −1] (4.6)

= 2𝑃𝑟 [𝑋𝑢 = 1, 𝑋𝑣 = 1]− 2 Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1] (4.7)

=
2𝑃𝑟 [𝑋𝑢 = 1, 𝑋𝑣 = 1]− 2 Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]

2𝑃𝑟 [𝑋𝑢 = 1, 𝑋𝑣 = 1] + 2 Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]
(4.8)

=
𝑃𝑟 [𝑋𝑢 = 1, 𝑋𝑣 = 1]− Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]

𝑃𝑟 [𝑋𝑢 = 1, 𝑋𝑣 = 1] + Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]
(4.9)

=

(︂
exp(2𝜃𝑢𝑣)− 1

exp(2𝜃𝑢𝑣) + 1

)︂
Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]

Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1]
(4.10)

= tanh(𝜃𝑢𝑣) (4.11)

where (4.7) follows because Pr [𝑋𝑢 = 1, 𝑋𝑣 = 1] = Pr [𝑋𝑢 = −1, 𝑋𝑣 = −1] and Pr [𝑋𝑢 = −1, 𝑋𝑣 = 1] =

Pr [𝑋𝑢 = 1, 𝑋𝑣 = −1] by symmetry. Line (4.8) divides the expression by the total probability

which is 1 and (4.10) follows from Corollary 11.

Given the above structural lemma, we give the following simple algorithm for testing

independence on forest Ising models under no external field.

Algorithm 4 Test if a forest Ising model 𝑝 under no external field is product
1: function TestForestIsing-Product(sample access to Ising model 𝑝)
2: Run the algorithm of Lemma 25 to identify all edges 𝑒 = (𝑢, 𝑣) such that |E[𝑋𝑢𝑋𝑣]| ≥√︀

𝜀
𝑛

using 𝑂̃
(︀
𝑛
𝜀

)︀
samples. If it identifies any edges, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀

.

3: Otherwise, return that 𝑝 is product.
4: end function

Algorithm 4, at a high level, works as follows. If there is an edge parameter whose abso-

lute value is larger than a certain threshold, it will be easy to detect due to the structural

information about the edge marginals. In case all edges have parameters smaller in absolute

value than this threshold, the expression for 𝑑SKL(., .) between two Ising models tells us that

there still has to be at least one edge with a significantly large value of 𝜇𝑒 in case the model

is far from uniform, and hence will still be detectable by the algorithm of Lemma 25. The

proof of Theorem 23 shows this formally.
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Proof of Theorem 23: Firstly, note that under no external field, the only product Ising

model is the uniform distribution 𝒰𝑛. Therefore the problem reduces to testing whether 𝑝

is uniform or not. Consider the case when 𝑝 is indeed uniform. That is, there are no edges

in the underlying graph of the Ising model. In this case with probability at least 9/10 the

localization algorithm of Lemma 25 will output no edges. Hence Algorithm 4 will output

that 𝑝 is uniform.

In case 𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀, we split the analysis into two cases.

∙ Case 1: There exists an edge 𝑒 = (𝑢, 𝑣) such that |𝜃𝑢𝑣| ≥
√︀

𝜀
𝑛
. In this case, E[𝑋𝑢𝑋𝑣] =

tanh(𝜃𝑢𝑣) and in the regime where |𝜃| = 𝑜(1), |tanh(𝜃)| ≥ |𝜃/2|. Hence implying that

|E[𝑋𝑢𝑋𝑣]| ≥ |𝜃𝑢𝑣/2| ≥
⃒⃒√︀

𝜀
𝑛
/2
⃒⃒
. Therefore the localization algorithm of Lemma 25

would identify such an edge with probability at least 9/10. Note that the regime where

the inequality |tanh(𝜃)| ≥ |𝜃/2| isn’t valid is easily detectable using 𝑂̃(𝑛
𝜀
) samples, as

this would imply that |𝜃| ≥ 1.9 and |E[𝑋𝑢𝑋𝑣]| ≥ 0.95.

∙ Case 2: All edges 𝑒 = (𝑢, 𝑣) are such that |𝜃𝑢𝑣| ≤
⃒⃒√︀

𝜀
𝑛

⃒⃒
. In this case we have,

𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀 (4.12)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t 𝜃𝑢𝑣E[𝑋𝑢𝑋𝑣] ≥
𝜀

𝑛
(4.13)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t |E[𝑋𝑢𝑋𝑣]| ≥
⃒⃒⃒⃒
𝜀

𝑛
×
√︂
𝑛

𝜀

⃒⃒⃒⃒
(4.14)

=

√︂
𝜀

𝑛
(4.15)

Hence, the localization algorithm of Lemma 25 would identify such an edge with prob-

ability at least 9/10.

Next, we will present an algorithm for identity testing on forest Ising models under no

external field.

Proof of Theorem 24: Consider the case when 𝑝 is indeed 𝑞. In this case with probability at

least 9/10 the localization algorithm of Lemma 25 will output no edges. Hence Algorithm 5
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Algorithm 5 Test if a forest Ising model 𝑝 under no external field is identical to a given
Ising model 𝑞
1: function TestForestIsing-Identity(Ising model 𝑞,sample access to Ising model 𝑝)
2: If the Ising model 𝑞 is not a forest, or has a non-zero external field on some node,

return 𝑑SKL(𝑝, 𝑞) ≥ 𝜀
.

3: Run the algorithm of Lemma 25 to identify all edges 𝑒 = (𝑢, 𝑣) such that
|E[𝑋𝑢𝑋𝑣]− tanh(𝜃𝑞𝑢𝑣)| ≥

√︀
𝜀
𝑛

using 𝑂̃
(︀
𝑛
𝜀

)︀
samples. If it identifies any edges, return

that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀

.

4: Otherwise, return that 𝑝 = 𝑞.
5: end function

will output that 𝑝 is uniform.

In case 𝑑SKL(𝑝, 𝑞) ≥ 𝜀, we split the analysis into two cases.

∙ Case 1: There exists an edge 𝑒 = (𝑢, 𝑣) such that |𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣| ≥
√︀

𝜀
𝑛
. In this case,

E[𝑋𝑢𝑋𝑣] − 𝜇𝑞
𝑢𝑣 = tanh(𝜃𝑝𝑢𝑣) − tanh(𝜃𝑞𝑢𝑣) and hence has the same sign as 𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣.

Assume that 𝜃𝑝𝑢𝑣 ≥ 𝜃𝑞𝑢𝑣. The argument for the case 𝜃𝑞𝑢𝑣 > 𝜃𝑝𝑢𝑣 will follow similarly. If

𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣 ≤ 1/2 tanh(𝛽), then the following inequality holds from Taylor’s theorem.

tanh(𝜃𝑝𝑢𝑣)− tanh(𝜃𝑞𝑢𝑣) ≥
sech2(𝛽) (𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣)

2

which would imply tanh(𝜃𝑝𝑢𝑣) − tanh(𝜃𝑞𝑢𝑣) ≥
sech2(𝛽)

2

√︀
𝜀
𝑛

and hence the localization

algorithm of Lemma 25 would identify edge 𝑒 with probability at least 9/10 us-

ing 𝑂̃
(︁

𝑐1(𝛽)𝑛
𝜀

)︁
samples (where 𝑐1(𝛽) = cosh4(𝛽)). If 𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣 > 1/2 tanh(𝛽), then

tanh(𝜃𝑝𝑢𝑣)− tanh(𝜃𝑞𝑢𝑣) ≥ tanh(𝛽)− tanh
(︁
𝛽 − 1

2 tanh(𝛽)

)︁
and hence the localization algo-

rithm of Lemma 25 would identify edge 𝑒 with probability at least 9/10 using 𝑂̃ (𝑐2(𝛽))

samples where 𝑐2(𝛽) = 1
(tanh(𝛽)−tanh(𝛽−1/2 tanh(𝛽)))2

. Note that as 𝛽 grows small, 𝑐2(𝛽)

gets worse. However it cannot grow unbounded as we also have to satisfy the constraint

that 𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣 ≤ 2𝛽. This implies that

𝑐2(𝛽) = min

{︂
𝛽2,

1

(tanh(𝛽)− tanh(𝛽 − 1/2 tanh(𝛽)))2

}︂

samples suffice in this case. Therefore the algorithm will give the correct output with

probability > 9/10 using 𝑂̃
(︀
𝑐(𝛽)𝑛

𝜀

)︀
samples where 𝑐(𝛽) = max{𝑐1(𝛽), 𝑐2(𝛽)}.
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∙ Case 2: All edges 𝑒 = (𝑢, 𝑣) are such that |𝜃𝑞𝑢𝑣 − 𝜃𝑞𝑢𝑣| ≤
√︀

𝜀
𝑛
. In this case we have,

𝑑SKL(𝑝, 𝑞) ≥ 𝜀 (4.16)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t (𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣) (E[𝑋𝑢𝑋𝑣]− 𝜇𝑞
𝑢𝑣) ≥

𝜀

𝑛
(4.17)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t |E[𝑋𝑢𝑋𝑣]− 𝜇𝑞
𝑢𝑣| ≥

⃒⃒⃒⃒
𝜀

𝑛
×
√︂
𝑛

𝜀

⃒⃒⃒⃒
(4.18)

=

√︂
𝜀

𝑛
(4.19)

Hence, the localization algorithm of Lemma 25 would identify such an edge with prob-

ability at least 9/10.

4.4.2 Testing on Ferromagnets

In this section we will describe an algorithm for testing independence of ferromagnetic Ising

models under no external field. The tester follows the localization based recipe of Section 4.3

but leverages additional structural information about ferromagnets to obtain an improved

sample complexity.

At a high level, the algorithm is as follows: if there exists an edge with a large edge

parameter, then we lower bound its marginal by tanh(𝜃𝑢𝑣) where 𝑢𝑣 is the edge under con-

sideration. This implies that its marginal sticks out and is easy to catch via performing local

tests on all edges. If all the edge parameters were small, then Algorithm 2 is already efficient.

We first prove a structural lemma about ferromagnetic Ising models. We will use the

Fortuin-Kasteleyn random cluster model and its coupling with the Ising model (described in

Chapter 10 of [RAS15]) to argue that in any ferromagnetic Ising model 𝜇𝑢𝑣 ≥ tanh(𝜃𝑢𝑣) for

all pairs 𝑢, 𝑣.
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4.4.2.1 Random Cluster Model

Let 𝐺 = (𝑉,𝐸) be a finite graph. The random cluster measure is a probability distribution on

the space Ω = {0, 1}𝐸 of bond configurations denoted by 𝜂 = (𝜂(𝑒))𝑒∈𝐸 ∈ {0, 1}𝐸. Each edge

has an associated bond 𝜂(𝑒). 𝜂(𝑒) = 1 denotes that bond 𝑒 is open or present and 𝜂(𝑒) = 0

implies that bond 𝑒 is closed or unavailable. A random cluster measure is parameterized by

an edge probability 0 < 𝑟 < 1 and by a second parameter 0 < 𝑠 < ∞. Let 𝑘(𝜂) denote

the number of connected components in the graph (𝑉, 𝜂). The random cluster measure is

defined by

𝜌𝑟,𝑠(𝜂) =
1

𝑍𝑟,𝑠

(︃∏︁
𝑒∈𝐸

𝑟𝜂(𝑒)(1− 𝑟)1−𝜂(𝑒)

)︃
𝑠𝑘(𝜂)

where 𝑍𝑟,𝑠 is a normalizing factor to make 𝜌 a probability density. We consider a general-

ization of the random cluster model where each edge is allowed to have its own parameter

0 < 𝑟𝑒 < 1. Under this generalization, the measure becomes

𝜌𝑟⃗,𝑠(𝜂) =
1

𝑍𝑟⃗,𝑠

(︃∏︁
𝑒∈𝐸

𝑟𝜂(𝑒)𝑒 (1− 𝑟𝑒)1−𝜂(𝑒)

)︃
𝑠𝑘(𝜂). (4.20)

The random cluster measure is stochastically increasing in 𝑟⃗ when 𝑠 ≥ 1. This property is

formally stated in Lemma 10.3 of [RAS15]. We state a generalized version of the Lemma

here which holds when each edge is allowed its own probability parameter 𝑟𝑒.

Lemma 29. [Lemma 10.3 from [RAS15]] For 𝑠 ≥ 1, and 𝑟1 ≤ 𝑟2 coordinate-wise, 𝜌𝑟1,𝑠 ≤

𝜌𝑟2,𝑠 where given two bond configurations 𝜂1 and 𝜂2, 𝜂1 ≥ 𝜂2 iff 𝜂1(𝑒) = 1 for all 𝑒 such that

𝜂2(𝑒) = 1.

4.4.2.2 Coupling between the Random Cluster Model and the Ising model

We will now describe a coupling between the random cluster measure and the probability

density function for a ferromagnetic Ising model. In particular, the edge probability 𝑟𝑒 under

the random cluster measure and the edge parameters 𝜃𝑒 of the Ising model are related by

𝑟𝑒 = 1− exp(−2𝜃𝑒)
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and the parameter 𝑠 = 2 because the Ising model has two spins ±1. The coupling 𝑄 will be

a joint distribution on the spin variables 𝑋 = (𝑋1 . . . 𝑋𝑛) of the Ising model and the bond

variables 𝜂 = (𝜂(𝑒))𝑒∈𝐸. The measure 𝑄 is defined as

𝑄(𝑋, 𝜂) =
1

𝑍

∏︁
𝑒=(𝑢,𝑣)∈𝐸

𝑟𝜂(𝑒)𝑒 (1− 𝑟𝑒)1−𝜂(𝑒) (1𝑋𝑢=𝑋𝑣 + (1− 𝜂(𝑒))1𝑋𝑢 ̸=𝑋𝑣)

where 𝑍 is a normalizing constant so as to make 𝑄 a probability measure. Under the relation

stated above between 𝑟𝑒 and 𝜃𝑒, the following properties regarding the marginal distributions

of 𝑄 hold.

∑︁
𝜂∈{0,1}𝐸

𝑄(𝑋, 𝜂) =
1

𝑍 ′ exp

(︃∑︁
𝑢̸=𝑣

𝜃𝑢𝑣𝑋𝑢𝑋𝑣

)︃
∑︁

𝑋∈{±1}𝑛
𝑄(𝑋, 𝜂) =

1

𝑍 ′′

(︃∏︁
𝑒∈𝐸

𝑟𝜂(𝑒)𝑒 (1− 𝑟𝑒)1−𝜂(𝑒)

)︃
2𝑘(𝜂) = 𝜌𝑟⃗,2(𝜂)

(4.21)

where 𝑍 ′, 𝑍 ′′ are normalizing constants to make the marginals probability densities. The

above equations imply that the measure 𝑄 is a valid coupling and more importantly they

yield an alternative way to sample from the Ising model as follows:

First sample a bond configuration 𝜂 according to 𝜌𝑟⃗,2(𝜂). For each connected component

in the bond graph, flip a fair coin to determine if the variables in that component will be all

+1 or all −1.

In addition to the above information about the marginals of 𝑄, we will need the following

simple observations.

1. 𝑄(𝑋, 𝜂) = 0 if 𝜂(𝑒) = 1 for any 𝑒 /∈ 𝐸.

2. 𝑄(𝑋, 𝜂) = 0 if for any 𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝜂(𝑒) = 1 and 𝑋𝑢 ̸= 𝑋𝑣.

Next we state another property of the coupling 𝑄(., .) which says that if two nodes 𝑢

and 𝑣 are in different connected components in the bond graph specified by 𝜂, then the
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probability that 𝑋𝑢 = 𝑋𝑣 is the same as the probability that 𝑋𝑢 ̸= 𝑋𝑣.

Claim 3. Let 𝐶𝜂(𝑢, 𝑣) denote the predicate that under the bond configuration 𝜂, 𝑢 and 𝑣 are

connected with a path of open bonds. Then,

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.
𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) =
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.
𝑋𝑢 ̸=𝑋𝑣

𝑄(𝑋, 𝜂)

The proof of the above claim is quite simple and follows by matching the appropriate

terms in the probability density 𝑄 when 𝑢 and 𝑣 lie in different connected components. The

proof is omitted here.

Armed with the coupling 𝑄 and its properties stated above, we are now ready to state

the main structural lemma we show for ferromagnetic Ising models.

Lemma 30. Consider two ferromagnetic Ising models 𝑝 and 𝑞 under no external field defined

on 𝐺𝑝 = (𝑉,𝐸𝑝) and 𝐺𝑞 = (𝑉,𝐸𝑞). Denote the parameter vector of 𝑝 model by 𝜃𝑝 and that

of 𝑞 model by 𝜃𝑞. If 𝜃𝑝 ≥ 𝜃𝑞 coordinate-wise, then for any two nodes 𝑢, 𝑣 ∈ 𝑉 , 𝜇𝑝
𝑢𝑣 ≥ 𝜇𝑞

𝑢𝑣.

Proof. Since

𝜇𝑝
𝑢𝑣 = Pr

𝑝
[𝑋𝑢 = 𝑋𝑣]− Pr

𝑝
[𝑋𝑢 ̸= 𝑋𝑣]

=⇒ 𝜇𝑝
𝑢𝑣 = 2 Pr

𝑝
[𝑋𝑢 = 𝑋𝑣]− 1

to show that 𝜇𝑝
𝑢𝑣 ≥ 𝜇𝑞

𝑢𝑣 it suffices to show that Pr𝑝 [𝑋𝑢 = 𝑋𝑣] ≥ Pr𝑞 [𝑋𝑢 = 𝑋𝑣]. Consider the

coupling 𝑄(𝑋, 𝜂) described above between the random cluster measure and the Ising model

probability. Pr𝑝 [𝑋𝑢 = 𝑋𝑣] can be expressed in terms of 𝑄𝑝(𝑋, 𝜂) as follows:

Pr
𝑝

[𝑋𝑢 = 𝑋𝑣] =
∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

∑︁
𝜂

𝑄𝑝(𝑋, 𝜂)

Denote the sum on the right in the above equation by 𝑆𝑝. It suffices to show that 𝑆𝑝 ≥ 𝑆𝑞.
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Lemma 10.3 of [RAS15] gives that for any bond configuration 𝜂0,

∑︁
𝜂≥𝜂0

𝜌𝐸𝑏
𝑝 (𝜂) ≥

∑︁
𝜂≥𝜂0

𝜌𝐸𝑏
𝑞 (𝜂).

This follows because the parameter vectors of 𝑝 and 𝑞 satisfy the condition of the lemma

that 𝜃𝑝 ≥ 𝜃𝑞. Again, let 𝐶𝜂(𝑢, 𝑣) denote the predicate that under the bond configuration 𝜂,

𝑢 and 𝑣 are connected. Let 𝐻 be the set of all bond configurations such that 𝑢 and 𝑣 are

connected by a single distinct path. Therefore 𝐶𝜂0(𝑢, 𝑣) = 1 for all 𝜂0 ∈ 𝐻. Then the set

𝐶 = {𝜂|𝜂 ≥ 𝜂0 for some 𝜂0 ∈ 𝐻}

represents precisely the bond configurations in which 𝑢 and 𝑣 are connected. Applying

Lemma 10.3 of [RAS15] on each 𝜂0 ∈ 𝐻 and summing up the inequalities obtained, we get

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

𝜌𝐸𝑏
𝑝 (𝜂) ≥

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

𝜌𝐸𝑏
𝑞 (𝜂)

=⇒
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋

𝑄𝑝(𝑋, 𝜂) ≥
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋

𝑄𝑞(𝑋, 𝜂)

=⇒
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄𝑝(𝑋, 𝜂) ≥
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄𝑞(𝑋, 𝜂) (4.22)

where the last inequality follows because 𝑄(𝑋, 𝜂) = 0 if for any pair 𝑢, 𝑣, 𝜂(𝑢𝑣) = 1 but

𝑋𝑢 ̸= 𝑋𝑣.

Also, from Claim 3, we have that for any Ising model,

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) =
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢 ̸=𝑋𝑣

𝑄(𝑋, 𝜂) (4.23)
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And since 𝑄(., .) is a probability measure we have that for any Ising model,

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢 ̸=𝑋𝑣

𝑄(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢 ̸=𝑋𝑣

𝑄(𝑋, 𝜂) = 1(4.24)

=⇒
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢 ̸=𝑋𝑣

𝑄(𝑋, 𝜂) = 1(4.25)

=⇒
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) + 2
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄(𝑋, 𝜂) = 1(4.26)

where (4.25) follows because the last term in (4.24) is 0 and (4.26) follows from (4.23).

Equation (4.26) implies that

𝑆𝑝 =
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄𝑝(𝑋, 𝜂) +
∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=0

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄𝑝(𝑋, 𝜂)

=
1

2

∑︁
𝜂 s.t

𝐶𝜂(𝑢,𝑣)=1

∑︁
𝑋 s.t.

𝑋𝑢=𝑋𝑣

𝑄𝑝(𝑋, 𝜂) +
1

2

Therefore from (4.22), we get

𝑆𝑝 ≥ 𝑆𝑞

Using the above lemma, we now prove the main structural lemma for ferromagnets which

will be crucial to our algorithm for testing ferromagnetic Ising models.

Lemma 31 (Structural Lemma about Ferromagnetic Ising Models). If 𝑋 ∼ 𝑝 is a ferro-

magnetic Ising model on a graph 𝐺 = (𝑉,𝐸) under zero external field, then 𝜇𝑢𝑣 ≥ tanh(𝜃𝑢𝑣)

for all edges (𝑢, 𝑣) ∈ 𝐸.

Proof. Fix the edge of concern 𝑒 = (𝑢, 𝑣). If the graph doesn’t contain cycles, then from

Lemma 28 𝜇𝑢𝑣 = tanh(𝜃𝑢𝑣) and the statement is true. To show that the statement holds

for general graphs we will use induction on the structure of the graph. Graph 𝐺 can be

constructed as follows. Start with the single edge 𝑒 = (𝑢, 𝑣) and then add the remaining

edges in 𝐸∖{𝑒} one by one in some order. Denote the intermediate graphs obtained during
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this process as 𝐺0, 𝐺1, . . . , 𝐺𝑚 = 𝐺 where 𝐺0 is the graph consisting of just a single edge.

For each graph 𝐺𝑖 we can associate the corresponding Ising model 𝑝𝑖 to be the model which

has 𝜃𝑝𝑖𝑒 = 𝜃𝑒 for 𝑒 ∈ 𝐸𝐺𝑖
and 𝜃𝑝𝑖𝑒 = 0 otherwise. For each graph 𝐺𝑖 in the sequence, we

will use 𝜇𝑝𝑖
𝑢𝑣 to denote E [𝑋𝑢𝑋𝑣] for the Ising model corresponding to graph 𝐺𝑖. We will

prove that 𝜇𝑝
𝑢𝑣 ≥ tanh(𝜃𝑢𝑣) by induction on this sequence of graphs. The statement can

be easily verified to be true for 𝐺0. In fact, 𝜇𝑝0
𝑢𝑣 = tanh(𝜃𝑢𝑣). Suppose the statement was

true for some 𝐺𝑖 in the sequence. By Lemma 30, we have that 𝜇𝑝𝑖+1
𝑢𝑣 ≥ 𝜇𝑝𝑖

𝑢𝑣. This implies

that 𝜇𝐺𝑝𝑖+1
𝑢𝑣 ≥ tanh(𝜃𝑢𝑣) hence showing the statement to be true for all graphs 𝐺𝑖 in the

sequence.

Given the above structural lemma about ferromagnetic Ising models under no external

field, we present the following algorithm for testing whether a ferromagnetic Ising model is

product or not.

Algorithm 6 Test if a ferromagnetic Ising model 𝑝 under no external field is product
1: function TestFerroIsing-Independence(sample access to an Ising model 𝑝)
2: Run the algorithm of Lemma 25 to identify if all edges 𝑒 = (𝑢, 𝑣) such that E[𝑋𝑢𝑋𝑣] ≥√

𝜀/𝑛 using 𝑂̃
(︁

𝑛2

𝜀

)︁
samples. If it identifies any edges, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀

.

3: Otherwise, return that 𝑝 is product.
4: end function

Proof of Theorem 25: Firstly, note that under no external field, the only product Ising model

is the uniform distribution 𝒰𝑛. To the problem reduces to testing whether 𝑝 is uniform or not.

Consider the case when 𝑝 is indeed uniform. That is, there are no edges in the underlying

graph of the Ising model. In this case with probability at least 9/10 the localization algorithm

of Lemma 25 with output no edges. Hence Algorithm 6 will output that 𝑝 is product.

In case 𝑑SKL(𝑝, ℐ) ≥ 𝜀, we split the analysis into two cases.

∙ Case 1: There exists an edge 𝑒 = (𝑢, 𝑣) such that |𝜃𝑢𝑣| ≥
√︀

𝜀
𝑛2 . In this case,

|E[𝑋𝑢𝑋𝑣]| ≥ |tanh(𝜃𝑢𝑣)| and in the regime where 𝜀 is a fixed constant, |tanh(𝜃)| ≥ |𝜃/2|.

Hence implying that |E[𝑋𝑢𝑋𝑣]| ≥ |𝜃𝑢𝑣/2| ≥
√︀

𝜀
𝑛2/2. Therefore the localization algo-

rithm of Lemma 25 would identify such an edge with probability at least 9/10. (The

regime where the inequality |tanh(𝜃)| ≥ |𝜃/2| isn’t valid would be easily detectable

using 𝑂̃(𝑛
2

𝜀
) samples.)
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∙ Case 2: All edges 𝑒 = (𝑢, 𝑣) are such that 𝜃𝑢𝑣 ≤
√︀

𝜀
𝑛2 . In this case we have,

𝑑SKL(𝑋, ℐ) ≥ 𝜀 (4.27)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t 𝜃𝑢𝑣E[𝑋𝑢𝑋𝑣] ≥
𝜀

𝑛2
(4.28)

=⇒ ∃ edge 𝑒 = (𝑢, 𝑣) s.t E[𝑋𝑢𝑋𝑣] ≥
𝜀

𝑛2
×
√︂
𝑛2

𝜀
(4.29)

=

√︂
𝜀

𝑛2
(4.30)

Hence, the localization algorithm of Lemma 25 would identify such an edge with prob-

ability at least 9/10.

4.5 Improved Testing in High-Temperature

In this section, we describe a framework for testing Ising models in the high-temperature

regime which results in algorithms which are more efficient than our baseline localization

algorithm of Section 4.3 for dense graphs. This is the more technically involved part of our

result and we modularize the description and analysis into different parts. We will give a

high level overview of our approach here.

The main approach we take in this section is to consider a global test statistic over all

the variables on the Ising model in contrast to the localized statistics of Section 4.3. For

ease of exposition, we first describe the approach for testing independence under no external

field. We then describe the changes that need to be made to obtain tests for independence

under an external field and goodness-of-fit in Section 4.5.5.

Note that testing independence under no external field boils down to testing uniformity

as the only independent Ising model when there is no external field is the one corresponding

to the uniform distribution. The intuition for the core of the algorithm is as follows. Suppose

we are interested in testing uniformity of Ising model 𝑝 with parameter vector 𝜃. Note that

for the uniform Ising model, 𝜃𝑢𝑣 = 𝜃𝑢 = 0 for all 𝑢, 𝑣 ∈ 𝑉 . We start by obtaining an upper

bound on the SKL between 𝑝 and 𝒰𝑛 which can be captured via a statistic that does not
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depend on 𝜃. From (4.2), we have that under no external field (𝜃𝑢 = 0 for all 𝑢 ∈ 𝑉 ),

𝑑SKL(𝑝,𝒰𝑛) =
∑︁

𝑒=(𝑢,𝑣)∈𝐸

𝜃𝑢𝑣𝜇𝑢𝑣

=⇒ 𝑑SKL(𝑝,𝒰𝑛) ≤
∑︁
𝑢̸=𝑣

𝛽 |𝜇𝑢𝑣| (4.31)

=⇒ 𝑑SKL(𝑝,𝒰𝑛)

𝛽
≤
∑︁
𝑢̸=𝑣

|𝜇𝑢𝑣| . (4.32)

where (4.31) holds because |𝜃𝑢𝑣| ≤ 𝛽.

Given the above upper bound, we consider the statistic 𝑍 =
∑︀

𝑢̸=𝑣 sign(𝜇𝑢𝑣) · (𝑋𝑢𝑋𝑣),

where 𝑋 ∼ 𝑝 and sign(𝜇𝑢𝑣) is chosen arbitrarily if 𝜇𝑢𝑣 = 0.

E[𝑍] =
∑︁
𝑢̸=𝑣

|𝜇𝑢𝑣| .

If 𝑋 ∈ ℐ, then E[𝑍] = 0. On the other hand, by (4.32), we know that if 𝑑SKL(𝑋, ℐ) ≥ 𝜀, then

E[𝑍] ≥ 𝜀/𝛽. If the sign(𝜇𝑒) parameters were known, we could simply plug them into 𝑍, and

using Chebyshev’s inequality, distinguish these two cases using Var(𝑍)𝛽2/𝜀2 samples.

There are two main challenges here.

∙ First, the sign parameters, sign(𝜇𝑢𝑣), are not known.

∙ Second, it is not obvious how to get a non-trivial bound for Var(𝑍).

One can quickly see that learning all the sign parameters might be prohibitively expensive.

For example, if there is an edge 𝑒 such that |𝜇𝑒| = 1/2𝑛, there would be no hope of correctly

estimating its sign with a polynomial number of samples. Instead, we perform a process

we call weak learning – rather than trying to correctly estimate all the signs, we instead

aim to obtain a Γ⃗ which is correlated with the vector sign(𝜇𝑒). In particular, we aim to

obtain Γ⃗ such that, in the case where 𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀, E[
∑︀

𝑒=(𝑢,𝑣)∈𝐸 Γ𝑒 (𝑋𝑢𝑋𝑣)] ≥ 𝜀/𝜁𝛽,

where 𝜁 = poly(𝑛). That is we learn a sign vector Γ⃗ which is correlated enough with the

true sign vector such that a sufficient portion of the signal from the 𝑑SKL expression is

still preserved. The main difficulty of analyzing this process is due to correlations between

random variables (𝑋𝑢𝑋𝑣). Naively, we could get an appropriate Γ𝑒 for (𝑋𝑢𝑋𝑣) by running
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a weak learning process independently for each edge. However, this incurs a prohibitive

cost of 𝑂(𝑛2) by iterating over all edges. We manage to sidestep this cost by showing that,

despite these correlations, learning all Γ𝑒 simultaneously succeeds with a probability which

is ≥ 1/ poly(𝑛), for a moderate polynomial in 𝑛. Thus, repeating this process several times,

we can obtain a Γ⃗ which has the appropriate guarantee with sufficient constant probability.

At this point, we are in the setting as described above – we have a statistic 𝑍 ′ of the

form:

𝑍 ′ =
∑︁
𝑢̸=𝑣

𝑐𝑢𝑣𝑋𝑢𝑋𝑣 (4.33)

where 𝑐 ∈ {±1}(
𝑉
2) represent the signs obtained from the weak learning procedure. E[𝑍 ′] = 0

if 𝑋 ∈ ℐ, and E[𝑍 ′] ≥ 𝜀/𝜁𝛽 if 𝑑SKL(𝑋, ℐ) ≥ 𝜀. These two cases can be distinguished using

Var(𝑍 ′)𝜁2𝛽2/𝜀2 samples, by Chebyshev’s inequality. At this point, we run into the second

issue mentioned above. Since the range of 𝑍 ′ is Ω(𝑛2), a crude bound for Var(𝑍 ′) is 𝑂(𝑛4),

granting us no savings over the localization algorithm of Theorem 22. However, in the high

temperature regime, we show the following bound on the variance of 𝑍 ′ (Theorem 37).

Var(𝑍 ′) = 𝑂̃(𝑛2).

In other words, despite the potentially complex structure of the Ising model and potential

correlations, the variables 𝑋𝑢𝑋𝑣 contribute to the variance of 𝑍 ′ roughly as if they were all

independent! We describe the result and techniques involved in the analysis of the variance

bound in Section 4.8. Given the tighter bound on the variance of our statistic, we run the

Chebyshev-based test on all the hypotheses obtained in the previous learning step (with ap-

propriate failure probability) to conclude our algorithm. Further details about the algorithm

are provided in Sections 4.5.1-4.5.4.

We state the sample complexity achieved via our learn-then-test framework for indepen-

dence testing under no external field here. The corresponding statements for independence

testing under external fields and identity testing are given in Section 4.5.5.

Theorem 26 (Independence Testing using Learn-Then-Test, No External Field). Suppose
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𝑝 is an Ising model in the high temperature regime under no external field. Then, given

𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
i.i.d samples from 𝑝, the learn-then-test algorithm runs in polynomial time and

distinguishes between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 9/10.

Next, we state a corollary of Theorem 26 with sample complexities we obtain when 𝛽 is

close to the high temperature threshold.

Theorem 27 (Independence Testing with 𝛽 near the Threshold of High Temperature, No

External Field). Suppose that 𝑝 is an Ising model in the high temperature regime and suppose

that 𝛽 = 1
4𝛿max

. That is, 𝛽 is close to the high temperature threshold. Then:

∙ Given 𝑂̃
(︁

𝑛10/3

𝜀2𝛿2max

)︁
i.i.d samples from 𝑝 with no external field, the learn-then-test

algorithm runs in polynomial time and distinguishes between the cases 𝑝 ∈ ℐ and

𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 2/3. For testing identity of 𝑝 to an Ising model

𝑞 in the high temperature regime, we obtain the same sample complexity as above.

Figure 4-1 shows the dependence of sample complexity of testing as 𝛿max is varied in the

regime of Theorem 27 for the case of no external field.

The description of our algorithm is presented in Algorithm 7. It contains a parameter

𝜏 , which we choose to be the value achieving the minimum in the sample complexity of

Theorem 28. The algorithm follows a learn-then-test framework, which we outline here.

Algorithm 7 Test if an Ising model 𝑝 under no external field is product using Learn-Then-
Test
1: function Learn-Then-Test-Ising(sample access to an Ising model 𝑝, 𝛽, 𝛿max, 𝜀, 𝜏)
2: Run the localization Algorithm 2 on 𝑝 with accuracy parameter 𝜀

𝑛𝜏 . If it identifies
any edges, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀

.

3: for ℓ = 1 to 𝑂(𝑛2−𝜏 ) do
4: Run the weak learning Algorithm 8 on 𝑆 = {𝑋𝑢𝑋𝑣}𝑢̸=𝑣 with parameters 𝜏 and 𝜀/𝛽

to generate a sign vector Γ⃗(ℓ) where Γ
(ℓ)
𝑢𝑣 is weakly correlated with sign (E [𝑋𝑢𝑣])

.

5: end for
6: Using the same set of samples for all ℓ, run the testing algorithm of Lemma 34 on each

of the Γ⃗(ℓ) with parameters 𝜏2 = 𝜏, 𝛿 = 𝑂(1/𝑛2−𝜏 ). If any output that 𝑑SKL(𝑝, ℐ) ≥ 𝜀,
return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀. Otherwise, return that 𝑝 ∈ ℐ

.

7: end function

Note: The first step in Algorithm 7 is to perform a localization test to check if |𝜇𝑒| is not

too far away from 0 for all 𝑒. It is added to help simplify the analysis of the algorithm
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and is not necessary in principle. In particular, we use the first part of Algorithm

2, which checks if any edge looks far from uniform, to perform this first step, albeit

with a smaller value of the accuracy parameter 𝜀 than before. Similar to before, if we

find a single non-uniform edge, this is sufficient evidence to output 𝑑SKL(𝑋, ℐ) ≥ 𝜀.

If we do not find any edges which are verifiably far from uniform, we proceed onward,

with the additional guarantee that |𝜇𝑒| is small for all 𝑒 ∈ 𝐸.

A statement of the exact sample complexity achieved by our algorithm is given in Theo-

rem 28. When optimized for the parameter 𝜏 , this yields Theorem 26.

Theorem 28. Given 𝑂̃
(︁

min𝜏>0 (𝑛2+𝜏 + 𝑛6−2𝜏 ) 𝛽2

𝜀2

)︁
i.i.d samples from an Ising model 𝑝 in

the high-temperature regime with no external field, there exists a polynomial-time algorithm

which distinguishes between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 2/3.

The organization of the rest of the section is as follows. We describe and analyze our

weak learning procedure in Section 4.5.1. Given a vector with the appropriate weak learning

guarantees, we describe and analyze the testing procedure in Section 4.5.2. In Section 4.5.3,

we describe how to combine all these ideas – in particular, our various steps have several

parameters, and we describe how to balance the complexities to obtain the sample complexity

stated in Theorem 28. Finally, in Section 4.5.4, we optimize the sample complexities from

Theorem 28 for the parameter 𝜏 and filter out cleaner statement of Theorem 26. We compare

the performance of our localization and learn-then-test algorithms and describe the best

sample complexity achieved in different regimes in Section 4.6.

4.5.1 Learn . . .

Our overall goal of this section is “weakly learn” the sign of 𝜇𝑒 = E[𝑋𝑢𝑋𝑣] for all edges

𝑒 = (𝑢, 𝑣). More specifically, we wish to output a vector Γ⃗ with the following guarantee:

E𝑋

⎡⎣ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋𝑢𝑋𝑣

⎤⎦ ≥ 𝑐𝜀

2𝛽𝑛2−𝜏2
,

for some constant 𝑐 > 0 and parameter 𝜏2 to be specified later. Note that the “best” Γ, for

which Γ𝑒 = sign(𝜇𝑒), has this guarantee with 𝜏2 = 2 – by relaxing our required learning
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guarantee, we can reduce the sample complexity in this stage.

The first step will be to prove a simple but crucial lemma answering the following question:

Given 𝑘 samples from a Rademacher random variable with parameter 𝑝, how well can we

estimate the sign of its expectation? This type of problem is well studied in the regime where

𝑘 = Ω(1/𝑝2), in which we have a constant probability of success (see, i.e. Lemma 23), but

we analyze the case when 𝑘 ≪ 1/𝑝2 and prove how much better one can do versus randomly

guessing the sign. See Lemma 40 in Section 4.10 for more details.

With this lemma in hand, we proceed to describe the weak learning procedure. Given

parameters 𝜏 ,𝜀 and sample access to a set 𝑆 of ’Rademacher-like’ random variables which

may be arbitrarily correlated with each other, the algorithm draws 𝑂̃
(︁

𝑛2𝜏

𝜀2

)︁
samples from

each random variable in the set and computes their empirical expected values and outputs

a signs of thus obtained empirical expectations. The procedure is described in Algorithm 8.

Algorithm 8 Weakly Learn Signs of the Expectations of a set of Rademacher-like random
variables
1: function WeakLearning(sample access to set 𝑆 = {𝑍𝑖}𝑖 of random variables where
|𝑆| = 𝑂(𝑛𝑠) and where 𝑍𝑖 ∈ {−1, 0,+1} and can be arbitrarily correlated,𝜀, 𝜏 ,).

2: Draw 𝑘 = 𝑂̃
(︁

𝑛2𝜏

𝜀2

)︁
samples from each 𝑍𝑖. Denote the samples by 𝑍(1)

𝑖 , . . . , 𝑍
(𝑘)
𝑖 .

3: Compute the empirical expectation for each 𝑍𝑖: 𝑍𝑖 = 1
𝑘

∑︀𝑘
𝑙=1 𝑍

(𝑙)
𝑖 .

4: Output Γ⃗ where Γ𝑖 = sign(𝑍𝑖).
5: end function

We now turn to the setting of the Ising model, discussed in Section 4.5.1.1. We invoke

the weak-learning procedure of Algorithm 8 on the set 𝑆 = {𝑋𝑢𝑋𝑣}𝑢̸=𝑣 with parameters 𝜀/𝛽

and 0 ≤ 𝜏 ≤ 2. By linearity of expectations and Cauchy-Schwarz, it is not hard to see that

we can get a guarantee of the form we want in expectation (see Lemma 32). However, the

challenge remains to obtain this guarantee with constant probability. Carefully analyzing

the range of the random variable and using this guarantee on the expectation allows us

to output an appropriate vector Γ⃗ with probability inversely polynomial in 𝑛 (see Lemma

33). Repeating this process several times will allow us to generate a collection of candidates

{Γ⃗(ℓ)}, at least one of which has our desired guarantees with constant probability.
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4.5.1.1 Weak Learning the Edges of an Ising Model

We now turn our attention to weakly learning the edge correlations in the Ising model. To

recall, our overall goal is to obtain a vector Γ⃗ such that

E𝑋∼𝑝

⎡⎣ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋𝑢𝑋𝑣

⎤⎦ ≥ 𝑐𝜀

2𝛽𝑛2−𝜏2
.

We start by proving that the weak learning algorithm 8 yields a Γ⃗ for which such a bound

holds in expectation. The following is fairly straightforward from Lemma 40 and linearity

of expectations.

Lemma 32. Given 𝑘 = 𝑂
(︁

𝑛2𝜏2𝛽2

𝜀2

)︁
samples from an Ising model 𝑋 ∼ 𝑝 such that 𝑑SKL(𝑝, ℐ) ≥

𝜀 and |𝜇𝑒| ≤ 𝜀
𝛽𝑛𝜏2

for all 𝑒 ∈ 𝐸, Algorithm 8 outputs Γ⃗ = {Γ𝑒} ∈ {±1}|𝐸| such that

EΓ⃗

⎡⎣E𝑋∼𝑝

⎡⎣ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋𝑢𝑋𝑣

⎤⎦⎤⎦ ≥ 𝑐𝛽

𝜀𝑛2−𝜏2

(︃∑︁
𝑒∈𝐸

|𝜇𝑒|

)︃2

,

for some constant 𝑐 > 0.

Proof. Since for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸, |𝜇𝑒| ≤ 𝜀
𝛽𝑛𝜏2

, and by our upper bound on 𝑘, all of the

random variables 𝑋𝑢𝑋𝑣 fall into the first case of Lemma 40 (the “small 𝑘” regime). Hence,

we get that

Pr [Γ𝑒 = sign(𝜇𝑒)] ≥
1

2
+
𝑐1|𝜇𝑒|

√
𝑘

2

which implies that

EΓ𝑒 [Γ𝑒𝜇𝑒] ≥

(︃
1

2
+
𝑐1|𝜇𝑒|

√
𝑘

2

)︃
|𝜇𝑒|+

(︃
1

2
− 𝑐1|𝜇𝑒|

√
𝑘

2

)︃
(−|𝜇𝑒|)

= 𝑐1|𝜇𝑒|2
√
𝑘
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Summing up the above bound over all edges, we get

EΓ⃗

[︃∑︁
𝑒∈𝐸

Γ𝑒𝜇𝑒

]︃
≥ 𝑐1
√
𝑘
∑︁
𝑒∈𝐸

|𝜇𝑒|2

≥ 𝑐′1𝑛
𝜏2𝛽

𝜀

∑︁
𝑒∈𝐸

|𝜇𝑒|2,

for some constant 𝑐′1 > 0. Applying the Cauchy-Schwarz inequality gives us

EΓ⃗

[︃∑︁
𝑒∈𝐸

Γ𝑒𝜇𝑒

]︃
≥ 𝑐𝛽

𝜀𝑛2−𝜏2

(︃∑︁
𝑒∈𝐸

|𝜇𝑒|

)︃2

,

as desired.

Next, we prove that the desired bound holds with sufficiently high probability. The

following lemma follows by a careful analysis of the extreme points of the random variable’s

range.

Lemma 33. Given 𝑘 = 𝑂
(︁

𝑛2𝜏2𝛽2

𝜀2

)︁
i.i.d. samples from an Ising model 𝑝 such that 𝑑SKL(𝑝, ℐ) ≥

𝜀 and |𝜇𝑒| ≤ 𝜀
𝛽𝑛𝜏2

for all 𝑒 ∈ 𝐸, Algorithm 8 outputs Γ⃗ = {Γ𝑒} ∈ {±1}|𝐸| where: Define 𝜒𝜏2

to be the event that

E𝑋∼𝑝

⎡⎣ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋𝑢𝑋𝑣

⎤⎦ ≥ 𝑐𝜀

2𝛽𝑛2−𝜏2
,

for some constant 𝑐 > 0. We have that

PrΓ [𝜒𝜏2 ] ≥
𝑐

4𝑛2−𝜏2
.

Proof. We introduce some notation which will help in the elucidation of the argument which

follows. Let 𝑟 = PrΓ [𝜒𝜏2 ]. Let

𝑇 =
𝑐𝛽

2𝜀𝑛2−𝜏2

(︃∑︁
𝑒∈𝐸

|𝜇𝑒|

)︃2

.
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Let 𝑌 be the random variable defined as follows

𝑌 = E𝑋∼𝑝

⎡⎣ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋𝑢𝑋𝑣

⎤⎦ ,
𝑈 = EΓ⃗ [𝑌 |𝑌 > 𝑇 ] and

𝐿 = EΓ⃗ [𝑌 |𝑌 ≤ 𝑇 ]

Then we have

𝑟𝑈 + (1− 𝑟)𝐿 ≥ 2𝑇 (From Lemma 32)

=⇒ 𝑟 ≥ 2𝑇 − 𝐿
𝑈 − 𝐿

Since 𝑈 ≤
∑︀

𝑒∈𝐸 |𝜇𝑒|, we have

𝑟 ≥ 2𝑇 − 𝐿(︀∑︀
𝑒∈𝐸 |𝜇𝑒|

)︀
− 𝐿

Since 𝐿 ≥ −
∑︀

𝑒∈𝐸 |𝜇𝑒|,

𝑟 ≥ 2𝑇 − 𝐿
2
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀

Since 𝐿 ≤ 𝑇 , we get

𝑟 ≥ 𝑇

2
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀

Substituting in the value for 𝑇 we get

𝑟 ≥
𝑐𝛽
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀2

4𝜀𝑛2−𝜏2
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀

=⇒ 𝑟 ≥
𝑐𝛽
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀

4𝜀𝑛2−𝜏2

Since 𝑑SKL(𝑝, ℐ) ≥ 𝜀, this implies
(︀∑︀

𝑒∈𝐸 |𝜇𝑒|
)︀
≥ 𝜀/𝛽 and thus

𝑟 ≥ 𝑐

4𝑛2−𝜏2
,

as desired.
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4.5.2 . . . Then Test!

In this section, we assume that we were successful in weakly learning a vector Γ⃗ which is

“good” (i.e., it satisfies 𝜒𝜏2 , which says that the expectation the statistic with this vector

is sufficiently large). With such a Γ⃗, we show that we can distinguish between 𝑝 ∈ ℐ and

𝑑SKL(𝑝, ℐ) ≥ 𝜀.

Lemma 34. Let 𝑝 be an Ising model, let 𝑋 ∼ 𝑝, and let 𝜎2 be such that, for any 𝛾⃗ = {𝛾𝑒} ∈

{±1}|𝐸|,

Var

⎛⎝ ∑︁
𝑒=(𝑢,𝑣)∈𝐸

𝛾𝑒𝑋𝑢𝑋𝑣

⎞⎠ ≤ 𝜎2.

Given 𝑘 = 𝑂
(︁
𝜎2 · 𝑛

4−2𝜏2𝛽2 log(1/𝛿)
𝜀2

)︁
i.i.d samples from 𝑝, which satisfies either 𝑝 ∈ ℐ or

𝑑SKL(𝑝, ℐ) ≥ 𝜀, and Γ⃗ = {Γ𝑒} ∈ {±1}|𝐸| which satisfies 𝜒𝜏2 (as defined in Lemma 33) in the

case that 𝑑SKL(𝑝, ℐ) ≥ 𝜀, then there exists an algorithm which distinguishes these two cases

with probability ≥ 1− 𝛿.

Proof. We prove this lemma with failure probability 1/3 – by standard boosting arguments,

this can be lowered to 𝛿 by repeating the test 𝑂(log(1/𝛿)) times and taking the majority

result.

Denote the 𝑖th sample as 𝑋(𝑖). The algorithm will compute the statistic

𝑍 =
1

𝑘

⎛⎝ 𝑘∑︁
𝑖=1

∑︁
𝑒=(𝑢,𝑣)∈𝐸

Γ𝑒𝑋
(𝑖)
𝑢 𝑋(𝑖)

𝑣

⎞⎠ .

If 𝑍 ≤ 𝑐𝜀
4𝛽𝑛2−𝜏2

, then the algorithm will output that 𝑝 ∈ ℐ. Otherwise, it will output that

𝑑SKL(𝑝, ℐ) ≥ 𝜀.

By our assumptions in the lemma statement, in either case,

Var (𝑍) ≤ 𝜎2

𝑘
.

If 𝑝 ∈ ℐ, then we have that

E[𝑍] = 0.
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By Chebyshev’s inequality, this implies that

Pr

[︂
𝑍 ≥ 𝜀

4𝛽𝑛2−𝜏2

]︂
≤ 16𝜎2𝛽2𝑛4−2𝜏2

𝑘𝑐2𝜀2
.

Substituting the value of 𝑘 gives the desired bound in this case. The case where 𝑑SKL(𝑝, ℐ) ≥ 𝜀

follows similarly, but additionally using the fact that 𝜒𝜏2 implies that

E[𝑍] ≥ 𝑐𝜀

2𝛽𝑛2−𝜏2
.

4.5.3 Putting Them Together

In this section, we combine lemmas from the previous sections to complete the proof of

Theorem 28. Lemma 33 gives us that a single iteration of the weak learning step gives a

“good” Γ⃗ with probability at least Ω
(︀

1
𝑛2−𝜏2

)︀
. We repeat this step 𝑂(𝑛2−𝜏2) times, generating

𝑂(𝑛2−𝜏2) hypotheses Γ⃗(ℓ). By standard tail bounds on geometric random variables, this will

imply that at least one hypothesis is good (i.e. satisfying 𝜒𝜏2) with probability at least 9/10.

We then run the algorithm of Lemma 34 on each of these hypotheses, with failure probability

𝛿 = 𝑂(1/𝑛2−𝜏2). If 𝑝 ∈ ℐ, all the tests will output that 𝑝 ∈ ℐ with probability at least 9/10.

Similarly, if 𝑑SKL(𝑝, ℐ) ≥ 𝜀, conditioned on at least one hypothesis Γ⃗(ℓ*) being good, the

test will output that 𝑑SKL(𝑝, ℐ) ≥ 𝜀 for this hypothesis with probability at least 9/10. This

proves correctness of our algorithm.

To conclude our proof, we analyze its sample complexity. Combining the complexities of

Lemmas 25, 33, and 34, the overall sample complexity is

𝑂

(︂
𝑛2𝜏1𝛽2 log 𝑛

𝜀2

)︂
+𝑂

(︂
𝑛2+𝜏2𝛽2

𝜀2

)︂
+𝑂

(︂
𝜎2𝑛

4−2𝜏2𝛽2

𝜀2
log 𝑛

)︂
.

Noting that the first term is always dominated by the second term we can simplify the
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complexity to the following expression.

𝑂

(︂
𝑛2+𝜏2𝛽2

𝜀2

)︂
+𝑂

(︂
𝜎2𝑛

4−2𝜏2𝛽2

𝜀2
log 𝑛

)︂
. (4.34)

Plugging in the variance bounds from Section 4.8, Theorems 37 and 38 gives Theorem 28.

4.5.4 Balancing Learning and Testing

The sample complexities in the statement of Theorem 28 arise from a combination of two

separate algorithms and from a variance bound for our multi-linear statistic which depends

on 𝛽 and 𝛿max. To balance for the optimal value of 𝜏 in various regimes of 𝛽 and 𝛿max we

use Claim 4 which can be easily verified and arrive at Theorem 26.

Claim 4. Let 𝑆 = 𝑂̃
(︁

(𝑛2+𝜏 + 𝑛4−2𝜏 · 𝜎2) 𝛽2

𝜀2

)︁
. Let 𝜎2 = 𝑂(𝑛𝑠). The value of 𝜏 which

minimizes 𝑆 is 2+𝑠
3

.

Claim 4 together with the variance bound (Theorem 37) implies Theorem 26.

Theorem 26 (Independence Testing using Learn-Then-Test, No External Field). Suppose

𝑝 is an Ising model in the high temperature regime under no external field. Then, given

𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
i.i.d samples from 𝑝, the learn-then-test algorithm runs in polynomial time and

distinguishes between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 9/10.

4.5.5 Modifications for Testing Independence and Identity

We describe the modifications that need to be done to the learn-then-test approach described

in Sections 4.5.1-4.5.4 to obtain testers for independence under an arbitrary external field

(Section 4.5.5.1), identity without an external field (Section 4.5.5.2), and identity under an

external field (Section 4.5.5.3).

4.5.5.1 Independence Testing under an External Field

Under an external field, the statistic we considered in Section 4.5 needs to be modified.

Suppose we are interested in testing independence of an Ising model 𝑝 defined on a graph 𝐺 =
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(𝑉,𝐸) with a parameter vector 𝜃𝑝. Let 𝑋 ∼ 𝑝. We have that 𝑑SKL(𝑝, ℐ) = min𝑞∈ℐ 𝑑SKL(𝑝, 𝑞).

In particular, we consider 𝑞 to be the independent Ising model on graph 𝐺′ = (𝑉,𝐸 ′) with

parameter vector 𝜃𝑞 such that 𝐸 ′ = 𝜑 and 𝜃𝑞𝑢 is such that 𝜇𝑞
𝑢 = 𝜇𝑝

𝑢 for all 𝑢 ∈ 𝑉 . Then,

𝑑SKL(𝑝, ℐ) ≤ 𝑑SKL(𝑝, 𝑞) (4.35)

=
∑︁

𝑒=(𝑢,𝑣)∈𝐸

𝜃𝑝𝑢𝑣 (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)

=
∑︁

𝑒=(𝑢,𝑣)∈𝐸

𝜃𝑝𝑢𝑣 (𝜇𝑝
𝑢𝑣 − 𝜇𝑝

𝑢𝜇
𝑝
𝑣)

≤
∑︁

𝑒=(𝑢,𝑣)∈𝐸

𝛽 |𝜇𝑝
𝑢𝑣 − 𝜇𝑝

𝑢𝜇
𝑝
𝑣|

=⇒ 𝑑SKL(𝑝, ℐ)

𝛽
≤

∑︁
𝑒=(𝑢,𝑣)∈𝐸

|𝜇𝑝
𝑢𝑣 − 𝜇𝑝

𝑢𝜇
𝑝
𝑣| .

The above inequality suggests a statistic 𝑍 such that E[𝑍] =
∑︀

𝑒=(𝑢,𝑣)∈𝐸 |𝜆𝑝𝑢𝑣| where 𝜆𝑝𝑢𝑣 =

𝜇𝑝
𝑢𝑣−𝜇𝑝

𝑢𝜇
𝑝
𝑣. We consider 𝑍 =

∑︀
𝑢̸=𝑣 sign(𝜆𝑢𝑣)

(︁
𝑋

(1)
𝑢 −𝑋(2)

𝑢

)︁(︁
𝑋

(1)
𝑣 −𝑋(2)

𝑣

)︁
where𝑋(1), 𝑋(2) ∼

𝑝 are two independent samples from 𝑝. It can be seen that 𝑍 has the desired expectation.

However, we have the same issue as before that we don’t know the sign(𝜆𝑢𝑣) parameters.

Luckily, it turns out that our weak learning procedure is general enough to handle this case

as well. Consider the following random variable: 𝑍𝑢𝑣 = 1
4

(︁
𝑋

(1)
𝑢 −𝑋(2)

𝑢

)︁(︁
𝑋

(1)
𝑣 −𝑋(2)

𝑣

)︁
. 𝑍𝑢𝑣

takes on values in {−1, 0,+1}. Consider an associated Rademacher variable 𝑍 ′
𝑢𝑣 defined

as follows: Pr[𝑍𝑢𝑣 = −1] = Pr[𝑍𝑢𝑣 = −1] + 1/2 Pr[𝑍𝑢𝑣 = 0]. It is easy to simulate a

sample from 𝑍 ′
𝑢𝑣 given access to a sample from 𝑍𝑢𝑣. If 𝑍𝑢𝑣 = 0, toss a fair coin to decide

whether 𝑍 ′
𝑢𝑣 = −1 or +1. E[𝑍 ′

𝑢𝑣] = E[𝑍𝑢𝑣] = 𝜆𝑢𝑣

2
. Hence 𝑍 ′

𝑢𝑣 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟
(︀
1
2

+ 𝜆𝑢𝑣

4

)︀
and by Lemma 40 with 𝑘 copies of the random variable 𝑍𝑢𝑣 we get a success probability

of 1/2 + 𝑐1
√
𝑘 |𝜆𝑢𝑣| of estimating sign(𝜆𝑢𝑣) correctly. Given this guarantee, the rest of the

weak learning argument of Lemmas 32 and 33 follows analogously by replacing 𝜇𝑒 with 𝜆𝑒.

After we have weakly learnt the signs, we are left with a statistic 𝑍 ′
𝑐𝑒𝑛 of the form:

𝑍 ′
𝑐𝑒𝑛 =

∑︁
𝑢̸=𝑣

𝑐𝑢𝑣
(︀
𝑋(1)

𝑢 −𝑋(2)
𝑢

)︀ (︀
𝑋(1)

𝑣 −𝑋(2)
𝑣

)︀
(4.36)
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where the subscript 𝑐𝑒𝑛 denotes that the statistic is a centered one and 𝑐 ∈ {±1}(
𝑉
2). We need

to obtain a bound on Var(𝑍 ′
𝑐𝑒𝑛). We again employ the techniques described in Section 4.8

to obtain a non-trivial bound on Var(𝑍 ′
𝑐𝑒𝑛) in the high-temperature regime. The statement

of the variance result is given in Theorem 38 and the details are in Section 4.8.3. Combining

the weak learning part and the variance bound gives us the following sample complexity for

independence testing under an external field:

𝑂̃

(︂
(𝑛2+𝜏 + 𝑛4−2𝜏𝜎2)𝛽2

𝜀2

)︂
=𝑂̃

(︂
(𝑛2+𝜏 + 𝑛4−2𝜏𝑛2)𝛽2

𝜀2

)︂

Balancing for the optimal value of the 𝜏 parameter gives Theorem 29.

Theorem 29 (Independence Testing using Learn-Then-Test, Arbitrary External Field).

Suppose 𝑝 is an Ising model in the high temperature regime under an arbitrary external field.

The learn-then-test algorithm takes in 𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
i.i.d. samples from 𝑝 and distinguishes

between the cases 𝑝 ∈ ℐ and 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability ≥ 9/10.

The tester is formally described in Algorithm 9.

Algorithm 9 Test if an Ising model 𝑝 under arbitrary external field is product
1: function Learn-Then-Test-Ising(sample access to an Ising model 𝑝, 𝛽, 𝛿max, 𝜀, 𝜏)
2: Run the localization Algorithm 2 with accuracy parameter 𝜀

𝑛𝜏 . If it identifies any
edges, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀

.

3: for ℓ = 1 to 𝑂(𝑛2−𝜏 ) do
4: Run the weak learning Algorithm 8 on 𝑆 = {(𝑋(1)

𝑢 −𝑋(2)
𝑢 )(𝑋

(1)
𝑣 −𝑋(2)

𝑣 )}𝑢̸=𝑣 with pa-
rameters 𝜏2 = 𝜏 and 𝜀/𝛽 to generate a sign vector Γ⃗(ℓ) where Γ

(ℓ)
𝑢𝑣 is weakly correlated

with sign
(︁
E
[︁
(𝑋

(1)
𝑢 −𝑋(2)

𝑢 )(𝑋
(1)
𝑣 −𝑋(2)

𝑣 )
]︁)︁ .

5: end for
6: Using the same set of samples for all ℓ, run the testing algorithm of Lemma 34 on each

of the Γ⃗(ℓ) with parameters 𝜏2 = 𝜏, 𝛿 = 𝑂(1/𝑛2−𝜏 ). If any output that 𝑑SKL(𝑝, ℐ) ≥ 𝜀,
return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀. Otherwise, return that 𝑝 ∈ ℐ

.

7: end function
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4.5.5.2 Identity Testing under No External Field

We first look at the changes needed for identity testing under no external field. Similar to

before, we start by obtaining an upper bound on the SKL between the Ising models 𝑝 and

𝑞. We get that,

𝑑SKL(𝑝, 𝑞) =
∑︁

(𝑢,𝑣)∈𝐸

(𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣) (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)

=⇒ 𝑑SKL(𝑝, 𝑞)

2𝛽
≤
∑︁
𝑢̸=𝑣

|(𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)|

Since we know 𝜇𝑞
𝑢𝑣 for all pairs 𝑢, 𝑣, the above upper bound suggests the statistic 𝑍 of the

form

𝑍 =
∑︁
𝑢̸=𝑣

sign (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣) (𝑋𝑢𝑋𝑣 − 𝜇𝑞
𝑢𝑣)

If 𝑝 = 𝑞, E[𝑍] = 0 and if 𝑑SKL(𝑝, 𝑞) ≥ 𝜀, E[𝑍] ≥ 𝜀/2𝛽. As before, there are two things

we need to do: learn a sign vector which is weakly correlated with the right sign vector

and obtain a bound on Var(𝑍). By separating out the part of the statistic which is just a

constant, we obtain that

Var(𝑍) ≤ Var

(︃∑︁
𝑢̸=𝑣

𝑐𝑢𝑣𝑋𝑢𝑋𝑣

)︃

where 𝑐 ∈ {±1}(
𝑉
2). Hence, the variance bound of Theorem 37 holds for Var(𝑍).

As for the weakly learning the signs, using Corollary 12 of Lemma 40 we get that for

each pair 𝑢, 𝑣, with 𝑘 samples, we can achieve a success probability 1/2 + 𝑐1
√
𝑘 |𝜇𝑝

𝑢𝑣 − 𝜇𝑞
𝑢𝑣|

of correctly estimating sign(𝜇𝑝
𝑢𝑣 −𝜇𝑞

𝑢𝑣). Following this up with analogous proofs of Lemmas

32 and 33 where 𝜇𝑒 is replaced by 𝜇𝑝
𝑒 − 𝜇𝑞

𝑒, we achieve our goal of weakly learning the signs

with a sufficient success probability.

By making these changes we arrive at the following theorem for testing identity to an

Ising model under no external field.
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Theorem 30 (Identity Testing using Learn-Then-Test, No External Field). Suppose 𝑝 and 𝑞

are Ising models in the high temperature regime under no external field. The learn-then-test

algorithm takes in 𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
i.i.d. samples from 𝑝 and distinguishes between the cases 𝑝 = 𝑞

and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability ≥ 9/10.

The tester is formally described in Algorithm 10.

Algorithm 10 Test if an Ising model 𝑝 under no external field is identical to 𝑞
1: function TestIsing(sample access to an Ising model 𝑝, 𝛽, 𝛿max, 𝜀, 𝜏 , description of Ising

model 𝑞 under no external field)
2: Run the localization Algorithm 3 with accuracy parameter 𝜀

𝑛𝜏 . If it identifies any
edges, return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀

.

3: for ℓ = 1 to 𝑂(𝑛2−𝜏 ) do
4: Run the weak learning Algorithm 8 on 𝑆 = {𝑋𝑢𝑋𝑣 − 𝜇𝑞

𝑢𝑣}𝑢̸=𝑣 with parameters
𝜏2 = 𝜏 and 𝜀/𝛽 to generate a sign vector Γ⃗(ℓ) where Γ

(ℓ)
𝑢𝑣 is weakly correlated with

sign (E [𝑋𝑢𝑣 − 𝜇𝑞
𝑢𝑣])

.

5: end for
6: Using the same set of samples for all ℓ, run the testing algorithm of Lemma 34 on each

of the Γ⃗(ℓ) with parameters 𝜏2 = 𝜏, 𝛿 = 𝑂(1/𝑛2−𝜏 ). If any output that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀,
return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀. Otherwise, return that 𝑝 = 𝑞

.

7: end function

4.5.5.3 Identity Testing under an External Field

When an external field is present, two things change. Firstly, the terms corresponding to

nodes of the Ising model in the SKL expression no longer vanish and have to be accounted

for. Secondly, it is unclear how to define an appropriately centered statistic which has a

variance of 𝑂(𝑛2) in this setting, and we consider this an interesting open question. Instead,

we use the uncentered statistic which has variance Θ(𝑛3).

We now describe the first change in more detail now. Again, we start by considering an

upper bound on the SKL between Ising models 𝑝 and 𝑞.

𝑑SKL(𝑝, 𝑞) =
∑︁
𝑣∈𝑉

(𝜃𝑝𝑣 − 𝜃𝑞𝑣) (𝜇𝑝
𝑣 − 𝜇𝑞

𝑣) +
∑︁

(𝑢,𝑣)∈𝐸

(𝜃𝑝𝑢𝑣 − 𝜃𝑞𝑢𝑣) (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)

=⇒ 𝑑SKL(𝑝, 𝑞) ≤ 2ℎ
∑︁
𝑣∈𝑉

|(𝜇𝑝
𝑣 − 𝜇𝑞

𝑣)|+ 2𝛽
∑︁
𝑢̸=𝑣

|(𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)|

Hence if 𝑑SKL(𝑝, 𝑞) ≥ 𝜀, then either
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∙ 2ℎ
∑︀

𝑣∈𝑉 |(𝜇𝑝
𝑣 − 𝜇𝑞

𝑣)| ≥ 𝜀/2 or

∙ 2𝛽
∑︀

𝑢̸=𝑣 |(𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)| ≥ 𝜀/2.

Moreover, if 𝑝 = 𝑞, then both 2ℎ
∑︀

𝑣∈𝑉 |(𝜇𝑝
𝑣 − 𝜇𝑞

𝑣)| = 0 and 2𝛽
∑︀

𝑢̸=𝑣 |(𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)| = 0. Our

tester will first test for case (i) and if that test doesn’t declare that the two Ising models are

far, then proceeds to test whether case (ii) holds.

We will first describe the test to detect whether
∑︀

𝑣∈𝑉 |(𝜇𝑝
𝑣 − 𝜇𝑞

𝑣)| = 0 or is ≥ 𝜀/2ℎ. We

observe that the random variables 𝑋𝑣 are Rademachers and hence we can use the weak-

learning framework we developed so far to accomplish this goal. The statistic we consider is

𝑍 =
∑︀

𝑣∈𝑉 sign(𝜇𝑝
𝑣) (𝑋𝑣 − 𝜇𝑞

𝑣). Again, as before, we face two challenges: we don’t know the

signs of the node expectations 𝜇𝑝
𝑣 and we need a bound on Var(𝑍).

We employ the weak-learning framework described in Sections 4.5.1-4.5.4 to weakly learn

a sign vector correlated with the true sign vector. In particular, since𝑋𝑣 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(1/2+

𝜇𝑣/2), from Corollary 12, we have that with 𝑘 samples we can correctly estimate sign(𝜇𝑝
𝑣−𝜇𝑞

𝑣)

with probability 1/2 + 𝑐1
√
𝑘 |𝜇𝑝

𝑣 − 𝜇𝑞
𝑣|. The rest of the argument for obtaining a sign vector

which, with sufficient probability, preserves a sufficient amount of signal from the expected

value of the statistic, proceeds in a similar way as before. However since the total number of

terms we have in our expression is only linear we get some savings in the sample complexity.

And from Lemma 22, we have the following bound on functions 𝑓𝑐(.) of the form 𝑓𝑐(𝑋) =∑︀
𝑣∈𝑉 𝑐𝑣𝑋𝑣 (where 𝑐 ∈ {±1}𝑉 ) on the Ising model:

Var(𝑓𝑐(𝑋)) = 𝑂(𝑛).

By performing calculations analogous to the ones in Sections 4.5.3 and 4.5.4, we obtain that

by using 𝑂̃
(︁

𝑛5/3ℎ2

𝜀2

)︁
samples we can test whether

∑︀
𝑣∈𝑉 |(𝜇𝑝

𝑣 − 𝜇𝑞
𝑣)| = 0 or is ≥ 𝜀/4ℎ with

probability ≥ 19/20. If the tester outputs that
∑︀

𝑣∈𝑉 |(𝜇𝑝
𝑣 − 𝜇𝑞

𝑣)| = 0, then we proceed to

test whether
∑︀

𝑢̸=𝑣 |(𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣)| = 0 or ≥ 𝜀/4𝛽.
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To perform this step, we begin by looking at the statistic 𝑍 used in Section 4.5.5.2:

𝑍 =
∑︁
𝑢̸=𝑣

sign (𝜇𝑝
𝑢𝑣 − 𝜇𝑞

𝑢𝑣) (𝑋𝑢𝑋𝑣 − 𝜇𝑞
𝑢𝑣)

as 𝑍 has the right expected value. We learn a sign vector which is weakly correlated with

the true sign vector. However we need to obtain a variance bound on functions of the form

𝑓𝑐(𝑋) =
∑︀

𝑢̸=𝑣 𝑐𝑢𝑣(𝑋𝑢𝑋𝑣−𝜇𝑞
𝑢𝑣) where 𝑐 ∈ {±1}(

𝑉
2). By ignoring the constant term in 𝑓𝑐(𝑋),

we get that,

Var(𝑓𝑐(𝑋)) = Var

(︃∑︁
𝑢̸=𝑣

𝑐𝑢𝑣𝑋𝑢𝑋𝑣

)︃

which can be Ω(𝑛3) as it is not appropriately centered. We employ Lemma 22 to get a

variance bound of 𝑂(𝑛3) which yields a sample complexity of 𝑂̃
(︁

𝑛11/3𝛽2

𝜀2

)︁
for this setting.

Theorem 31 captures the total sample complexity of our identity tester under the presence

of external fields.

Theorem 31 (Identity Testing using Learn-Then-Test, Arbitrary External Field). Suppose

𝑝 and 𝑞 are Ising models in the high temperature regime under arbitrary external fields. The

learn-then-test algorithm takes in 𝑂̃
(︁

𝑛5/3ℎ2+𝑛11/3𝛽2

𝜀2

)︁
i.i.d. samples from 𝑝 and distinguishes

between the cases 𝑝 = 𝑞 and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability ≥ 9/10.

The tester is formally described in Algorithm 11.

4.6 Localization Versus Learn-then-Test

At this point, we now have two algorithms: the localization algorithm of Section 4.3 and the

learn-then-test algorithm of Section 4.5. Both algorithms are applicable in all temperature

regimes but learn-then-test beats localization’s sample complexity in high temperature un-

der some degree regimes. We note that their sample complexities differ in their dependence

on 𝛽 and 𝛿max. In this section, we offer some intuition as to why the difference arises and

state the best sample complexities we achieve for our testing problems by combining these

two approaches.
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Algorithm 11 Test if an Ising model 𝑝 under an external field is identical to Ising model 𝑞
1: function TestIsing(sample access to an Ising model 𝑝, 𝛽, 𝛿max, 𝜀, 𝜏1, 𝜏2, description of

Ising model 𝑞)
2: Run the localization Algorithm 3 on the nodes with accuracy parameter 𝜀

2𝑛𝜏1
. If it

identifies any nodes, return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀
.

3: for ℓ = 1 to 𝑂(𝑛1−𝜏1) do
4: Run the weak learning Algorithm 8 on 𝑆 = {(𝑋𝑢 − 𝑌𝑢}𝑢∈𝑉 , where 𝑌𝑢 ∼

𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(1/2 + 𝜇𝑞
𝑢/2), with parameters 𝜏1 and 𝜀/2ℎ to generate a sign vector

Γ⃗(ℓ) where Γ
(ℓ)
𝑢 is weakly correlated with sign (E [𝑋𝑢 − 𝜇𝑞

𝑢])

.

5: end for
6: Using the same set of samples for all ℓ, run the testing algorithm of Lemma 34

on each of the Γ⃗(ℓ) with parameters 𝜏3 = 𝜏1, 𝛿 = 𝑂(1/𝑛1−𝜏1). If any output that
𝑑SKL(𝑝, 𝑞) ≥ 𝜀, return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀

.

7: ————————–
8: Run the localization Algorithm 3 on the edges with accuracy parameter 𝜀

2𝑛𝜏2
. If it

identifies any edges, return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀
.

9: for ℓ = 1 to 𝑂(𝑛2−𝜏2) do
10: Run the weak learning Algorithm 8 on 𝑆 = {(𝑋𝑢𝑋𝑣 − 𝑌𝑢𝑣}𝑢̸=𝑣, where 𝑌𝑢𝑣 ∼

𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(1/2 + 𝜇𝑞
𝑢𝑣/2), with parameters 𝜏2 and 𝜀/2𝛽 to generate a sign vector

Γ⃗(ℓ) where Γ
(ℓ)
𝑢𝑣 is weakly correlated with sign (E [𝑋𝑢𝑋𝑣 − 𝜇𝑞

𝑢𝑣])

.

11: end for
12: Using the same set of samples for all ℓ, run the testing algorithm of Lemma 34

on each of the Γ⃗(ℓ) with parameters 𝜏4 = 𝜏2, 𝛿 = 𝑂(1/𝑛2−𝜏2). If any output that
𝑑SKL(𝑝, 𝑞) ≥ 𝜀, return that 𝑑SKL(𝑝, 𝑞) ≥ 𝜀. Otherwise, return that 𝑝 = 𝑞

.

13: end function

First, we note that if the algorithm is agnostic of the maximum degree 𝛿max, then learn-

then-test always outperforms localization in the high temperature regime. This leads to

Theorem 32.

Theorem 32. Suppose 𝑝 is an Ising model in the high temperature regime. To test either

independence or identity agnostic of the maximum degree of the graph 𝛿max, localization re-

quires 𝑂̃
(︁

𝑛4𝛽2

𝜀2

)︁
samples from 𝑝 for a success probability > 2/3. Learn-then-test, on the other

hand, requires 𝑂̃
(︁

𝑛10/3𝛽2

𝜀2

)︁
for independence testing and identity testing under no external

field. It requires 𝑂̃
(︁

𝑛11/3𝛽2

𝜀2

)︁
for identity testing under an external field.

When knowledge of 𝛿max is available to the tester, he can improve his sample complexities

of localization approach. Now the sample complexity of localization gets worse as 𝛿max

increases. As noted in Section 4.3, the reason for this worsening is that the contribution to

the distance by any single edge grows smaller thereby making it harder to detect. However,
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when we are in the high-temperature regime a larger 𝛿max implies a tighter bound on the

strength of the edge interactions 𝛽 and the variance bound of Section 4.8 exploits this tighter

bound to get savings in sample complexities when the degree is large enough.

We combine the sample complexities obtained by the localization and the learn-then-test

algorithms and summarize in the following theorems the best sample complexities we can

achieve for testing independence and identity by noting the parameter regimes in which of

the above two algorithms gives better sample complexity. In both of the following theorems

we fix 𝛽 to be 𝑛−𝛼 for some 𝛼 and present which algorithm dominates as 𝛿max ranges from

a constant to 𝑛.

Theorem 33 (Best Sample Complexity Achieved, No External Field). Suppose 𝑝 is an Ising

model under no external field.

∙ if 𝛽 = 𝑂(𝑛−2/3), then for the range 𝛿max ≤ 𝑛2/3, localization performs better, for both

independence and identity testing. For the range 𝑛2/3 ≤ 𝛿max ≤ 1
4𝛽

, learn-then-test

performs better than localization for both independence and identity testing yielding a

sample complexity which is independent of 𝛿max. If 𝛿max ≥ 1
4𝛽

, then we are no longer

in the high temperature regime.

∙ if 𝛽 = 𝜔(𝑛−2/3), then for the entire range of 𝛿max localization performs at least as well

as the learn-then-test algorithm for both independence and identity testing.

The theorem stated above is summarized in Figure 4-2 for the regime when 𝛽 = 𝑂(𝑛−2/3).

The comparison for independence testing under the presence of an external field is similar

and is presented in Theorem 34.

Theorem 34 (Best Sample Complexity Achieved for Independence Testing, Arbitrary Ex-

ternal Field). Suppose 𝑝 is an Ising model under an arbitrary external field.

∙ if 𝛽 = 𝑂(𝑛−2/3), then for the range 𝛿max ≤ 𝑛2/3, localization performs better, for inde-

pendence testing. For the range 𝑛2/3 ≤ 𝛿max ≤ 1
4𝛽

, learn-then-test performs better than

localization for independence testing yielding a sample complexity which is independent

of 𝛿max. If 𝛿max ≥ 1
4𝛽

, then we are no longer in the high temperature regime.
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∙ if 𝛽 = 𝜔(𝑛−2/3), then for the entire range of 𝛿max localization performs at least as well

as the learn-then-test algorithm for independence testing.

Finally, we note in Theorem 35, the parameter regimes when learn-then-test performs

better for identity testing under an external field. Here our learn-then-test approach suffers

worse bounds due to a weaker bound on the variance of our statistic.

Theorem 35 (Best Sample Complexity Achieved for Identity Testing, Arbitrary External

Field). Suppose 𝑝 is an Ising model under an arbitrary external field.

∙ if 𝛽 = 𝑂(𝑛−5/6), then for the range 𝑛2/3 ≤ 𝛿max ≤ 1
4𝛽

, learn-then-test performs better

than localization for identity testing yielding a sample complexity which is independent

of 𝛿max. If 𝛿max ≥ 1
4𝛽

, then we are no longer in the high temperature regime.

∙ if 𝛽 = 𝜔(𝑛−5/6), then for the entire range of 𝛿max localization performs at least as well

as the learn-then-test algorithm for identity.
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Figure 4-1: Localization versus Learn-Then-Test: A plot of the sample complexity of testing
identity under no external field when 𝛽 = 1

4𝛿max
is close to the threshold of high temperature.

Note that throughout the range of values of 𝛿max we are in high temperature regime in this
plot.
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Figure 4-2: Localization versus Learn-Then-Test: A plot of the sample complexity of testing
identity under no external field when 𝛽 ≤ 𝑛−2/3. The regions shaded yellow denote the
high temperature regime while the region shaded blue denotes the low temperature regime.
The algorithm which achieves the better sample complexity is marked on the corresponding
region.
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4.7 Improved Testing on High-Temperature Ferromag-

nets

In this section, we present an improved upper bound for testing uniformity of Ising models

which are both high-temperature and ferromagnetic. Similar to the algorithms of Section 4.5,

we use a global statistic, in comparison to the local statistic which is employed for general

ferromagnets in Section 4.4.2.

Our result is the following:

Theorem 36 (Independence Testing of High-Temperature Ferromagnetic Ising Models).

Algorithm 12 takes in 𝑂̃
(︀
𝑛
𝜀

)︀
samples from a high-temperature ferromagnetic Ising model

𝑋 ∼ 𝑝 which is under no external field and outputs whether 𝑝 ∈ ℐ or 𝑑SKL(𝑝, ℐ) ≥ 𝜀 with

probability ≥ 9/10.

We note that a qualitatively similar result was previously shown in [GLP17], using a 𝜒2-

style statistic. Our algorithm is extremely similar to our test for general high-temperature

Ising models. The additional observation is that, since the model is ferromagnetic, we know

that all edge marginals have non-negative expectation, and thus we can skip the “weak

learning” stage by simply examining the global statistic with the all-ones coefficient vector.

The test is described precisely in Algorithm 12.

Algorithm 12 Test if a high-temperature ferromagnetic Ising model 𝑝 under no external
field is product
1: function TestHighTemperatureFerroIsing-Independence(sample access to an

Ising model 𝑝)
2: Run the algorithm of Lemma 25 to identify if all edges 𝑒 = (𝑢, 𝑣) such that E[𝑋𝑢𝑋𝑣] ≥√︀

𝜀/𝑛 using 𝑂̃
(︀
𝑛
𝜀

)︀
samples. If it identifies any edges, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀.

3: Draw 𝑘 = 𝑂̃
(︀
𝑛
𝜀

)︀
samples from 𝑝, denote them by 𝑋(1), . . . , 𝑋(𝑘).

4: Compute the statistic 𝑍 = 1
𝑘

∑︀𝑘
𝑖=1

∑︀
(𝑢,𝑣)∈𝐸 𝑋

(𝑖)
𝑢 𝑋

(𝑖)
𝑣 .

5: If 𝑍 ≥ 1
4

√
𝜀𝑛, return that 𝑑SKL(𝑝, ℐ) ≥ 𝜀.

6: Otherwise, return that 𝑝 is product.
7: end function

Proof of Theorem 36: First, note that under no external field, the only product Ising model

is the uniform distribution 𝒰𝑛, and the problem reduces to testing whether 𝑝 is uniform or
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not. Consider first the filtering in Step 2. By the correctness of Lemma 25, this will not

wrongfully reject any uniform Ising models. Furthermore, for the remainder of the algorithm,

we have that E[𝑋𝑢𝑋𝑣] ≤
√︀
𝜀/𝑛.

Now, we consider the statistic 𝑍. By Theorem 37, we know that the variance of 𝑍 is at

most 𝑂̃ (𝑛2/𝑘) (since we are in high-temperature). It remains to consider the expectation of

the statistic. When 𝑝 is indeed uniform, it is clear that E[𝑍] = 0. When 𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀, we

have that

𝜀 ≤
∑︁

(𝑢,𝑣)∈𝐸

𝜃𝑢𝑣E[𝑋𝑢𝑋𝑣] (4.37)

≤
∑︁

(𝑢,𝑣)∈𝐸

tanh−1(E[𝑋𝑢𝑋𝑣])E[𝑋𝑢𝑋𝑣] (4.38)

≤
∑︁

(𝑢,𝑣)∈𝐸

2E[𝑋𝑢𝑋𝑣]
2 (4.39)

≤ 2

√︂
𝜀

𝑛

∑︁
(𝑢,𝑣)∈𝐸

E[𝑋𝑢𝑋𝑣] (4.40)

(4.37) follows by (4.2), (4.38) is due to Lemma 31 (since the model is ferromagnetic), (4.39)

is because tanh−1(𝑥) ≤ 2𝑥 for 𝑥 ≤ 0.95, and (4.40) is since after Step 2, we know that

E[𝑋𝑢𝑋𝑣] ≤
√︀
𝜀/𝑛. This implies that E[𝑍] ≥

√︀
𝜀𝑛/4.

At this point, we have that E[𝑍] = 0 when 𝑝 is uniform, and E[𝑍] ≥
√︀
𝜀𝑛/4 when

𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀. Since the standard deviation of 𝑍 is 𝑂̃
(︁
𝑛/
√
𝑘
)︁
, by Chebyshev’s inequality,

choosing 𝑘 = Ω̃(𝑛/𝜀) suffices to distinguish the two cases with probability ≥ 9/10.

4.8 Variance Bounds in High-Temperature

In this section, we describe a technique for bounding the variance of our statistics on the

Ising model in high temperature. As the structure of Ising models can be quite complex,

it can be challenging to obtain non-trivial bounds on the variance of even relatively simple

statistics. In particular, to apply our learn-then-test framework of Section 4.5, we must

bound the variance of statistics of the form 𝑍 ′ =
∑︀

𝑢̸=𝑣 𝑐𝑢𝑣𝑋𝑢𝑋𝑣 (under no external field,

see (4.33)) and 𝑍 ′
𝑐𝑒𝑛 =

∑︀
𝑢̸=𝑣 𝑐𝑢𝑣

(︁
𝑋

(1)
𝑢 −𝑋(2)

𝑢

)︁(︁
𝑋

(1)
𝑣 −𝑋(2)

𝑣

)︁
(under an external field, see
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(4.36)). While the variance for both the statistics is easily seen to be 𝑂(𝑛2) if the graph has

no edges, to prove variance bounds better than the trivial 𝑂(𝑛4) for general graphs requires

some work. We show the following two theorems in this section.

The first result, Theorem 37, bounds the variance of functions of the form
∑︀

𝑢̸=𝑣 𝑐𝑢𝑣𝑋𝑢𝑋𝑣

under no external field which captures the statistic used for testing independence and identity

by the learn-then-test framework of Section 4.5 in the absence of an external field.

Theorem 37 (High Temperature Variance Bound, No External Field). Let 𝑐 ∈ [−1, 1](
𝑉
2)

and define 𝑓𝑐 : {±1}𝑉 → R as follows: 𝑓𝑐(𝑥) =
∑︀

𝑖 ̸=𝑗 𝑐{𝑖,𝑗}𝑥𝑖𝑥𝑗. Let also 𝑋 be distributed

according to an Ising model, without node potentials (i.e. 𝜃𝑣 = 0, for all 𝑣), in the high

temperature regime of Definition 12. Then

Var (𝑓𝑐(𝑋)) = 𝑂̃(𝑛2).

The second result of this section, Theorem 38, bounds the variance of functions of the form∑︀
𝑢̸=𝑣 𝑐𝑢𝑣(𝑋

(1)
𝑢 −𝑋(2)

𝑢 )(𝑋
(1)
𝑣 −𝑋(2)

𝑣 ) which captures the statistic of interest for independence

testing using the learn-then-test framework of Section 4.5 under an external field. Intuitively,

this modification is required to “recenter” the random variables. Here, we view the two

samples from Ising model 𝑝 over graph 𝐺 = (𝑉,𝐸) as coming from a single Ising model 𝑝⊗2

over a graph 𝐺(1) ∪𝐺(2) where 𝐺(1) and 𝐺(2) are identical copies of 𝐺.

Theorem 38 (High Temperature Variance Bound, Arbitrary External Field). Let 𝑐 ∈

[−1, 1](
𝑉
2) and let 𝑋 be distributed according to Ising model 𝑝⊗2 over graph 𝐺(1) ∪ 𝐺(2) in

the high temperature regime of Definition 12 and define 𝑔𝑐 : {±1}𝑉 ∪𝑉 ′ → R as follows:

𝑔𝑐(𝑥) =
∑︀

𝑢,𝑣∈𝑉
s.t. 𝑢̸=𝑣

𝑐𝑢𝑣(𝑥𝑢(1) − 𝑥𝑢(2))(𝑥𝑣(1) − 𝑥𝑣(2)). Then

Var(𝑔𝑐(𝑋)) = 𝑂̃
(︀
𝑛2
)︀
.

4.8.1 Overview

We will use tools from Chapter 13 of [LPW09] to obtain the variance bounds of this section.

At a high level the technique to bound the variance of a function 𝑓 on a distribution 𝜇
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involves first defining a reversible Markov chain with 𝜇 as its stationary distribution. By

studying the mixing time properties (via the spectral gap) of this Markov chain along with

the second moment of the variation of 𝑓 when a single step is taken under this Markov chain

we obtain bounds on the second moment of 𝑓 which consequently yield the desired variance

bounds.

The Markov chain in consideration here will be the Glauber dynamics chain on the Ising

model 𝑝. As stated in Section 4.2, the Glauber dynamics are reversible and ergodic for Ising

models. Let 𝑀 be the reversible transition matrix for the Glauber dynamics on some Ising

model 𝑝. Let 𝛾* be the absolute spectral gap for this Markov chain. The first step is to

obtain a lower bound on 𝛾*.

Claim 5. In the high-temperature regime/under Dobrushin conditions, 𝛾* ≥ Ω
(︁

1
𝑛 log𝑛

)︁
under

an arbitrary external field.

Proof. From Theorem 15.1 of [LPW09], we have that the mixing time of the Glauber dynam-

ics is 𝑂(𝑛 log 𝑛). Since the Glauber dynamics on an Ising model is ergodic and reversible,

using the relation between mixing and relaxation times (Theorem 12.4 of [LPW09]) we get

that

𝑡𝑚𝑖𝑥 ≥
(︁

1
𝛾*
− 1
)︁

log(2) (4.41)

=⇒ 1

𝛾*
≤ 𝑛 log𝑛

log(2)
+ 1 (4.42)

=⇒ 𝛾* ≥ Ω
(︁

1
𝑛 log𝑛

)︁
. (4.43)

For a function 𝑓 , define

ℰ(𝑓) =
1

2

∑︁
𝑥,𝑦∈{±1}𝑛

[𝑓(𝑥)− 𝑓(𝑦)]2𝜋(𝑥)𝑀(𝑥, 𝑦).

This can be interpreted as the expected square of the difference in the function, when a step
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is taken at stationarity. That is,

ℰ(𝑓) =
1

2
E
[︀
(𝑓(𝑥)− 𝑓(𝑦))2

]︀
(4.44)

where 𝑥 is drawn from the Ising distribution and 𝑦 is obtained by taking a step in the Glauber

dynamics starting from 𝑥. We now state a slight variant of Remark 13.13 which we will use

as Lemma 35.

Lemma 35. For a reversible transition matrix 𝑃 on state space Ω with stationary distribu-

tion 𝜋, let

ℰ(𝑓) :=
1

2

∑︁
𝑥,𝑦∈Ω

(𝑓(𝑥)− 𝑓(𝑦))2𝜋(𝑥)𝑃 (𝑥, 𝑦),

where 𝑓 is a function on Ω such that Var𝜋(𝑓) > 0. Also let 𝛾* be the absolute spectral gap

of 𝑃 . Then

𝛾* ≤
ℰ(𝑓)

Var𝜋(𝑓)
.

Note: Remark 13.13 in [LPW09] states a bound on the spectral gap as opposed to the

absolute spectral gap bound which we use here. However, the proof of Remark 13.13

also works for obtaining a bound on the absolute spectral gap 𝛾*.

4.8.2 No External Field

We prove Theorem 37 now. Consider the function 𝑓𝑐(𝑥) =
∑︀

𝑢,𝑣 𝑐𝑢𝑣𝑥𝑢𝑥𝑣 where 𝑐 ∈ [−1, 1](
|𝑉 |
2 ).

Claim 6. For an Ising model under no external field, ℰ(𝑓𝑐) = ̃︀𝑂(𝑛).

Proof. Since 𝑦 is obtained by taking a single step on the Glauber dynamics from 𝑥, 𝑓𝑐(𝑥)−

𝑓𝑐(𝑦) is a function of the form
∑︀

𝑣 𝑐𝑣𝑥𝑣 where 𝑐𝑣 ∈ [−1, 1] for all 𝑣 ∈ 𝑉 . The coefficients

{𝑐𝑣}𝑣 depend on which node 𝑣0 ∈ 𝑉 was updated by the Glauber dynamics. Since there

are 𝑛 choices for nodes to update, and since the update might also leave 𝑥 unchanged, i.e.

𝑦 = 𝑥, 𝑓𝑐(𝑥) − 𝑓𝑐(𝑦) is one of at most 𝑛 + 1 linear functions of the form
∑︀

𝑣 𝑐𝑣𝑥𝑣. Denote,

by 𝐸(𝑥, 𝑦), the event that |𝑓𝑐(𝑥)− 𝑓𝑐(𝑦)| ≥ 𝑐
√
𝑛 log 𝑛. We have, from the concentration of

linear functions on the Ising model around their expected value (Lemma 22) and a union
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bound over the 𝑛+1 possible linear functions, that for a sufficiently large 𝑐, under no external

field, Pr [𝐸(𝑥, 𝑦)] ≤ 1
10𝑛2 . Now,

E
[︀
(𝑓𝑐(𝑥)− 𝑓𝑐(𝑦))2

]︀
= E [(𝑓𝑐(𝑥)− 𝑓𝑐(𝑦))2|𝐸(𝑥, 𝑦)] Pr[𝐸(𝑥, 𝑦)]

+ E [(𝑓𝑐(𝑥)− 𝑓𝑐(𝑦))2|¬𝐸(𝑥, 𝑦)] Pr[¬𝐸(𝑥, 𝑦)]

≤ 𝑛2 × 1
10𝑛2 + 𝑐2𝑛 log2 𝑛

(︀
1− 1

10𝑛2

)︀
= ̃︀𝑂(𝑛)

where we used the fact that the absolute maximum value of (𝑓𝑐(𝑥)− 𝑓𝑐(𝑦))2 is 𝑛2.

Claim 5 together with Claim 6 are sufficient to conclude an upper bound on the variance

of 𝑓𝑐, by using Lemma 35, thus giving us Theorem 37.

4.8.3 Arbitrary External Field

Under the presence of an external field, we saw that we need to appropriately center our

statistics to achieve low variance. The function 𝑔𝑐(𝑥) of interest now is defined over the

2-sample Ising model 𝑝⊗2 and is of the form

𝑔𝑐(𝑥) =
∑︁
𝑢,𝑣

𝑐𝑢𝑣(𝑥
(1)
𝑢 − 𝑥(2)𝑢 )(𝑥(1)𝑣 − 𝑥(2)𝑣 )

where now 𝑥, 𝑦 ∈ {±1}2|𝑉 |. First, note that the absolute spectral gap for 𝑝⊗2 is also at least̃︀Ω(1/𝑛). Now we bound ℰ(𝑔𝑐).

Claim 7. For an Ising model under an arbitrary external field, ℰ(𝑔𝑐) = ̃︀𝑂(𝑛).

Proof. Since 𝑦 is obtained by taking a single step on the Glauber dynamics from 𝑥, it can

be seen that 𝑔𝑐(𝑥)− 𝑔𝑐(𝑦) is a function of the form
∑︀

𝑣 𝑐𝑣

(︁
𝑥
(1)
𝑣 − 𝑥(2)𝑣

)︁
where 𝑐𝑣 ∈ [−1, 1] for

all 𝑣 ∈ 𝑉 . The coefficients {𝑐𝑣}𝑣 depend on which node 𝑣0 ∈ 𝑉 was updated by the Glauber

dynamics. Since there are 𝑛 choices for nodes to update, and since the update might also

leave 𝑥 unchanged, i.e. 𝑦 = 𝑥, 𝑔𝑐(𝑥) − 𝑔𝑐(𝑦) is one of at most 𝑛 + 1 linear functions of the

form
∑︀

𝑣 𝑐𝑣

(︁
𝑥
(1)
𝑣 − 𝑥(2)𝑣

)︁
. Denote, by 𝐸(𝑥, 𝑦), the event that |𝑔𝑐(𝑥)− 𝑔𝑐(𝑦)| ≥ 𝑐

√
𝑛 log 𝑛. We

173



have, from Lemma 22 and a union bound, that for a sufficiently large 𝑐, Pr [𝐸(𝑥, 𝑦)] ≤ 1
10𝑛2 .

Now,

E
[︀
(𝑔𝑐(𝑥)− 𝑔𝑐(𝑦))2

]︀
= E [(𝑔𝑐(𝑥)− 𝑔𝑐(𝑦))2|𝐸(𝑥, 𝑦)] Pr[𝐸(𝑥, 𝑦)] (4.45)

+ E [(𝑔𝑐(𝑥)− 𝑔𝑐(𝑦))2|𝐸(𝑥, 𝑦)𝑐] Pr[𝐸(𝑥, 𝑦)𝑐] (4.46)

≤ 4𝑛2 × 1
10𝑛2 + 𝑐2𝑛 log2 𝑛

(︀
1− 1

10𝑛2

)︀
(4.47)

= ̃︀𝑂(𝑛) (4.48)

where we used the fact that the absolute maximum value of (𝑔𝑐(𝑥)− 𝑔𝑐(𝑦))2 is 4𝑛2.

Similar to before, Claim 5 together with Claim 7 are sufficient to conclude an upper

bound on the variance of 𝑓𝑐, by using Lemma 35, thus giving us Theorem 38.

4.9 Lower Bounds for Testing Ising Models

In this section we describe our lower bound constructions and state the main results.

4.9.1 Dependences on 𝑛

Our first lower bounds show dependences on 𝑛, the number of nodes, in the complexity of

testing Ising models.

To start, we prove that uniformity testing on product measures over a binary alphabet

requires Ω(
√
𝑛/𝜀) samples. Note that a binary product measure corresponds to the case of

an Ising model with no edges. This implies the same lower bound for identity testing, but

(not) independence testing, as a product measure always has independent marginals, so the

answer is trivial.

Theorem 39. There exists a constant 𝑐 > 0 such that any algorithm, given sample access

to an Ising model 𝑝 with no edges (i.e., a product measure over a binary alphabet), which

distinguishes between the cases 𝑝 = 𝒰𝑛 and 𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀 with probability at least 99/100

requires 𝑘 ≥ 𝑐
√
𝑛/𝜀 samples.
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Next, we show that any algorithm which tests uniformity of an Ising model requires

Ω(𝑛/𝜀) samples. In this case, it implies the same lower bounds for independence and identity

testing.

Theorem 40. There exists a constant 𝑐 > 0 such that any algorithm, given sample access

to an Ising model 𝑝, which distinguishes between the cases 𝑝 = 𝒰𝑛 and 𝑑SKL(𝑝,𝒰𝑛) ≥ 𝜀 with

probability at least 99/100 requires 𝑘 ≥ 𝑐𝑛/𝜀 samples. This remains the case even if 𝑝 is

known to have a tree structure and only ferromagnetic edges.

The lower bounds use Le Cam’s two point method which constructs a family of distribu-

tions 𝒫 such that the distance between any 𝑃 ∈ 𝒫 and a particular distribution 𝑄 is large (at

least 𝜀). But given a 𝑃 ∈ 𝒫 chosen uniformly at random, it is hard to distinguish between

𝑃 and 𝑄 with at least 2/3 success probability unless we have sufficiently many samples.

Our construction for product measures is inspired by Paninski’s lower bound for uni-

formity testing [Pan08]. We start with the uniform Ising model and perturb each node

positively or negatively by
√︀
𝜀/𝑛, resulting in a model which is 𝜀-far in 𝑑SKL from 𝒰𝑛. The

proof appears in Section 4.9.3.1.

Our construction for the linear lower bound builds upon this style of perturbation. In the

previous construction, instead of perturbing the node potentials, we could have left the node

marginals to be uniform and perturbed the edges of some fixed, known matching to obtain

the same lower bound. To get a linear lower bound, we instead choose a random perfect

matching, which turns out to require quadratically more samples to test. Interestingly,

we only need ferromagnetic edges (i.e., positive perturbations), as the randomness in the

choice of matching is sufficient to make the problem harder. Our proof is significantly more

complicated for this case, and it uses a careful combinatorial analysis involving graphs which

are unions of two perfect matchings. The lower bound is described in detail in Section 4.9.3.2.

Remark 4. Similar lower bound constructions to those of Theorems 39 and 40 also yield

Ω(
√
𝑛/𝜀2) and Ω(𝑛/𝜀2) for the corresponding testing problems when 𝑑SKL is replaced with 𝑑TV.

In our constructions, we describe families of distributions which are 𝜀-far in 𝑑SKL. This is

done by perturbing certain parameters by a magnitude of Θ(
√︀
𝜀/𝑛). We can instead describe

families of distributions which are 𝜀-far in 𝑑TV by performing perturbations of Θ(𝜀/
√
𝑛), and
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the rest of the proofs follow similarly.

4.9.2 Dependences on ℎ, 𝛽

Finally, we show that dependences on the ℎ and 𝛽 parameters are, in general, necessary for

independence and identity testing. Recall that ℎ and 𝛽 are upper bounds on the absolute

values of the node and edge parameters, respectively. Our constructions are fairly simple,

involving just one or two nodes, and the results are stated in Theorem 41.

Theorem 41. There is a linear lower bound on the parameters ℎ and 𝛽 for testing problems

on Ising models. More specifically,

∙ There exists a constant 𝑐 > 0 such that, for all 𝜀 < 1 and 𝛽 ≥ 0, any algorithm, given

sample access to an Ising model 𝑝, which distinguishes between the cases 𝑝 ∈ ℐ and

𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐𝛽/𝜀 samples.

∙ There exists constants 𝑐1, 𝑐2 > 0 such that, for all 𝜀 < 1 and 𝛽 ≥ 𝑐1 log(1/𝜀), any

algorithm, given a description of an Ising model 𝑞 with no external field (i.e., ℎ = 0)

and has sample access to an Ising model 𝑝, and which distinguishes between the cases

𝑝 = 𝑞 and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐2𝛽/𝜀 samples.

∙ There exists constants 𝑐1, 𝑐2 > 0 such that, for all 𝜀 < 1 and ℎ ≥ 𝑐1 log(1/𝜀), any

algorithm, given a description of an Ising model 𝑞 with no edge potentials(i.e., 𝛽 = 0)

and has sample access to an Ising model 𝑝, and which distinguishes between the cases

𝑝 = 𝑞 and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐2ℎ/𝜀 samples.

The construction and analysis appears in Section 4.9.3.3.

This lower bound shows that the dependence on 𝛽 parameters by our algorithms cannot

be avoided in general, though it may be sidestepped in certain cases. Notably, we show that

testing independence of a forest-structured Ising model under no external field can be done

using 𝑂̃
(︀
𝑛
𝜀

)︀
samples (Theorem 23).
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4.9.3 Proofs

4.9.3.1 Proof of Theorem 39

This proof will follow via an application of Le Cam’s two-point method. More specifically,

we will consider two classes of distributions 𝒫 and 𝒬 such that:

1. 𝒫 consists of a single distribution 𝑝 , 𝒰𝑛;

2. 𝒬 consists of a family of distributions such that for all distributions 𝑞 ∈ 𝒬, 𝑑SKL(𝑝, 𝑞) ≥

𝜀;

3. There exists some constant 𝑐 > 0 such that any algorithm which distinguishes 𝑝 from

a uniformly random distribution 𝑞 ∈ 𝒬 with probability ≥ 2/3 requires ≥ 𝑐
√
𝑛/𝜀

samples.

The third point will be proven by showing that, with 𝑘 < 𝑐
√
𝑛/𝜀 samples, the following

two processes have miniscule total variation distance, and thus no algorithm can distinguish

them:

∙ The process 𝑝⊗𝑘, which draws 𝑘 samples from 𝑝;

∙ The process 𝑞⊗𝑘, which selects 𝑞 from 𝒬 uniformly at random, and then draws 𝑘

samples from 𝑞.

We will let 𝑝⊗𝑘
𝑖 be the process 𝑝⊗𝑘 restricted to the 𝑖th coordinate of the random vectors

sampled, and 𝑞⊗𝑘
𝑖 is defined similarly.

We proceed with a description of our construction. Let 𝛿 =
√︀

3𝜀/2𝑛. As mentioned

before, 𝒫 consists of the single distribution 𝑝 , 𝒰𝑛, the Ising model on 𝑛 nodes with 0

potentials on every node and edge. Letℳ be the set of all 2𝑛 vectors in the set {±𝛿}𝑛. For

each 𝑀 = (𝑀1, . . . ,𝑀𝑛) ∈ ℳ, we define a corresponding 𝑞𝑀 ∈ 𝒬 where the node potential

𝑀𝑖 is placed on node 𝑖.

Proposition 11. For each 𝑞 ∈ 𝒬, 𝑑SKL(𝑞,𝒰𝑛) ≥ 𝜀.

Proof. Recall that

𝑑SKL(𝑞,𝒰𝑛) =
∑︁
𝑣∈𝑉

𝛿 tanh(𝛿).
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Note that tanh(𝛿) ≥ 2𝛿/3 for all 𝛿 ≤ 1, which can be shown using a Taylor expansion.

Therefore

𝑑SKL(𝑞,𝒰𝑛) ≥ 𝑛 · 𝛿 · 2𝛿/3 = 2𝑛𝛿2/3 = 𝜀.

The goal is to upper bound 𝑑TV(𝑝⊗𝑘, 𝑞⊗𝑘). Our approach will start with manipulations

similar to the following lemma from [AD15].

Lemma 36. For any two distributions 𝑝 and 𝑞,

2𝑑2TV(𝑝, 𝑞) ≤ 𝑑KL(𝑞, 𝑝) ≤ log E𝑞

[︂
𝑞

𝑝

]︂
.

The first inequality is Pinsker’s, and the second is Jensen’s.

Similarly:

2𝑑2TV(𝑝⊗𝑘, 𝑞⊗𝑘) ≤ 𝑑KL(𝑞⊗𝑘, 𝑝⊗𝑘) = 𝑛𝑑KL(𝑞⊗𝑘
1 , 𝑝⊗𝑘

1 ) ≤ 𝑛 log E𝑞⊗𝑘
1

[︂
𝑞⊗𝑘
1

𝑝⊗𝑘
1

]︂
.

The first inequality is Pinsker’s, and the last inequality is Jensen’s. The equality in the

middle is the chain rule for KL divergence – this is because 𝑝⊗𝑘
𝑖 and 𝑞⊗𝑘

𝑖 are independent

over coordinates.

We proceed to bound the right-hand side. To simplify notation, let 𝑝+ = 𝑒𝛿/(𝑒𝛿 + 𝑒−𝛿)

be the probability that a node with parameter 𝛿 takes the value 1. Note that a node with

parameter −𝛿 takes the value 1 with probability 1 − 𝑝+. We will perform a sum over all

realizations 𝑘1 for the number of times that node 1 is observed to be 1.
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E𝑞⊗𝑘
1

[︂
𝑞⊗𝑘
1

𝑝⊗𝑘
1

]︂
=

𝑘∑︁
𝑘1=0

(𝑞⊗𝑘
1 (𝑘1))

2

𝑝⊗𝑘
1 (𝑘1)

=
𝑘∑︁

𝑘1=0

(︁
1
2

(︀
𝑘
𝑘1

)︀
(𝑝+)𝑘1(1− 𝑝+)𝑘−𝑘1 + 1

2

(︀
𝑘

𝑘−𝑘1

)︀
(𝑝+)𝑘1(1− 𝑝+)𝑘1

)︁2
(︀
𝑘
𝑘1

)︀
(1/2)𝑘

=
2𝑘

4

𝑘∑︁
𝑘1=0

(︂
𝑘

𝑘1

)︂(︀
(𝑝+)2𝑘1(1− 𝑝+)2(𝑘−𝑘1) + (𝑝+)2(𝑘−𝑘1)(1− 𝑝+)2𝑘1 + 2(𝑝+(1− 𝑝+))𝑘

)︀
=

2𝑘

2
(𝑝+(1− 𝑝+))𝑘

𝑘∑︁
𝑘1=0

(︂
𝑘

𝑘1

)︂
+ 2 · 2𝑘

4

𝑘∑︁
𝑘1=0

(︂(︂
𝑘

𝑘1

)︂
(𝑝2+)𝑘1((1− 𝑝+)2)𝑘−𝑘1

)︂

where the second equality uses the fact that 𝑞⊗𝑘
1 chooses the Ising model with parameter on

node 1 being 𝛿 and −𝛿 each with probability 1/2. Using the identity
∑︀𝑘

𝑘1=0

(︀
𝑘
𝑘1

)︀
𝑎𝑘1𝑏𝑘−𝑘1 =

(𝑎+ 𝑏)𝑘 gives that

E𝑞⊗𝑘
1

[︂
𝑞⊗𝑘
1

𝑝⊗𝑘
1

]︂
=

4𝑘

2
(𝑝+(1− 𝑝+))𝑘 +

2𝑘

2

(︀
2𝑝2+ + 1− 2𝑝+

)︀𝑘
.

Substituting in the value for 𝑝+ and applying hyperbolic trigenometric identities, the above

expression simplifies to

1

2

(︁(︀
sech2(𝛿)

)︀𝑘
+
(︀
1 + tanh2(𝛿)

)︀𝑘)︁
≤ 1 +

(︂
𝑘

2

)︂
𝛿4

= 1 +

(︂
𝑘

2

)︂
9𝜀2

4𝑛2

where the inequality follows by a Taylor expansion.

This gives us that

2𝑑2TV(𝑝⊗𝑘, 𝑞⊗𝑘) ≤ 𝑛 log

(︂
1 +

(︂
𝑘

2

)︂
9𝜀2

4𝑛2

)︂
≤ 9𝑘2𝜀2

4𝑛
.

If 𝑘 < 0.9 ·
√
𝑛/𝜀, then 𝑑2TV(𝑝⊗𝑘, 𝑞⊗𝑘) < 49/50 and thus no algorithm can distinguish between

the two with probability ≥ 99/100. This completes the proof of Theorem 39.
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4.9.3.2 Proof of Theorem 40

This lower bound similarly applies Le Cam’s two-point method, as described in the previous

section. We proceed with a description of our construction. Assume that 𝑛 is even. As

before, 𝒫 consists of the single distribution 𝑝 , 𝒰𝑛, the Ising model on 𝑛 nodes with 0

potentials on every node and edge. Let ℳ denote the set of all (𝑛− 1)!! perfect matchings

on the clique on 𝑛 nodes. Each 𝑀 ∈ℳ defines a corresponding 𝑞𝑀 ∈ 𝒬, where the potential

𝛿 =
√︀

3𝜀/𝑛 is placed on each edge present in the graph.

The following proposition follows similarly to Proposition 11.

Proposition 12. For each 𝑞 ∈ 𝒬, 𝑑SKL(𝑞,𝒰𝑛) ≥ 𝜀.

The goal is to upper bound 𝑑TV(𝑝⊗𝑘, 𝑞⊗𝑘). We apply Lemma 36 to 2𝑑2TV(𝑝⊗𝑘, 𝑞⊗𝑘) and

focus on the quantity inside the logarithm. Let 𝑋(𝑖) ∈ {±1}𝑛 represent the realization of the

𝑖th sample and 𝑋𝑢 ∈ {±1}𝑘 represent the realization of the 𝑘 samples on node 𝑢. Let 𝐻(., .)

represent the Hamming distance between two vectors, and for sets 𝑆1 and 𝑆2, let 𝑆 = 𝑆1⊎𝑆2

be the very commonly used multiset addition operation (i.e., combine all the elements from

𝑆1 and 𝑆2, keeping duplicates). Let 𝑀0 be the perfect matching with edges (2𝑖 − 1, 2𝑖) for

all 𝑖 ∈ [𝑛/2].

E𝑞⊗𝑘

[︂
𝑞⊗𝑘

𝑝⊗𝑘

]︂
=

∑︁
𝑋=(𝑋(1),...,𝑋(𝑘))

(𝑞⊗𝑘(𝑋))2

𝑝⊗𝑘(𝑋)

= 2𝑛𝑘
∑︁

𝑋=(𝑋(1),...,𝑋(𝑘))

(𝑞⊗𝑘(𝑋))2

We can expand the inner probability as follows. Given a randomly selected perfect matching,

we can break the probability of a realization 𝑋 into a product over the edges. By examining

the PMF of the Ising model, if the two endpoints of a given edge agree, the probability is

multiplied by a factor of
(︁

𝑒𝛿

2(𝑒𝛿+𝑒−𝛿)

)︁
, and if they disagree, a factor of

(︁
𝑒−𝛿

2(𝑒𝛿+𝑒−𝛿)

)︁
. Since (given

a matching) the samples are independent, we take the product of this over all 𝑘 samples. We

average this quantity using a uniformly random choice of perfect matching. Writing these
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ideas mathematically, the expression above is equal to

2𝑛𝑘
∑︁

𝑋=(𝑋(1),...,𝑋(𝑘))

⎛⎝ 1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

∏︁
(𝑢,𝑣)∈𝑀

𝑘∏︁
𝑖=1

(︂
𝑒𝛿

2(𝑒𝛿 + 𝑒−𝛿)

)︂1(𝑋
(𝑖)
𝑢 =𝑋

(𝑖)
𝑣 )(︂

𝑒−𝛿

2(𝑒𝛿 + 𝑒−𝛿)

)︂1(𝑋
(𝑖)
𝑢 ̸=𝑋

(𝑖)
𝑣 )
⎞⎠2

= 2𝑛𝑘
∑︁

𝑋=(𝑋(1),...,𝑋(𝑘))

⎛⎝ 1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

∏︁
(𝑢,𝑣)∈𝑀

(︂
1

2(𝑒𝛿 + 𝑒−𝛿)

)︂𝑘

𝑒𝛿(𝑘−𝐻(𝑋𝑢,𝑋𝑣))𝑒−𝛿𝐻(𝑋𝑢,𝑋𝑣)

⎞⎠2

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘 ∑︁
𝑋=(𝑋(1),...,𝑋(𝑘))

⎛⎝ 1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

∏︁
(𝑢,𝑣)∈𝑀

exp(−2𝛿𝐻(𝑋𝑢, 𝑋𝑣))

⎞⎠2

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!2

∑︁
𝑋=(𝑋(1),...,𝑋(𝑘))

⎛⎝∑︁
𝑀∈ℳ

∏︁
(𝑢,𝑣)∈𝑀

exp(−2𝛿𝐻(𝑋𝑢, 𝑋𝑣))

⎞⎠2

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!2

∑︁
𝑋=(𝑋(1),...,𝑋(𝑘))

∑︁
𝑀1,𝑀2∈ℳ

∏︁
(𝑢,𝑣)∈𝑀1⊎𝑀2

exp(−2𝛿𝐻(𝑋𝑢, 𝑋𝑣))

At this point, we note that if we fix the matching 𝑀1, summing over all perfect matchings

𝑀2 gives the same value irrespective of the value of 𝑀1. Therefore, we multiply by a factor

of (𝑛− 1)!! and fix the choice of 𝑀1 to be 𝑀0.

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

∑︁
𝑋=(𝑋(1),...,𝑋(𝑘))

∏︁
(𝑢,𝑣)∈𝑀0⊎𝑀

exp(−2𝛿𝐻(𝑋𝑢, 𝑋𝑣))

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

⎛⎝∑︁
𝑋(1)

∏︁
(𝑢,𝑣)∈𝑀0⊎𝑀

exp
(︀
−2𝛿𝐻

(︀
𝑋(1)

𝑢 , 𝑋(1)
𝑣

)︀)︀⎞⎠𝑘

We observe that multiset union of two perfect matchings will form a collection of even

length cycles (if they contain the same edge, this forms a 2-cycle), and this can be rewritten

as follows.
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(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

⎛⎜⎝∑︁
𝑋(1)

∏︁
cycles𝐶
∈𝑀0⊎𝑀

∏︁
(𝑢,𝑣)∈𝐶

exp
(︀
−2𝛿𝐻

(︀
𝑋(1)

𝑢 , 𝑋(1)
𝑣

)︀)︀⎞⎟⎠
𝑘

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

⎛⎜⎝ ∏︁
cycles 𝐶
∈𝑀0⊎𝑀

∑︁
𝑋

(1)
𝐶

∏︁
(𝑢,𝑣)∈𝐶

exp
(︀
−2𝛿𝐻

(︀
𝑋(1)

𝑢 , 𝑋(1)
𝑣

)︀)︀⎞⎟⎠
𝑘

(4.49)

We now simplify this using a counting argument over the possible realizations of 𝑋(1)

when restricted to edges in cycle 𝐶. Start by noting that

∑︁
𝑋

(1)
𝐶

∏︁
(𝑢,𝑣)∈𝐶

(𝑒2𝛿)
−2𝐻

(︁
𝑋

(1)
𝑢 ,𝑋

(1)
𝑣

)︁
= 2

𝑛/2∑︁
𝑖=0

(︂(︂
|𝐶| − 1

2𝑖− 1

)︂
+

(︂
|𝐶| − 1

2𝑖

)︂)︂
(𝑒2𝛿)−2𝑖.

This follows by counting the number of possible ways to achieve a particular Hamming

distance over the cycle. The |𝐶| − 1 (rather than |𝐶|) and the grouping of consecutive

binomial coefficients arises as we lose one “degree of freedom” due to examining a cycle,

which fixes the Hamming distance to be even. Now, we apply Pascal’s rule and can see

2

𝑛/2∑︁
𝑖=0

(︂(︂
|𝐶| − 1

2𝑖− 1

)︂
+

(︂
|𝐶| − 1

2𝑖

)︂)︂
(𝑒2𝛿)−2𝑖 = 2

𝑛/2∑︁
𝑖=0

(︂
|𝐶|
2𝑖

)︂
(𝑒2𝛿)−2𝑖.

This is twice the sum over the even terms in the binomial expansion of (1+𝑒−2𝛿)|𝐶|. The odd

terms may be eliminated by adding (1− 𝑒−2𝛿)|𝐶|, and thus (4.49) is equal to the following.
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(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

⎛⎜⎝ ∏︁
cycles 𝐶
∈𝑀0⊎𝑀

(1 + 𝑒−2𝛿)|𝐶| + (1− 𝑒−2𝛿)|𝐶|

⎞⎟⎠
𝑘

=

(︂
𝑒𝛿

𝑒𝛿 + 𝑒−𝛿

)︂𝑛𝑘
1

(𝑛− 1)!!

∑︁
𝑀∈ℳ

⎛⎜⎝ ∏︁
cycles 𝐶
∈𝑀0⊎𝑀

(︂
𝑒𝛿 + 𝑒−𝛿

𝑒𝛿

)︂|𝐶|
(︃

1 +

(︂
𝑒𝛿 − 𝑒−𝛿

𝑒𝛿 + 𝑒−𝛿

)︂|𝐶|
)︃⎞⎟⎠

𝑘

= E

⎡⎢⎣
⎛⎜⎝ ∏︁

cycles 𝐶
∈𝑀0⊎𝑀

(︁
1 + tanh|𝐶|(𝛿)

)︁⎞⎟⎠
𝑘⎤⎥⎦ (4.50)

where the expectation is from choosing a uniformly random perfect matching 𝑀 ∈ ℳ. At

this point, it remains only to bound Equation (4.50). Noting that for all 𝑥 > 0 and 𝑡 ≥ 1,

1 + tanh𝑡(𝛿) ≤ 1 + 𝛿𝑡 ≤ exp
(︀
𝛿𝑡
)︀
,

we can bound (4.50) as

E

⎡⎢⎣
⎛⎜⎝ ∏︁

cycles 𝐶
∈𝑀0⊎𝑀

(︁
1 + tanh|𝐶|(𝛿)

)︁⎞⎟⎠
𝑘⎤⎥⎦ ≤ E

⎡⎢⎣
⎛⎜⎝ ∏︁

cycles 𝐶
∈𝑀0⊎𝑀

exp
(︀
𝛿|𝐶|)︀

⎞⎟⎠
𝑘⎤⎥⎦ .

For our purposes, it turns out that the 2-cycles will be the dominating factor, and we use

the following crude upper bound. Let 𝜁 be a random variable representing the number of

2-cycles in 𝑀0 ⊎𝑀 , i.e., the number of edges shared by both perfect matchings.

E

⎡⎢⎣
⎛⎜⎝ ∏︁

cycles 𝐶
∈𝑀0⊎𝑀

exp
(︀
𝛿|𝐶|)︀

⎞⎟⎠
𝑘⎤⎥⎦ = E

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

∏︁
cycles 𝐶
∈𝑀0⊎𝑀
|𝐶|≥4

exp
(︀
𝛿|𝐶|)︀

⎞⎟⎟⎟⎟⎠
𝑘

exp
(︀
𝛿2𝜁𝑘

)︀
⎤⎥⎥⎥⎥⎦ ≤ exp

(︀
𝛿4 · 𝑛/4 · 𝑘

)︀
E
[︀
exp

(︀
𝛿2𝜁𝑘

)︀]︀
,

where in the last inequality, we used the facts that 𝛿|𝐶| is maximized for |𝐶| ≥ 4 when

|𝐶| = 4, and that there are at most 𝑛/4 cycles of length at least 4.
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We examine the distribution of 𝜁. Note that

E[𝜁] =
𝑛

2
· 1

𝑛− 1
=

𝑛

2(𝑛− 1)
.

More generally, for any positive integer 𝑧 ≤ 𝑛/2,

E[𝜁 − (𝑧 − 1)|𝜁 ≥ 𝑧 − 1] =
𝑛− 2𝑧 + 2

2
· 1

𝑛− 2𝑧 + 1
=

𝑛− 2𝑧 + 2

2(𝑛− 2𝑧 + 1)
.

By Markov’s inequality,

Pr[𝜁 ≥ 𝑧|𝜁 ≥ 𝑧 − 1] = Pr[𝜁 − (𝑧 − 1) ≥ 1|𝜁 ≥ 𝑧 − 1] ≤ 𝑛− 2𝑧 + 2

2(𝑛− 2𝑧 + 1)
.

Therefore,

Pr[𝜁 ≥ 𝑧] =
𝑧∏︁

𝑖=1

Pr[𝜁 ≥ 𝑖|𝜁 ≥ 𝑖− 1] ≤
𝑧∏︁

𝑖=1

𝑛− 2𝑖+ 2

2(𝑛− 2𝑖+ 1)
.

In particular, note that for all 𝑧 < 𝑛/2,

Pr[𝜁 ≥ 𝑧] ≤ (2/3)𝑧.

We return to considering the expectation above:

E
[︀
exp

(︀
𝛿2𝜁𝑘

)︀]︀
=

𝑛/2∑︁
𝑧=0

Pr[𝜁 = 𝑧] exp
(︀
𝛿2𝑧𝑘

)︀
≤

𝑛/2∑︁
𝑧=0

Pr[𝜁 ≥ 𝑧] exp
(︀
𝛿2𝑧𝑘

)︀
≤ 3

2

𝑛/2∑︁
𝑧=0

(2/3)𝑧 exp
(︀
𝛿2𝑧𝑘

)︀
=

3

2

𝑛/2∑︁
𝑧=0

exp
(︀
(𝛿2𝑘 − log(3/2))𝑧

)︀
≤ 3

2
· 1

1− exp (𝛿2𝑘 − log(3/2))
,

where the last inequality requires that exp (𝛿2𝑘 − log(3/2)) < 1. This is true as long as
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𝑘 < log(3/2)/𝛿2 = log(3/2)
3
· 𝑛
𝜀
.

Combining Lemma 36 with the above derivation, we have that

2𝑑2TV(𝑝⊗𝑘, 𝑞⊗𝑘) ≤ log

(︂
exp(𝛿4𝑛𝑘/4) · 3

2(1− exp (𝛿2𝑘 − log(3/2)))

)︂
= 𝛿4𝑛𝑘/4 + log

(︂
3

2(1− exp (𝛿2𝑘 − log(3/2)))

)︂
=

9𝜀2

4𝑛
𝑘 + log

(︂
3

2(1− exp (3𝑘𝜀/𝑛− log(3/2)))

)︂
.

If 𝑘 < 1
25
· 𝑛
𝜀
, then 𝑑TV(𝑝⊗𝑘, 𝑞⊗𝑘) < 49/50 and thus no algorithm can distinguish between the

two cases with probability ≥ 99/100. This completes the proof of Theorem 40.

4.9.3.3 Proof of Theorem 41

We provide constructions for our lower bounds of Theorem 41 which show that a dependence

on 𝛽 is necessary in certain cases.

Lemma 37. There exists a constant 𝑐 > 0 such that, for all 𝜀 < 1 and 𝛽 ≥ 0, any algorithm,

given sample access to an Ising model 𝑝, which distinguishes between the cases 𝑝 ∈ ℐ and

𝑑SKL(𝑝, ℐ) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐𝛽/𝜀 samples.

Proof. Consider the following two models, which share some parameter 𝜏 > 0:

1. An Ising model 𝑝 on two nodes 𝑢 and 𝑣, where 𝜃𝑝𝑢 = 𝜃𝑝𝑣 = 𝜏 and 𝜃𝑢𝑣 = 0.

2. An Ising model 𝑞 on two nodes 𝑢 and 𝑣, where 𝜃𝑞𝑢 = 𝜃𝑞𝑣 = 𝜏 and 𝜃𝑢𝑣 = 𝛽.

We note that E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ] = exp (2𝜏+𝛽)+exp (−2𝜏+𝛽)−exp(−𝛽)

exp (2𝜏+𝛽)+exp (−2𝜏+𝛽)+exp(−𝛽)
and E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ] = tanh2(𝜏). By (4.2),

these two models have 𝑑SKL(𝑝, 𝑞) = 𝛽 (E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ]− E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ]). For any for any fixed 𝛽 suffi-

ciently large and 𝜀 > 0 sufficiently small, 𝜏 can be chosen to make E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ]−E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ] = 𝜀

𝛽
.

This is because at 𝜏 = 0, this is equal to tanh(𝛽) and for 𝜏 → ∞, this approaches 0, so by

continuity, there must be a 𝜏 which causes the expression to equal this value. Therefore, the

SKL distance between these two models is 𝜀. On the other hand, it is not hard to see that

𝑑TV(𝑝, 𝑞) = Θ (E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ]− E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ]) = Θ(𝜀/𝛽), and therefore, to distinguish these models,

we require Ω(𝛽/𝜀) samples.
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Lemma 38. There exists constants 𝑐1, 𝑐2 > 0 such that, for all 𝜀 < 1 and 𝛽 ≥ 𝑐1 log(1/𝜀),

any algorithm, given a description of an Ising model 𝑞 with no external field (i.e., ℎ = 0)

and has sample access to an Ising model 𝑝, and which distinguishes between the cases 𝑝 = 𝑞

and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐2𝛽/𝜀 samples.

Proof. This construction is very similar to that of Lemma 37. Consider the following two

models, which share some parameter 𝜏 > 0:

1. An Ising model 𝑝 on two nodes 𝑢 and 𝑣, where 𝜃𝑝𝑢𝑣 = 𝛽.

2. An Ising model 𝑞 on two nodes 𝑢 and 𝑣, where 𝜃𝑝𝑢𝑣 = 𝛽 − 𝜏 .

We note that E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ] = tanh(𝛽) and E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ] = tanh(𝛽 − 𝜏). By (4.2), these two

models have 𝑑SKL(𝑝, 𝑞) = 𝜏 (E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ]− E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ]). Observe that at 𝜏 = 𝛽, 𝑑SKL(𝑝, 𝑞) =

𝛽 tanh(𝛽), and at 𝜏 = 𝛽/2, 𝑑SKL(𝑝, 𝑞) = 𝛽
2
(tanh(𝛽)− tanh(𝛽/2)) = 𝛽

2
(tanh(𝛽/2) sech(𝛽)) ≤

𝛽 exp(−𝛽) ≤ 𝜀, where the last inequality is based on our condition that 𝛽 is sufficiently large.

By continuity, there exists some 𝜏 ∈ [𝛽/2, 𝛽] such that 𝑑SKL(𝑝, 𝑞) = 𝜀. On the other hand,

it is not hard to see that 𝑑TV(𝑝, 𝑞) = Θ (E[𝑋𝑝
𝑢𝑋

𝑝
𝑣 ]− E[𝑋𝑞

𝑢𝑋
𝑞
𝑣 ]) = Θ(𝜀/𝛽), and therefore, to

distinguish these models, we require Ω(𝛽/𝜀) samples.

The lower bound construction and analysis for the ℎ lower bound follow almost identically,

with the model 𝑞 consisting of a single node with parameter ℎ.

Lemma 39. There exists constants 𝑐1, 𝑐2 > 0 such that, for all 𝜀 < 1 and ℎ ≥ 𝑐1 log(1/𝜀),

any algorithm, given a description of an Ising model 𝑞 with no edge potentials(i.e., 𝛽 = 0)

and has sample access to an Ising model 𝑝, and which distinguishes between the cases 𝑝 = 𝑞

and 𝑑SKL(𝑝, 𝑞) ≥ 𝜀 with probability at least 99/100 requires 𝑘 ≥ 𝑐2ℎ/𝜀 samples.

Together, Lemmas 37, 38, and 39 imply Theorem 41.

4.10 Weak Learning of Rademachers

In this section, we examine the concept of “weakly learning” Rademacher random variables.

This problem we study is classical, but our regime of study and goals are slightly different.
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Suppose we have 𝑘 samples from a random variable, promised to either be 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(1/2+

𝜆) or 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(1/2 − 𝜆), for some 0 < 𝜆 ≤ 1/2. How many samples do we need to tell

which case we are in? If we wish to be correct with probability (say) ≥ 2/3, it is folklore that

𝑘 = Θ(1/𝜆2) samples are both necessary and sufficient. In our weak learning setting, we focus

on the regime where we are sample limited (say, when 𝜆 is very small), and we are unable

to gain a constant benefit over randomly guessing. More precisely, we have a budget of 𝑘

samples from some 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) random variable, and we want to guess whether 𝑝 > 1/2

or 𝑝 < 1/2. The “margin” 𝜆 = |𝑝 − 1/2| may not be precisely known, but we still wish to

obtain the maximum possible advantage over randomly guessing, which gives us probability

of success equal to 1/2. We show that with any 𝑘 ≤ 1/4𝜆2 samples, we can obtain success

probability 1/2 + Ω(𝜆
√
𝑘). This smoothly interpolates within the “low sample” regime, up

to the point where 𝑘 = Θ(1/𝜆2) and folklore results also guarantee a constant probability

of success. We note that in this low sample regime, standard concentration bounds like

Chebyshev and Chernoff give trivial guarantees, and our techniques require a more careful

examination of the Binomial PMF.

We go on to examine the same problem under alternate centerings – where we are trying to

determine whether 𝑝 > 𝜇 or 𝑝 < 𝜇, generalizing the previous case where 𝜇 = 1/2. We provide

a simple “recentering” based reduction to the previous case, showing that the same upper

bound holds for all values of 𝜇. We note that our reduction holds even when the centering

𝜇 is not explicitly known, and we only have limited sample access to 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝜇).

We start by proving the following lemma, where we wish to determine the direction of

bias with respect to a zero-mean Rademacher random variable.

Lemma 40. Let 𝑋1, . . . , 𝑋𝑘 be i.i.d. random variables, distributed as 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) for

any 𝑝 ∈ [0, 1]. There exists an algorithm which takes 𝑋1, . . . , 𝑋𝑘 as input and outputs a value

𝑏 ∈ {±1}, with the following guarantees: there exists constants 𝑐1, 𝑐2 > 0 such that for any

𝑝 ̸= 1
2
,

Pr (𝑏 = sign (𝜆)) ≥

⎧⎪⎨⎪⎩
1
2

+ 𝑐1|𝜆|
√
𝑘 if 𝑘 ≤ 1

4𝜆2

1
2

+ 𝑐2 otherwise,

where 𝜆 = 𝑝− 1
2
. If 𝑝 = 1

2
, then 𝑏 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟

(︀
1
2

)︀
.
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Proof. The algorithm is as follows: let 𝑆 =
∑︀𝑘

𝑖=1𝑋𝑖. If 𝑆 ̸= 0, then output 𝑏 = sign(𝑆),

otherwise output 𝑏 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟
(︀
1
2

)︀
.

The 𝑝 = 1/2 case is trivial, as the sum 𝑆 is symmetric about 0. We consider the case

where 𝜆 > 0 (the negative case follows by symmetry) and when 𝑘 is even (odd 𝑘 can be

handled similarly). As the case where 𝑘 > 1
4𝜆2 is well known (see Lemma 23), we focus on

the former case, where 𝜆 ≤ 1
2
√
𝑘
. By rescaling and shifting the variables, this is equivalent to

lower bounding Pr
(︀
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︀
𝑘, 1

2
+ 𝜆
)︀
≥ 𝑘

2

)︀
. By a symmetry argument, this is equal to

1

2
+ 𝑑TV

(︂
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2
− 𝜆
)︂
, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2
+ 𝜆

)︂)︂
.

It remains to show this total variation distance is Ω(𝜆
√
𝑘).

𝑑TV

(︂
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2
− 𝜆
)︂
, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2
+ 𝜆

)︂)︂
≥ 𝑑TV

(︂
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2

)︂
, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘,

1

2
+ 𝜆

)︂)︂
≥ 𝑘 min

ℓ∈{⌈𝑘/2⌉,...,⌈𝑘/2+𝑘𝜆⌉}

∫︁ 1/2+𝜆

1/2

Pr (𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑘 − 1, 𝑢) = 𝑙 − 1) 𝑑𝑢 (4.51)

≥ 𝜆𝑘 · Pr (𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑘 − 1, 1/2 + 𝜆) = 𝑘/2)

= 𝜆𝑘 ·
(︂
𝑘 − 1

𝑘/2

)︂(︂
1

2
+ 𝜆

)︂𝑘/2(︂
1

2
− 𝜆
)︂𝑘/2−1

≥ Ω(𝜆𝑘) ·
√︂

1

2𝑘

(︂
1 +

1√
𝑘

)︂𝑘/2(︂
1− 1√

𝑘

)︂𝑘/2

(4.52)

= Ω(𝜆
√
𝑘) ·

(︂
1− 1

𝑘

)︂𝑘/2

≥ Ω(𝜆
√
𝑘) · exp (−1/2)

(︂
1− 1

𝑘

)︂1/2

(4.53)

= Ω(𝜆
√
𝑘),

as desired.

(4.51) applies Proposition 2.3 of [AJ06]. (4.52) is by an application of Stirling’s approxi-

mation and since 𝜆 ≤ 1
2
√
𝑘
. (4.53) is by the inequality

(︀
1− 𝑐

𝑘

)︀𝑘 ≥ (︀1− 𝑐
𝑘

)︀𝑐
exp(−𝑐).

We now develop a corollary allowing us to instead consider comparisons with respect to
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different centerings.

Corollary 12. Let 𝑋1, . . . , 𝑋𝑘 be i.i.d. random variables, distributed as 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) for

any 𝑝 ∈ [0, 1]. There exists an algorithm which takes 𝑋1, . . . , 𝑋𝑘 and 𝑞 ∈ [0, 1] as input and

outputs a value 𝑏 ∈ {±1}, with the following guarantees: there exists constants 𝑐1, 𝑐2 > 0

such that for any 𝑝 ̸= 𝑞,

Pr (𝑏 = sign (𝜆)) ≥

⎧⎪⎨⎪⎩
1
2

+ 𝑐1|𝜆|
√
𝑘 if 𝑘 ≤ 1

4𝜆2

1
2

+ 𝑐2 otherwise,

where 𝜆 = 𝑝−𝑞
2

. If 𝑝 = 𝑞, then 𝑏 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟
(︀
1
2

)︀
.

This algorithm works even if only given 𝑘 i.i.d. samples 𝑌1, . . . , 𝑌𝑘 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑞),

rather than the value of 𝑞.

Proof. Let 𝑋 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑝) and 𝑌 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑞). Consider the random variable 𝑍

defined as follows. First, sample𝑋 and 𝑌 . If𝑋 ̸= 𝑌 , output 1
2

(𝑋 − 𝑌 ). Otherwise, output a

random variable sampled as 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟
(︀
1
2

)︀
. One can see that 𝑍 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟

(︀
1
2

+ 𝑝−𝑞
2

)︀
.

Our algorithm can generate 𝑘 i.i.d. samples 𝑍𝑖 ∼ 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟
(︀
1
2

+ 𝑝−𝑞
2

)︀
in this method

using 𝑋𝑖’s and 𝑌𝑖’s, where 𝑌𝑖’s are either provided as input to the algorithm or generated

according to 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟(𝑞). At this point, we provide the 𝑍𝑖’s as input to the algorithm of

Lemma 40. By examining the guarantees of Lemma 40, this implies the desired result.

4.11 KL Learning of Ising Models: An Attempt

One approach to testing problems is by learning the distribution which we wish to test. If the

distance of interest is the total variation distance, then a common approach to learning is a

cover-based method. One first creates a set of hypothesis distributions 𝐻 which 𝑂(𝜀)-covers

the space. Then by drawing 𝑘 = 𝑂̃(log |𝐻|/𝜀2) samples from 𝑝, we can output a distribution

from 𝐻 with the guarantee that it is at most 𝑂(𝜀)-far from 𝑝. The algorithm works by

computing a score based on the samples for each of the distributions in the hypothesis class

and then choosing the one with the maximum score.
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However, it is not clear if this approach would work for testing in KL-divergence (an

easier problem than testing in SKL-divergence) because KL-divergence does not satisfy the

triangle inequality. In particular, if 𝑝 and 𝑞 are far, and we learn a distribution 𝑝 which is

close to 𝑝, we no longer have the guarantee that 𝑝 and 𝑞 are still far. Even if this issue were

somehow resolved, the best known sample complexity for learning follows from the maximum

likelihood algorithm. We state the guarantees provided by Theorem 17 of [FOS08].

Theorem 42 (Theorem 17 from [FOS08]). Let 𝑏, 𝑎, 𝜀 > 0 such that 𝑎 < 𝑏. Let 𝒬 be a set

of hypothesis distributions for some distribution 𝑝 over the space 𝑋 such that at least one

𝑞* ∈ 𝒬 is such that 𝑑KL(𝑝||𝑞*) ≤ 𝜀. Suppose also that 𝑎 ≤ 𝑞(𝑥) ≤ 𝑏 for all 𝑞 ∈ 𝒬 and for all

𝑥 such that 𝑝(𝑥) > 0. Then running the maximum likelihood algorithm on 𝒬 using a set 𝑆

of i.i.d. samples from 𝑝, where |𝑆| = 𝑘, outputs a 𝑞𝑀𝐿 ∈ 𝒬 such that 𝑑KL(𝑝||𝑞𝑀𝐿) ≤ 4𝜀 with

probability 1− 𝛿 where

𝛿 ≤ (|𝒬|+ 1) exp

(︃
−2𝑘𝜀2

log2
(︀
𝑏
𝑎

)︀)︃ .
To succeed with probability at least 2/3, we need that

𝑘 ≥
log (3(|𝒬|+ 1)) log2

(︀
𝑏
𝑎

)︀
2𝜀2

For the Ising model, a KL-cover 𝒬 would consist of creating a poly(𝑛/𝜀) mesh for each

parameter. Since there are 𝑂(𝑛2) parameters, the cover will have a size of poly(𝑛/𝜀)𝑛
2 .

Letting 𝛽 and ℎ denote the maximum edge and node parameter (respectively), then the

ratio 𝑏/𝑎 in the above theorem is such that

𝑏

𝑎
≥ exp

(︀
𝑂(𝑛2𝛽 + 𝑛ℎ)

)︀
.

Therefore, the number of samples required by this approach would be

𝑘 = 𝑂

(︃
𝑛2 log

(︀
𝑛
𝜀

)︀
(̇𝑛2𝛽 + 𝑛ℎ)2

𝜀2

)︃

= 𝑂̃

(︂
𝑛6𝛽2 + 𝑛4ℎ2

𝜀2

)︂
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which is more expensive than our baseline, the localization algorithm of Theorem 22. Addi-

tionally, this algorithm is computationally inefficient, as it involves iterating over all hypothe-

ses in the exponentially large set 𝒬. To summarize, there are a number of issues preventing

a learning-based approach from giving an efficient tester.
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Chapter 5

Private Distribution Testing and

Property Estimation

5.1 Introduction

In several modern fields of research and application, we often wish to perform statistical

inference on data which contains sensitive information about individuals. For example,

in medical studies, where the data may contain individuals’ health records and whether

they carry some disease which bears a social stigma. Alternatively, one can consider a map

application which suggests routes based on aggregate positions of individuals, which contains

delicate information including users’ residence data. It may thus be crucial to guarantee that

operating on the samples needed to test a statistical hypothesis protects sensitive information

about the samples. This does not preclude our overall goals of statistical analysis, as we are

trying to infer properties of the population 𝑝, and not the samples which are drawn from

said population.

That said, without careful experimental design, published statistical findings may be

prone to leaking sensitive information about the sample. As a notable example, it was

recently shown that one can determine the identity of some individuals who participated in

genome-wide association studies [HSR+08]. This realization has motivated a surge of interest

in developing data sharing techniques with an explicit focus on maintaining privacy of the

data [JS13, USF13, YFSU14, SSB16].

193



Privacy-preserving computation has enjoyed significant study in a number of fields, in-

cluding statistics and almost every branch of computer science, including cryptography,

machine learning, algorithms, and database theory – see, e.g., [Dal77, AW89, AA01, DN03,

Dwo08, DR14] and references therein. Perhaps the most celebrated notion of privacy, pro-

posed by theoretical computer scientists, is differential privacy [DMNS06]. Informally, an

algorithm is differentially private if its outputs on neighboring datasets (differing in a sin-

gle element) are statistically close (for a more precise definition, see Section 5.2). Dif-

ferential privacy has become the standard for theoretically-sound data privacy, leading to

its adoption by several organizations, including Google, Apple, and the US Census Bu-

reau [EPK14, Dif17, DLS+17].

In this chapter, our goal is to provide algorithms for various statistical tasks such as

distribution testing and property estimation with the additional constraint of differential

privacy. In particular, we wish for our algorithms to simultaneously provide:

∙ Correctness: With high probability, the algorithm should should be accurate;

∙ Privacy: The algorithm should be differentially private, for any dataset which it is

provided.

Notice that the correctness constraint is the standard one which we have considered so far,

but the privacy constraint is considered in addition. We emphasize that the privacy con-

straint is worst-case: no matter how the samples were generated (e.g., if our distributional

assumptions were wrong, if the input is some very unlikely set of samples, or even if the

dataset is entirely adversarially generated), we must guarantee privacy. The pertinent ques-

tion is how much the requirement of privacy increases the number of samples that are needed

to guarantee correctness. We introduce the study of several problems in this setting, includ-

ing identity testing, and estimation of entropy, support coverage, support size, and distance

to uniformity.

5.1.1 Results, Techniques, and Discussion

In this section, we overview our results and the methods used to obtain them. Since the

techniques are somewhat different, we discuss our results on identity testing in Section 5.1.1.1,
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and on the estimation of other properties in Section 5.1.1.2.

5.1.1.1 Identity Testing

As we have already established, in the absence of privacy constraints, the sample complexity

of identity testing is Θ
(︁√

𝑛
𝛼2

)︁
. Our main theoretical result is the following upper bound on

the sample complexity of private identity testing:

Theorem 43. There exists an 𝜀-differentially private algorithm for the (𝛼, 𝛽I, 𝛽II)-identity

testing problem for 𝑞, distinguishing the cases:

∙ 𝑝 = 𝑞;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀.

The algorithm uses 𝑂
(︁(︁

𝑛1/2

𝛼2 +
√
𝑛 log𝑛
𝛼1.5𝜀

)︁
· log(1/𝛽)

)︁
samples, where 𝛽 = min (𝛽I, 𝛽II).

Theorem 43 is proved in Section 5.3.3. Algorithm 13 achieves the desired bound. Notice

that privacy comes for free when the privacy requirement 𝜀 is Ω(
√
𝛼) – for example when

𝜀 = 10% and the required statistical accuracy is 3%.

The precise constants sitting in the 𝑂(·) notation of the sample complexity of Theorem 43

are given in the proof. We experimentally verify the sample efficiency of our tests by compar-

ing them to recently proposed private statistical tests [GLRV16, KR17], discussed in more

detail shortly. Fixing a differential privacy and type I, type II error constraints, we compare

how many samples are required by our and their methods to distinguish between hypotheses

that are 𝛼 = 0.1 apart in total variation distance. We find that different algorithms are more

efficient depending on the regime and properties desired by the analyst. Our experiments

and further discussion of the tradeoffs are presented in Section 5.5.1.

A standard approach to turn an algorithm differentially private is to use repetition. As

already mentioned above, absent differential privacy constraints, statistical tests have been

provided that use an optimal 𝑚 = 𝑂(
√
𝑛

𝛼2 · log 1
𝛽
) number of samples. A trivial way to get

(𝜀, 0)-differential privacy using such a non-private test is to create 𝑂(1/𝜀) datasets, each

comprising 𝑚 samples from 𝑝, and run the non-private test on one of these datasets, chosen

randomly. It is clear that changing the value of a single element in the combined dataset
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may only affect the output of the test with probability at most 𝜀. Thus the output is (𝜀, 0)-

differentially private; see Section 5.3.1 for a proof. The issue with this approach is that the

total number of samples that it draws is 𝑚/𝜀 = 𝑂(
√
𝑛

𝜀𝛼2 · log 1
𝛽
), which is higher than our

target. See Corollary 13.

A different approach towards private hypothesis testing is to look deeper into the non-

private tests and try to “privatize” them. The most sample-efficient tests are variations of

the classical 𝜒2-test. They compute the number of times, 𝑁𝑖, that element 𝑖 ∈ [𝑛] appears

in the sample and aggregate those counts using a statistic that equals, or is close to, the

𝜒2-divergence between the empirical distribution defined by these counts and the hypothesis

distribution 𝑞. They accept 𝑞 if the statistic is low and reject 𝑞 if it is high, using some

threshold.

A reasonable approach to privatize such a test is to add noise, e.g. Laplace(1/𝜀) noise, to

each count 𝑁𝑖, before running the test. It is well known that adding Laplace(1/𝜀) noise to a

set of counts makes them differentially private, see Theorem 48. However, it also increases

the variance of the statistic. This has been noticed empirically in recent work of [GLRV16]

for the 𝜒2-test. We show that the variance of the optimal 𝜒2-style test statistic significantly

increases if we add Laplace noise to the counts, in Section 5.3.2.1, thus increasing the sample

complexity from 𝑂(
√
𝑛) to Ω(𝑛3/4). So this route, too, seems problematic.

A last approach towards designing differentially private tests is to exploit the distance

beween the null and the alternative hypotheses. A correct test should accept the null with

probability close to 1, and reject an alternative that is 𝛼-far from the null with probability

close to 1, but there are no requirements for correctness when the alternative is very close

to the null. We could thus try to interpolate smoothly between datasets that we expect to

see when sampling the null and datasets that we expect to see when sampling an alternative

that is far from the null. Rather than outputting “accept” or “reject” by merely thresholding

our statistic, we would like to tune the probability that we output “reject” based on the value

of our statistic, and make it so that the “reject” probability is 𝜀-Lipschitz as a function of

the dataset. Moreover, the probability should be close to 0 on datasets that we expect to

see under the null and close to 1 on datasets that we expect to see under an alternative that

is 𝛼-far. As we show in Section 5.3.2.2, 𝜒2-style statistics have high sensitivity, requiring
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𝜔(
√
𝑛) samples to be made appropriately Lipschitz.

While both the approach of adding noise to the counts, and that of turning the output

of the test Lipschitz fail in isolation, our test actually goes through by intricately combining

these two approaches. It has two steps:

1. A filtering step, whose goal is to “reject” when 𝑝 is blatantly far from 𝑞. This step is

performed by comparing the counts 𝑁𝑖 with their expectations under 𝑞, after having

added Laplace(1/𝜀) noise to these counts. If the noisy counts deviate from their ex-

pectation, taking into account the extra variance introduced by the noise, then we can

safely “reject.” Moreover, because noise was added, this step is differentially private.

2. If the filtering step fails to reject, we perform a statistical step. This step just computes

the 𝜒2-style statistic from [ADK15], without adding noise to the counts. The crucial

observation is that if the filtering step does not reject, then the statistic is actually

𝜀-Lipschitz with respect to the counts, and thus the value of the statistic is still differ-

entially private. We use the value of the statistic to determine the bias of a coin that

outputs “reject.”

Details of our test are given in Section 5.3.3.

5.1.1.2 Property Estimation

Results. Our main results show that we can privately estimate many properties of interest

at a very low cost. In particular, we focus on estimation of entropy, support size, support

coverage, and distance to uniformity. For example, if one wishes to privately estimate en-

tropy, this incurs an additional additive cost in the sample complexity which is very close to

linear in 1/𝛼𝜀. We draw attention to two features of this bound. First, this is independent

of 𝑛. All the problems we consider have complexity Θ(𝑛/ log 𝑛), so in the primary regime

of study where 𝑛 ≫ 1/𝛼𝜀, this small additive cost is dwarfed by the inherent sample com-

plexity of the non-private problem. Second, the bound is almost linear in 1/𝛼𝜀. We note

that performing even the most basic statistical task privately, estimating the bias of a coin,

incurs this linear dependence. Surprisingly, we show that much more sophisticated inference

tasks can be privatized at almost no cost. In particular, these properties imply that the
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additive cost of privacy is 𝑜(1) in the most studied regime where the support size is large.

In general, this is not true – for many other problems, including distribution estimation and

hypothesis testing, the additional cost of privacy depends significantly on the support size or

dimension [DHS15, CDK17, ASZ17, ADR18]. We also provide lower bounds, showing that

our upper bounds are almost tight.

More formally, our results are as follows:

Theorem 44. The sample complexity of support coverage estimation is

𝐶(𝑆𝑘, 𝛼, 𝜀) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑂
(︁

𝑘 log(1/𝛼)
log 𝑘

+ 𝑘 log(1/𝛼)
log(2+𝜀𝑘)

)︁
, when 𝑘 ≥ 1

𝛼𝜀

𝑂
(︀

1
𝛼2 + 1

𝛼𝜀

)︀
, when 1

𝛼
≤ 𝑘 ≤ 1

𝛼𝜀

𝑂
(︀
𝑘2 + 𝑘

𝜀

)︀
. when 𝑘 ≤ 1

𝛼

Furthermore,

𝐶(𝑆𝑘, 𝛼, 𝜀) = Ω

(︂
𝑘 log(1/𝛼)

log 𝑘
+

1

𝛼𝜀

)︂
.

Theorem 45. The sample complexity of support size estimation is

𝐶(𝑆, 𝛼, 𝜀) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑂
(︁

𝑛 log2(1/𝛼)
log𝑛

+ 𝑛 log2(1/𝛼)
log(2+𝜀𝑛)

)︁
, when 𝑛 ≥ 1

𝛼𝜀

𝑂
(︀
𝑛 log(1/𝛼) + 1

𝛼𝜀

)︀
, when 1

𝛼
≤ 𝑛 ≤ 1

𝛼𝜀

𝑂
(︀
𝑛 log 𝑛+ 𝑛

𝜀

)︀
. when 𝑛 ≤ 1

𝛼

Furthermore,

𝐶(𝑆, 𝛼, 𝜀) =

⎧⎪⎨⎪⎩Ω
(︁

𝑛 log2(1/𝛼)
log𝑛

+ 1
𝛼𝜀

)︁
, when 𝑛 ≥ 1

𝛼

Ω
(︀
𝑛 log 𝑛+ 𝑛

𝜀

)︀
. when 𝑛 ≤ 1

𝛼

Theorem 46. Let 𝜆 > 0 be any small fixed constant. For instance, 𝜆 can be chosen to be any

constant between 0.01 and 1. We have the following upper bounds on the sample complexity

of estimating distance to uniformity:

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = 𝑂

(︂
𝑛

𝛼2
+

1

𝛼𝜀

)︂
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and

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = 𝑂

(︃
𝑛

𝜆2𝛼2 log 𝑛
+

(︂
1

𝛼𝜀

)︂1+𝜆
)︃
.

Furthermore,

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = Ω

(︂
𝑛

𝛼2 log 𝑛
+

𝑛1/2

𝛼𝜀1/2
+

𝑛1/3

𝛼4/3𝜀2/3
+

1

𝛼𝜀

)︂
.

Theorem 47. Let 𝜆 > 0 be any small fixed constant. For instance, 𝜆 can be chosen to be any

constant between 0.01 and 1. We have the following upper bounds on the sample complexity

of entropy estimation:

𝐶(𝐻,𝛼, 𝜀) = 𝑂

(︂
𝑛

𝛼
+

log2(min{𝑛,𝑚})
𝛼2

+
1

𝛼𝜀
log

(︂
1

𝛼𝜀

)︂)︂

and

𝐶(𝐻,𝛼, 𝜀) = 𝑂

(︃
𝑛

𝜆2𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

+

(︂
1

𝛼𝜀

)︂1+𝜆
)︃
.

Furthermore,

𝐶(𝐻,𝛼, 𝜀) = Ω

(︂
𝑛

𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

+
log 𝑛

𝛼𝜀

)︂
.

Discussion. At a high level, we wish to emphasize the following two points:

1. Our upper bounds show that the cost of privacy in these settings is often negligible

compared to the sample complexity of the non-private statistical task, especially when

we are dealing with distributions over a large support. Furthermore, our upper bounds

are almost tight in all parameters.

2. The algorithmic complexity introduced by the requirement of privacy is minimal, con-

sisting only of a single step which noises the output of an estimator. In other words,

our methods are realizable in practice, and we demonstrate the effectiveness on several

synthetic and real-data examples.

Before we continue, we emphasize that, in Theorems 44 and 45, we consider the “sublin-

ear” regime to be of primary interest (when 𝑘 ≥ 1
𝛼𝜀

or 𝑛 ≥ 1
𝛼𝜀

, respectively), both technically,
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and in terms of parameter regimes which may be of greatest interest in practice. We include

results for other regimes mostly for completeness.

First, we examine our results on support coverage and support size estimation in the

sublinear regime, when 𝑘 ≥ 1
𝛼𝜀

(focusing on support coverage for simplicity, but support

size is similar). In this regime, if 𝜀 = Ω(𝑘𝛾/𝑘) for any constant 𝛾 > 0, then up to constant

factors, our upper bound is within a constant factor of the optimal sample complexity without

privacy constratints. In other words, for most meaningful values of 𝜀, privacy comes for free.

In the non-sublinear regime for these problems, we provide upper and lower bounds which

match in a number of cases. We note that in this regime, the cost of privacy may not be a

lower order term – however, this regime only occurs when one requires very high accuracy,

or unreasonably large privacy, which we consider to be of somewhat lesser interest.

Next, we turn our attention to estimating distance to uniformity and entropy. We note

that the second upper bound in Theorems 46 and 47 has a parameter 𝜆 that indicates a

tradeoff between the sample complexity incurred in the first and third term. This parameter

determines the degree of a polynomial to be used. As the degree becomes smaller (corre-

sponding to a large 𝜆), accuracy of the polynomial estimator decreases, however, at the same

time, low-degree polynomials have a small sensitivity, allowing us to privatize the outcome.

In terms of our theoretical results, one can think of 𝜆 = 0.01. With this parameter

setting, it can be observed that our upper bounds are almost tight. For example, one can

see that the upper and lower bounds match to either logarithmic factors (when looking at

the first upper bound), or a very small polynomial factor in 1/𝛼𝜀 (when looking at the

second upper bound). For our experimental results on entropy estimation, we empirically

determined an effective value for the parameter 𝜆 on a single synthetic instance. We then

show that this choice of parameter generalizes, giving highly-accurate private estimation in

other instances, on both synthetic and real-world data.

Approach. Our approach works by choosing statistics for these tasks which possess bounded

sensitivity, which is well-known to imply privacy under the Laplace or Guassian1 mechanism.

1This intentional misspelling is dedicated to the memory of Michael B. Cohen. While we weren’t close
friends, he invariably left a strong impression on everyone whose life he touched, and I was no exception. He
is sorely missed.
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We note that bounded sensitivity of statistics is not always something that can be taken for

granted. Indeed, for many fundamental tasks, optimal algorithms for the non-private set-

ting may be highly sensitive, thus necessitating crucial modifications to obtain differential

privacy, as evidenced by our results on identity testing. Thus, careful choice and design of

statistics must be a priority when performing inference with privacy considerations.

To this end, we leverage recent results of [ADOS17], which studies estimators for non-

private versions of the problems we consider. The main technical work in their paper exploits

bounded sensitivity to show sharp cutoff-style concentration bounds for certain estimators,

which operate using the principle of best-polynomial approximation. They use these results

to show that a single algorithm, the Profile Maximum Likelihood (PML), can estimate all

these properties simultaneously. On the other hand, we consider the sensitivity of these

estimators for purposes of privacy – the same property is utilized by both works for very

different purposes, a connection which may be of independent interest.

We note that bounded sensitivity of a statistic may be exploited for purposes other than

privacy. For instance, by McDiarmid’s inequality, any such statistic also enjoys very sharp

concentration of measure, implying that one can boost the success probability of the test

at an additive cost which is logarithmic in the inverse of the failure probability. One may

naturally conjecture that, if a statistical task is based on a primitive which concentrates in

this sense, then it may also be privatized at a low cost. However, this is not true – estimating

a discrete distribution in ℓ1 distance is such a task, but the cost of privatization depends

significantly on the support size [DHS15].

One can observe that, algorithmically, our method is quite simple: compute the non-

private statistic, and add a relatively small amount of Laplace noise. The non-private statis-

tics have recently been demonstrated to be practical [OSW16, WY18], and the additional

cost of the Laplace mechanism is minimal. This is in contrast to several differentially private

algorithms which invoke significant overhead in the quest for privacy. Our algorithms attain

almost-optimal rates (which are optimal up to constant factors for most parameter regimes

of interest), while simultaneously operating effectively in practice, as demonstrated in our

experimental results.

Experimental Results. We demonstrate the efficacy of our method with experimen-
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tal evaluations. As a baseline, we compare with the non-private algorithms of [OSW16]

and [WY18]. Overall, we find that our algorithms’ performance is nearly identical, showing

that, in many cases, privacy comes (essentially) for free. We begin with an evaluation on

synthetic data. Then, inspired by [VV13, OSW16], we analyze text corpus consisting of

words from Hamlet, in order to estimate the number of unique words which occur. Finally,

we investigate name frequencies in the US census data. This setting has been previously

considered by [OSW16], but we emphasize that this is an application where private statis-

tical analysis is critical. This is proven by efforts of the US Census Bureau to incorporate

differential privacy into the 2020 US census [DLS+17].

5.1.2 Related Work

Recently, there has been significant interest in performing statistical tasks under differen-

tial privacy constraints. Several papers have addressed our original motivation of privately

performing GWASs [JS13, USF13, YFSU14, SSB16]. A number of recent works [WZ10,

Smi11, WLK15, GLRV16, KR17, Rog17] (and a work simultaneous with ours on identity

testing, focused on independence testing [KSF17]) investigate differentially private hypoth-

esis testing in the asymptotic regime. In particular, they fix a desired significance (type I

error) and privacy requirement, and study the asymptotic distribution of the test statistics.

[VS09] give some finite sample corrections required to compute valid 𝑝-values after nois-

ing. Our work on identity testing (published as [CDK17]) was the first to focus on private

hypothesis testing in the minimax setting. Following the publication of [CDK17], further

works have established tight bounds on identity and equivalence testing [ASZ17, ADR18].

Some have recently studied testing in the stricter local privacy model, in both the asymp-

totic setting [GR18] and the minimax setting [She18, ACFT18]. There has also been study

on private distribution learning, in both the local and the global privacy model [Smi11,

BNSV15, DHS15, KS16, WHW+16, KBR16, DJW17, KV18, ASZ18, KLSU18, YB18]. Here,

we wish to estimate parameters of the distribution, rather than just a particular prop-

erty of interest. Private supervised learning has also been a lively field of study [KLN+11,

CH11, BBKN14, FX15, BNS15, BNS16a, BNS16b]. [RRST16] studies differential privacy

for the purpose of generating valid p-values for adaptive hypothesis testing (the general di-
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rection of privacy for adaptive data analysis has recently enjoyed a great deal of study, see,

e.g., [DFH+15]). A number of other statistical problems have been studied with privacy

requirements, including clustering [WWS15, BDL+17, NS18], principal component analy-

sis [CSS13, KT13, HP14, DTTZ14, GGB18], ordinary least squares [She17], and much more.

An interesting work which is unrelated to our goal is [GM18], which investigates the com-

plexity of property testing whether an algorithm is differentially private. See [DR14, Vad17]

for more general coverage about the theory of differential privacy.

5.1.3 Organization

In Section 5.2, we go over some additional preliminaries. In Sections 5.3 and 5.4, we present

our results on private identity testing and property estimation, respectively. We conclude

with experimental results in Section 5.5.

5.2 Preliminaries

In this chapter, we diverge slightly from our standard notation. In particular, we use 𝜀 and 𝛿

for parameters of differential privacy. We use 𝛼 for the distance/accuracy parameter (rather

than the usual 𝜀), and 𝛽 for the probability of failure (rather than the usual 𝛿).

Privacy Preliminaries. We have the following basic definition of differential privacy.

Definition 13. A randomized algorithm 𝑀 with domain N𝑛 is (𝜀, 𝛿)-differentially private if

for all 𝑆 ⊆ Range(𝑀) and for all pairs of inputs 𝐷,𝐷′ such that ‖𝐷 −𝐷′‖1 ≤ 1:

Pr [𝑀(𝐷) ∈ 𝑆] ≤ 𝑒𝜀 Pr [𝑀(𝐷′) ∈ 𝑆] + 𝛿.

If 𝛿 = 0, the guarantee is called pure differential privacy, and we refer to it as 𝜀-differential

privacy.

We also recall the definition of zero-concentrated differential privacy from [BS16] and its

relationship to differential privacy.
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Definition 14. A randomized algorithm 𝑀 with domain N𝑛 is 𝜌-zero-concentrated differ-

entially private (𝜌-zCDP) if for all pairs of inputs 𝐷,𝐷′ such that ‖𝐷 − 𝐷′‖1 ≤ 1 and all

𝛼 ∈ (1,∞):

D𝛼(𝑀(𝐷)||𝑀(𝐷′)) ≤ 𝜌𝛼,

where D𝛼 is the 𝛼-Rényi divergence between the distribution of 𝑀(𝐷) and 𝑀(𝐷′).

Proposition 13 (Propositions 1.3 and 1.4 of [BS16]). If a mechanism 𝑀1 satisfies (𝜀, 0)-

differential privacy, then 𝑀1 satisfies 𝜀2

2
-zCDP. If a mechanism 𝑀2 satisfies 𝜌-zCDP, then

𝑀2 satisfies (𝜌+ 2
√︀
𝜌 log(1/𝛿), 𝛿)-differential privacy for any 𝛿 > 0.

Property Testing and Estimation Definitions Preliminaries.

Definition 15. An algorithm for the (𝛼, 𝛽I, 𝛽II)-identity testing problem with respect to

a (known) distribution 𝑞 takes 𝑚 samples from an (unknown) distribution 𝑝 and has the

following guarantees:

∙ If 𝑝 = 𝑞, then with probability at least 1− 𝛽I it outputs “𝑝 = 𝑞;”

∙ If 𝑑TV(𝑝, 𝑞) ≥ 𝛼, then with probability at least 1− 𝛽II it outputs “𝑝 ̸= 𝑞.”

In particular, 𝛽I and 𝛽II are the type I and type II errors of the test. Parameter 𝛼 is the

radius of distinguishing accuracy. Notice that, when 𝑝 satisfies neither of cases above, the

algorithm’s output may be arbitrary.

Let ∆ , {(𝑝(1), . . . , 𝑝(𝑛)) : 𝑝(𝑖) ≥ 0,
∑︀𝑛

𝑖=1 𝑝(𝑖) = 1, 1 ≤ 𝑛 ≤ ∞} be the set of discrete

distributions over a countable support. Let ∆𝑛 be the set of distributions in ∆ with at most

𝑛 non-zero probability values. A property 𝑓(𝑝) is a mapping from ∆→ R. We now describe

the classical distribution property estimation problem, and then state the problem under

differential privacy.

Definition 16. Given 𝛼, 𝛽, 𝑓 , and independent samples 𝑋𝑚
1 from an unknown distribution 𝑝,

design an estimator 𝑓 : 𝑋𝑚
1 → R such that with probability at least 1− 𝛽,

⃒⃒⃒
𝑓(𝑋𝑚

1 )− 𝑓(𝑝)
⃒⃒⃒
<

𝛼. The sample complexity of 𝑓 , 𝐶𝑓 (𝑓, 𝛼, 𝛽) , min{𝑛 : Pr
[︁ ⃒⃒⃒
𝑓(𝑋𝑚

1 )− 𝑓(𝑝)
⃒⃒⃒
> 𝛼

]︁
< 𝛽} is

the smallest number of samples to estimate 𝑓 to accuracy 𝛼, and error 𝛽. We study the
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problem for 𝛽 = 1/3, and by the median trick, we can boost the success probability to 1− 𝛽

with an additional multiplicative log(1/𝛽) more samples. Therefore, focusing on 𝛽 = 1/3,

we define 𝐶𝑓 (𝑓, 𝛼) , 𝐶𝑓 (𝑓, 𝛼, 1/3). The sample complexity of estimating a property 𝑓(𝑝) is

the minimum sample complexity over all estimators: 𝐶(𝑓, 𝛼) = min𝑓 𝐶𝑓 (𝑓, 𝛼).

Given 𝛼, 𝜀, 𝛽, 𝑓 , and independent samples 𝑋𝑚
1 from an unknown distribution 𝑝, de-

sign an 𝜀-differentially private estimator 𝑓 : 𝑋𝑚
1 → R such that with probability at least

1 − 𝛽,
⃒⃒⃒
𝑓(𝑋𝑚

1 )− 𝑓(𝑝)
⃒⃒⃒
< 𝛼. Similar to the non-private setting, the sample complexity

of 𝜀-differentially private estimation problem is 𝐶(𝑓, 𝛼, 𝜀) = min𝑓 :𝑓 is 𝜀-DP𝐶𝑓 (𝑓, 𝛼, 1/3), the

smallest number of samples 𝑚 for which there exists such an 𝜀-DP ±𝛼 estimator with error

probability at most 1/3.

We note that if an algorithm is to satisfy both the privacy and correctness conditions, the

latter condition need only be satisfied stochastically : the algorithm only needs to be accurate

with probability 1 − 𝛽, where the probability is over the randomness of the algorithm and

the sampling process, and may only need to be accurate when the underlying distribution 𝑝

satisfies some assumptions (e.g., in the identity testing case, when either 𝑝 = 𝑞 or 𝑑TV(𝑝, 𝑞) ≥

𝛼). On the other hand, the former privacy property must be satisfied for all realizations of

the samples from 𝑝 (and in particular, for identity testing, when 𝑝 does not fall into the two

cases of interest).

Tools for Private Statistical Estimation. In their original paper [DMNS06] provides a

scheme for differential privacy, known as the Laplace mechanism. This method adds Laplace

noise to a non-private scheme in order to make it private. We first define the sensitivity of

an estimator, and then state their result in our setting.

Definition 17. The sensitivity of an estimator 𝑓 : [𝑛]𝑚 → R is

∆𝑚,𝑓 , max𝑑h𝑎𝑚𝑚𝑖𝑛𝑔(𝑋𝑚
1 ,𝑌 𝑚

1 )≤1

⃒⃒⃒
𝑓(𝑋𝑚

1 )− 𝑓(𝑌 𝑚
1 )
⃒⃒⃒
. Let 𝐷𝑓 (𝛼, 𝜀) = min{𝑚 : ∆𝑚,𝑓 ≤ 𝛼𝜀}.

Lemma 41.

𝐶(𝑓, 𝛼, 𝜀) = 𝑂

(︂
min
𝑓

{︁
𝐶𝑓 (𝑓, 𝛼/2) +𝐷𝑓

(︁𝛼
4
, 𝜀
)︁}︁)︂

.

Proof. [DMNS06] showed that for a function with sensitivity ∆𝑚,𝑓 , adding Laplace noise

𝑋 ∼ 𝐿𝑎𝑝(∆𝑚,𝑓/𝜀) makes the output 𝜀-differentially private. By the definition of 𝐷𝑓 (𝛼
4
, 𝜀),
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the Laplace noise we add has parameter at most 𝛼
4
. Recall that the probability density

function of 𝐿𝑎𝑝(𝑏) is 1
2𝑏
𝑒−

|𝑥|
𝑏 , hence we have Pr[ |𝑋| > 𝛼/2 ] < 1

𝑒2
. By the union bound, we

get an additive error larger than 𝛼 = 𝛼
2

+ 𝛼
2

with probability at most 1/3 + 1
𝑒2
< 0.5. Hence,

with the median trick, we can boost the error probability to 1/3, at the cost of a constant

factor in the number of samples.

This can be specialized to the specific case where we have a set of counts of 𝑛 items.

Theorem 48 (Theorem 3.6 of [DR14]). Given a set of counts 𝑁1, . . . , 𝑁𝑛, the noised counts

(𝑁1+𝑌1, . . . , 𝑁𝑛+𝑌𝑛) are (𝜀, 0)-differentially private when the 𝑌𝑖’s are i.i.d. random variables

drawn from 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(1/𝜀).

To prove sample complexity lower bounds for differentially private estimators, we observe

that the estimator can be used to test between two distributions with distinct property values,

hence is a harder problem. For lower bounds on differentially private testing, [ASZ17] gives

the following argument based on coupling:

Lemma 42. Suppose there is a coupling between distributions 𝑝 and 𝑞 over 𝒳𝑚, such that

E [𝑑h𝑎𝑚𝑚𝑖𝑛𝑔 (𝑋𝑚
1 , 𝑌

𝑚
1 )] ≤ 𝐷. Then, any 𝜀-differentially private algorithm that distinguishes

between 𝑝 and 𝑞 with error probability at most 1/3 must satisfy 𝐷 = Ω
(︀
1
𝜀

)︀
.

5.3 Priv’IT: Private Identity Testing

In this section, we describe our results on private identity testing. We start in Section 5.3.1

by describing baseline approach, based on the paradigm of subsample and aggregate. This

method is applicable to any decision problem. In Section 5.3.2, we describe roadblocks for

some natural approaches to performing private identity testing. In Section 5.3.3, we explain

how we bypass these roadblocks, and give a more efficient algorithm.

5.3.1 A Simple Upper Bound

In this section, we provide an 𝑂
(︁√

𝑛
𝛼2𝜀

)︁
upper bound for the differentially private identity

testing problem, based on the subsample and aggregate paradigm. More generally, we show
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that if an algorithm requires a dataset of size 𝑚 for a decision problem, then it can be made

(𝜀, 0)-differentially private at a multiplicative cost of 1/𝜀 in the sample size. This is a folklore

result, but we include and prove it here for completeness.

Theorem 49. Suppose there exists an algorithm for a decision problem 𝑃 which succeeds

with probability at least 1 − 𝛽 and requires a dataset of size 𝑚. Then there exists an (𝜀, 0)-

differentially private algorithm for 𝑃 which succeeds with probability at least 4
5
(1− 𝛽) + 1/10

and requires a dataset of size 𝑂(𝑚/𝜀).

Proof. First, with probability 1/5, we flip a coin and output yes or no with equal probability.

This guarantees that we have probability at least 1/10 of either outcome, which will allow

us to satisfy the multiplicative guarantee of differential privacy.

We then draw 10/𝜀 datasets of size 𝑚, and solve the decision problem (non-privately) for

each of them. Finally, we select a random one of these computations and output its outcome.

The correctness follows, since we randomly choose the right answer with probability 1/10,

or with probability 4/5, we solve the problem correctly with probability 1−𝛽. As for privacy,

we note that, if we remove a single element of the dataset, we may only change the outcome

of one of these computations. Since we pick a random computation, this is selected with

probability 𝜀/10, and thus the probability of any outcome is additively shifted by at most

𝜀/10. Since we know the minimum probability of any output is 1/10, this gives the desired

multiplicative guarantee required for (𝜀, 0)-differential privacy.

We obtain the following corollary by noting that the tester of [ADK15] (among others)

requires 𝑂(
√
𝑛/𝛼2) samples for identity testing.

Corollary 13. There exists an (𝜀, 0)-differentially private testing algorithm for the (𝛼, 𝛽I, 𝛽II)-

identity testing problem for any distribution 𝑞 which requires

𝑚 = 𝑂

(︂√
𝑛

𝜀𝛼2
· log(1/𝛽)

)︂

samples, where 𝛽 = min (𝛽I, 𝛽II).
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5.3.2 Roadblocks to Differentially Private Identity Testing

In this section, we describe roadblocks which prevent two natural approaches to differentially

private testing from working.

In Section 5.3.2.1, we show that if one simply adds Laplace noise to the empirical counts

of a dataset (i.e., runs the Laplace mechanism of Theorem 48) and then attempts to run an

optimal identity tester, the variance of the statistic increases dramatically, and thus results

in a much larger sample complexity, even for the case of uniformity testing. The intuition

behind this phenomenon is as follows. When performing uniformity testing in the small

sample regime (when the number of samples 𝑚 is the square root of the domain size 𝑛),

we will see a (1 − 𝑜(1))𝑛 elements 0 times, 𝑂(
√
𝑛) elements 1 time, and 𝑂(1) elements 2

times. If we add 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(10) noise to guarantee (0.1, 0)-differential privacy, this obliterates

the signal provided by these collision statistics, and thus many more samples are required

before the signal prevails.

In Section 5.3.2.2, we demonstrate that 𝜒2 statistics have high sensitivity, and thus are

not naturally differentially private. In other words, if we consider a 𝜒2 statistic 𝑍 on two

datasets 𝐷 and 𝐷′ which differ in one record, |𝑍(𝐷) − 𝑍(𝐷′)| may be quite large. This

implies that methods such as rescaling this statistic and interpreting it as a probability, or

applying noise to the statistic, will not be differentially private until we have taken a large

number of samples.

5.3.2.1 A Laplaced 𝜒2-statistic has large variance

Proposition 14. Applying the Laplace mechanism to a dataset before applying the identity

tester of [ADK15] results in a significant increase in the variance, even when considering the

case of uniformity. More precisely, if we consider the statistic

𝑍 ′(𝐷) =
∑︁
𝑖∈[𝑛]

(𝑁𝑖 + 𝑌𝑖 −𝑚/𝑛)2 − (𝑁𝑖 + 𝑌𝑖)

𝑚/𝑛

where 𝑁𝑖 is the number of occurrences of symbol 𝑖 in the dataset 𝐷 (which is of size

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚)) and 𝑌𝑖 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(1/𝜀), then
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∙ If 𝑝 is uniform, then E[𝑍 ′] = 2𝑛2

𝜀2𝑚
and Var[𝑍 ′] ≥ 20𝑛3

𝜀4𝑚2 .

∙ If 𝑝 is a particular distribution which is 𝛼-far in total variation distance from uniform,

then E[𝑍 ′] = 4𝑚𝛼2 + 2𝑛2

𝜀2𝑚
.

The variance of the statistic can be compared to that of the unnoised statistic, which is upper

bounded by 𝑚2𝛼4. We can see that the noised statistic has larger variance until 𝑚 = Ω(𝑛3/4).

Proof. First, we compute the mean of 𝑍 ′. Note that since |𝐷| ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚), the 𝑁𝑖’s will

be independently distributed as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑝𝑖) (see, i.e., [ADK15] for additional discussion).

E[𝑍 ′] = E
[︂∑︁

𝑖∈[𝑛]

(𝑁𝑖 + 𝑌𝑖 −𝑚/𝑛)2 − (𝑁𝑖 + 𝑌𝑖)

𝑚/𝑛

]︂

= E
[︂∑︁

𝑖∈[𝑛]

(𝑁𝑖 −𝑚/𝑛)2 −𝑁𝑖

𝑚/𝑛

+
∑︁
𝑖∈[𝑛]

𝑌 2
𝑖 + 2𝑌𝑖(𝑁𝑖 −𝑚/𝑛)− 𝑌𝑖

𝑚/𝑛

]︂

= 𝑚 · 𝜒2(𝑝, 𝑞) +
∑︁
𝑖∈[𝑛]

2
𝜀2

𝑚/𝑛

= 𝑚 · 𝜒2(𝑝, 𝑞) +
2𝑛2

𝜀2𝑚

In other words, the mean is a rescaling of the 𝜒2 distance between 𝑝 and 𝑞, shifted by some

constant amount. When 𝑝 = 𝑞, the 𝜒2-distance between 𝑝 and 𝑞 is 0, and the expectation

is just the second term. Focus on the case where 𝑛 is even, and consider 𝑝 such that

𝑝𝑖 = (1 + 2𝛼)/𝑛 if 𝑖 is even, and (1 − 2𝛼)/𝑛 otherwise. This is 𝛼-far from uniform in

total variation distance. Furthermore, by direct calculation, 𝜒2(𝑝, 𝑞) = 4𝛼2, and thus the

expectation of 𝑍 ′ in this case is 4𝑚𝛼2 + 2𝑛2

𝜀2𝑚
.

Next, we examine the variance of 𝑍 ′. Let 𝜆𝑖 = 𝑚𝑝𝑖 and 𝜆′𝑖 = 𝑚𝑞𝑖 = 𝑚/𝑛. By a similar

computation as before, we have that

Var[𝑍 ′] =
∑︁
𝑖∈[𝑛]

1

𝜆′2𝑖

[︂
2𝜆2𝑖 + 4𝜆𝑖(𝜆𝑖 − 𝜆′𝑖)2

+
1

𝜀2
(8𝜆𝑖 + 2(2𝜆𝑖 − 2𝜆′𝑖 − 1)2) +

20

𝜀4

]︂
.
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Since all four summands of this expression are non-negative, we have that

Var[𝑍 ′] ≥ 20

𝜀4

∑︁
𝑖∈[𝑛]

1

𝜆′2𝑖
=

20𝑛3

𝜀4𝑚2
.

If we wish to use Chebyshev’s inequality to separate these two cases, we require that

Var[𝑍 ′] is at most the square of the mean separation. In other words, we require that

20𝑛3

𝜀4𝑚2
≤ 𝑚2𝛼4,

or that

𝑚 = Ω

(︂
𝑛3/4

𝜀𝛼

)︂
.

5.3.2.2 A 𝜒2-statistic has high sensitivity

Consider the primary statistic which we use in Algorithm 13:

𝑍(𝐷) =
1

𝑚𝛼2

∑︁
𝑖∈[𝑛]

(𝑁𝑖 −𝑚𝑞𝑖)2 −𝑁𝑖

𝑚𝑞𝑖
.

As shown in Section 5.3.3, E[𝑍] = 0 if 𝑝 = 𝑞 and E[𝑍] ≥ 1 if 𝑑TV(𝑝, 𝑞) ≥ 𝛼, and the variance

of 𝑍 is such that these two cases can be separated with constant probability. A natural

approach is to truncate this statistic to the range [0, 1], interpret it as a probability and

output the result of 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑍) – if 𝑝 = 𝑞, the result is likely to be 0, and if 𝑑TV(𝑝, 𝑞) ≥ 𝛼,

the result is likely to be 1. One might hope that this statistic is naturally private. More

specifically, we would like that the statistic 𝑍 has low sensitivity, and does not change much

if we remove a single individual. Unfortunately, this is not the case. We consider datasets

𝐷,𝐷′, where 𝐷′ is identical to 𝐷, but with one fewer occurrence of symbol 𝑖. It can be

shown that the difference in 𝑍 is

|𝑍(𝐷)− 𝑍(𝐷′)| = 2|𝑁𝑖 −𝑚𝑞𝑖 − 1|
𝑚2𝛼2𝑞𝑖
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Letting 𝑞 be the uniform distribution and requiring that this is at most 𝜀 (for the sake of

privacy), we have a constraint which is roughly of the form

2𝑁𝑖𝑛

𝑚2𝛼2
≤ 𝜀,

or that

𝑚 = Ω

(︂√
𝑁𝑖

√
𝑛

𝜀0.5𝛼

)︂
.

In particular, if 𝑁𝑖 = 𝑛𝑐 for any 𝑐 > 0, this does not achieve the desired 𝑂(
√
𝑛) sample

complexity. One may observe that, if 𝑁𝑖 is this large, looking at symbol 𝑖 alone is sufficient

to conclude 𝑝 is not uniform, even if the count 𝑁𝑖 had Laplace noise added. Indeed, our

main algorithm of Section 5.3.3 works in part due to our formalization and quantification of

this intuition.

5.3.3 Priv’IT: An Algorithm for Private Identity Testing

In this section, we prove our main testing upper bound:

Theorem 43. There exists an 𝜀-differentially private algorithm for the (𝛼, 𝛽I, 𝛽II)-identity

testing problem for 𝑞, distinguishing the cases:

∙ 𝑝 = 𝑞;

∙ 𝑑TV(𝑝, 𝑞) ≥ 𝜀.

The algorithm uses 𝑂
(︁(︁

𝑛1/2

𝛼2 +
√
𝑛 log𝑛
𝛼1.5𝜀

)︁
· log(1/𝛽)

)︁
samples, where 𝛽 = min (𝛽I, 𝛽II).

The pseudocode for this algorithm is provided in Algorithm 13. We fix the constants

𝑐1 = 1/4 and 𝑐2 = 3/40. For a high-level overview of our algorithm’s approach, we refer the

reader to Section 5.1.1.1.

Proof of Theorem 43: We will prove the theorem for the case where 𝛽 = 1/3, the general case

follows at the cost of a multiplicative log(1/𝛽) in the sample complexity from a standard

amplification argument. To be more precise, we can consider splitting our dataset into

𝑂(log(1/𝛽)) sub-datasets and run the 𝛽 = 1/3 test on each one independently. We return

the majority result – since each test is correct with probability ≥ 2/3, correctness of the
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Algorithm 13 Priv’IT: A differentially private identity tester
1: Input: 𝜀; an explicit distribution 𝑞; sample access to a distribution 𝑝
2: Define 𝒜 ← {𝑖 : 𝑞𝑖 ≥ 𝑐1𝛼/𝑛}, 𝒜 ← [𝑛] ∖ 𝒜
3: Sample 𝑌𝑖 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(2/𝑐2𝜀) for all 𝑖 ∈ 𝒜
4: if there exists 𝑖 ∈ 𝒜 such that |𝑌𝑖| ≥ 2

𝑐2𝜀
log
(︁

1
1−(1−𝑐2)1/|𝒜|

)︁
then

5: return either “𝑝 ̸= 𝑞” or “𝑝 = 𝑞” with equal probability
6: end if
7: Draw a multiset 𝑆 of 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚) samples from 𝑝
8: Let 𝑁𝑖 be the number of occurrences of the 𝑖th domain element in 𝑆
9: for 𝑖 ∈ 𝒜 do

10: if |𝑁𝑖 + 𝑌𝑖 −𝑚𝑞𝑖| ≥ 2
𝑐2𝜀

log
(︁

1
1−(1−𝑐2)1/|𝒜|

)︁
+ max

{︀
4
√
𝑚𝑞𝑖 log 𝑛, log 𝑛

}︀
then

11: return “𝑝 ̸= 𝑞”
12: end if
13: end for
14: 𝑍 ← 2

𝑚𝛼2

∑︀
𝑖∈𝒜

(𝑁𝑖−𝑚𝑞𝑖)
2−𝑁𝑖

𝑚𝑞𝑖

15: Let 𝑇 be the closest value to 𝑍 which is contained in the interval [0, 1]
16: Sample 𝑏 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑇 )
17: if 𝑏 = 1 then
18: return “𝑝 ̸= 𝑞”
19: else
20: return “𝑝 = 𝑞”
21: end if

overall test follows by Chernoff bound. It remains to argue privacy – note that a neighboring

dataset will only result in a single sub-dataset being changed. Since we take the majority

result, conditioning on the result of the other sub-tests, the result on this sub-dataset will

either be irrelvant to or equal to the overall output. In the former case, any test is private,

and in the latter case, we know that the individual test is 𝜀-differentially private. Overall

privacy follows by applying the law of total probability.

We require the following two claims, which give bounds on the random variables 𝑁𝑖 and

𝑌𝑖. Note that, due to the fact that we draw 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚) samples, each 𝑁𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑝𝑖)

independently.

Claim 8. |𝑌𝑖| ≤ 2
𝑐2𝜀

log
(︁

1
1−(1−𝑐2)1/|𝒜|

)︁
simultaneously for all 𝑖 ∈ 𝒜 with probability exactly

1− 𝑐2.

Proof. The survival function of the folded Laplace distribution with parameter 2/𝑐2𝜀 is

exp (−𝑐2𝜀𝑥/2), and the probability that a sample from it exceeding the value 2
𝑐2𝜀

log
(︁

1
1−(1−𝑐2)1/|𝒜|

)︁
212



is equal to 1 − (1 − 𝑐2)1/|𝒜|. The probability that probability that it does not exceed this

value is (1 − 𝑐2)1/|𝒜|, and since the 𝑌𝑖’s are independent, the probability that none exceeds

this value is 1− 𝑐2, as desired.

Claim 9. |𝑁𝑖−𝑚𝑝𝑖| ≤ max
{︀

4
√
𝑚𝑝𝑖 log 𝑛, log 𝑛

}︀
simultaneously for all 𝑖 ∈ 𝒜 with probability

at least 1− 2
𝑛0.84 − 1.1

𝑛
.

Proof. We consider this in two cases. Let 𝑋 be a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) random variable. First, assume

that 𝜆 ≥ 𝑒−3 log 𝑛. By Bennett’s inequality, we have the following tail bound [Pol15, Can17]:

Pr [|𝑋 − 𝜆| ≥ 𝑥] ≤ 2 exp

(︂
−𝑥

2

2𝜆
𝜓
(︁𝑥
𝜆

)︁)︂
,

where

𝜓(𝑡) =
(1 + 𝑡) log(1 + 𝑡)− 𝑡

𝑡2/2
.

Consider 𝑥 = 4
√
𝜆 log 𝑛. At this point, we have

𝜓(𝑥/𝜆) = 𝜓(4
√︀

log 𝑛/𝜆) ≥ 𝜓(4𝑒3/2) ≥ 0.23.

Thus,

Pr
[︁
|𝑋 − 𝜆| ≥ 4

√︀
𝜆 log 𝑛

]︁
≤ 2 exp (−0.23 · 8 log 𝑛)

≤ 2𝑛−1.84.

Now, we focus on the other case, where 𝜆 ≤ 𝑒−3 log 𝑛. Here, we appeal to Proposition 1

of [Kla00], which implies the following via Stirling’s approximation:

Pr [|𝑋 − 𝜆| ≥ 𝑘𝜆] ≤ 𝑘

𝑘 − 1
exp(−𝜆+ 𝑘𝜆− 𝑘𝜆 log 𝑘).

We set 𝑘𝜆 = log 𝑛, giving the upper bound

𝑘

𝑘 − 1
𝑛1−log 𝑘 ≤ 1.1 · 𝑛−2.

We conclude by taking a union bound over [𝑛], with the argument for each 𝑖 ∈ [𝑛]
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depending on whether 𝜆 = 𝑚𝑝𝑖 is large or small.

We proceed with proving the two desiderata of this algorithm, correctness and privacy.

Correctness. We use the following two properties of the statistic 𝑍(𝐷), which rely on the

condition that 𝑚 = Ω(
√
𝑛/𝛼2). The proofs of these properties are identical to the proofs of

Lemma 2 and 3 in [ADK15], and are omitted.

Claim 10. If 𝑝 = 𝑞, then E[𝑍] = 0. If 𝑑TV(𝑝, 𝑞) ≥ 𝛼, then E[𝑍] ≥ 1.

Claim 11. If 𝑝 = 𝑞, then Var[𝑍] ≤ 1/1000. If 𝑑TV(𝑝, 𝑞) ≥ 𝛼, then Var[𝑍] ≤ 1/1000 ·E[𝑍]2.

First, we note that, by Claim 8, the probability that we return in line 5 is exactly 𝑐2.

We now consider the case where 𝑝 = 𝑞. We note that by Claim 9, the probability that we

output “𝑝 ̸= 𝑞” in line 10 is 𝑜(1), and thus negligible. By Chebyshev’s inequality, we get

that 𝑍 ≤ 1/10 with probability at least 9/10, and we output “𝑝 = 𝑞” with probability at

least 𝑐2/2 + (1 − 𝑐2) · (9/10 − 𝑐2)2 ≥ 2/3 (note that we subtract 𝑐2 from 9/10 since we are

conditioning on an event with probability 1 − 𝑐2, and by union bound). Similarly, when

𝑑TV(𝑝, 𝑞) ≥ 𝛼, Chebyshev’s inequality gives that 𝑍 ≥ 9/10 with probability at least 9/10,

and therefore we output “𝑝 ̸= 𝑞” with probability at least 2/3.

Privacy. We will prove (0, 𝑐2𝜀/2)-differential privacy. By Claim 8, the probability that we

return in line 5 is exactly 𝑐2. Thus the minimum probability of any output of the algorithm

is at least 𝑐2/2, and therefore (0, 𝑐2𝜀/2)-differential privacy implies (𝜀, 0)-differential privacy.

We first consider the possibility of rejecting in line 11. Consider two neighboring datasets

𝐷 and 𝐷′, which differ by 1 in the frequency of symbol 𝑖. Coupling the randomness of the

𝑌𝑗’s on these two datasets, the only case in which the output differs is when 𝑌𝑖 is such that

the value of |𝑁𝑖 +𝑌𝑖−𝑚𝑞𝑖| lies on opposite sides of the threshold for the two datasets. Since

𝑁𝑖 differs by 1 in the two datasets, and the probability mass assigned by the PDF of 𝑌𝑖 to

any interval of length 1 is at most 𝑐2𝜀/4, the probability that the outputs differ is at most

𝑐2𝜀/4. Therefore, this step is (0, 𝑐2𝜀/4)-differentially private.

We next consider the value of 𝑍 for two neighboring datasets 𝐷 and 𝐷′, where 𝐷′ has

one fewer occurrence of symbol 𝑖. We only consider the case where we have not already
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returned in line 11, as otherwise the value of 𝑍 is irrelevant for determining the output of

the algorithm.

𝑍(𝐷)− 𝑍(𝐷′)

=
1

𝑚𝛼2

[︂
(𝑁𝑖 −𝑚𝑞𝑖)2 −𝑁𝑖

𝑚𝑞𝑖
− (𝑁𝑖 − 1−𝑚𝑞𝑖)2 − (𝑁𝑖 − 1)

𝑚𝑞𝑖

]︂
=

1

𝑚𝛼2

[︂
(𝑁𝑖 −𝑚𝑞𝑖)2 −𝑁𝑖

𝑚𝑞𝑖
− (𝑁𝑖 −𝑚𝑞𝑖)2 − 2(𝑁𝑖 −𝑚𝑞𝑖) + 1−𝑁𝑖 + 1

𝑚𝑞𝑖

]︂
=

2(𝑁𝑖 −𝑚𝑞𝑖 − 1)

𝑚2𝛼2𝑞𝑖
.

Since we did not return in line 11,

|𝑁𝑖 −𝑚𝑞𝑖| ≤
4

𝑐2𝜀
log

(︂
1

1− (1− 𝑐2)1/𝑛

)︂
+ max

{︁
4
√︀
𝑚𝑞𝑖 log 𝑛, log 𝑛

}︁
≤ 4 log(𝑛/𝑐2)

𝑐2𝜀
+ max

{︁
4
√︀
𝑚𝑞𝑖 log 𝑛, log 𝑛

}︁

This implies that

|𝑍(𝐷)− 𝑍(𝐷′)| = 2|𝑁𝑖 −𝑚𝑞𝑖 − 1|
𝑚2𝛼2𝑞𝑖

≤ 2

𝑚2𝛼2𝑞𝑖

(︂
6 log(𝑛/𝑐2)

𝑐2𝜀
+ 4
√︀
𝑚𝑞𝑖 log 𝑛

)︂
.

We will enforce that each of these terms are at most 𝑐2𝜀/8.

12 log(𝑛/𝑐2)

𝑚2𝛼2𝑞𝑖𝑐2𝜀
≤ 𝑐2𝜀

8
⇒ 𝑚 ≥

√︃
96

𝑐22𝑐1

√︀
𝑛 log(𝑛/𝑐2)

𝛼1.5𝜀

8
√

log 𝑛

𝑚1.5𝛼2
√
𝑞𝑖
≤ 𝑐2𝜀

8
⇒ 𝑚 ≥

(︂
64

𝑐2
√
𝑐1

)︂2/3
(𝑛 log 𝑛)1/3

𝛼5/3𝜀2/3

Since both terms are at most 𝑐2𝜀/8, this step is (0, 𝑐2𝜀/4)-differentially private. Com-

bining with the previous step gives the desired (0, 𝑐2𝜀/2)-differential privacy, and thus (as

argued at the beginning of the privacy section of this proof) 𝜀-pure differential privacy.

215



5.4 INSPECTRE: Private Property Estimation

In this section, we prove our results for support coverage in Section 5.4.1, support size in

Section 5.4.2, distance to uniformity in Section 5.4.3, and entropy in Section 5.4.4. In each

section, we first describe and analyze our algorithms for the relevant problem. We then go

on to describe and analyze a lower bound construction, showing that our upper bounds are

almost tight.

All our algorithms fall into the following simple framework:

1. Compute a non-private estimate of the property;

2. Privatize this estimate by adding Laplace noise, where the parameter is determined

through analysis of the estimator and potentially computation of the estimator’s sen-

sitivity.

5.4.1 Support Coverage Estimation

In this section, we prove Theorem 44, about support coverage estimation:

Theorem 44. The sample complexity of support coverage estimation is

𝐶(𝑆𝑘, 𝛼, 𝜀) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑂
(︁

𝑘 log(1/𝛼)
log 𝑘

+ 𝑘 log(1/𝛼)
log(2+𝜀𝑘)

)︁
, when 𝑘 ≥ 1

𝛼𝜀

𝑂
(︀

1
𝛼2 + 1

𝛼𝜀

)︀
, when 1

𝛼
≤ 𝑘 ≤ 1

𝛼𝜀

𝑂
(︀
𝑘2 + 𝑘

𝜀

)︀
. when 𝑘 ≤ 1

𝛼

Furthermore,

𝐶(𝑆𝑘, 𝛼, 𝜀) = Ω

(︂
𝑘 log(1/𝛼)

log 𝑘
+

1

𝛼𝜀

)︂
.

Our upper bound is analyzed in Section 5.4.1.1, while our lower bound is proved in

Section 5.4.1.2.

5.4.1.1 Upper Bound for Support Coverage Estimation

We split the analysis into two regimes. First, we focus on the case where 𝑘 ≤ 1
𝛼𝜀

, and we

prove the upper bound 𝑂
(︀

1
𝛼2 + 1

𝛼𝜀

)︀
. Note that the problem is identical for any 𝛼 < 1

𝑘
, since
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this corresponds to estimating the support coverage exactly, and the above bound simplifies

to 𝑂
(︀
𝑘2 + 𝑘

𝜀

)︀
. The algorithm in this case is simple: since 𝑚 = Ω(𝑘), we group the dataset

into 𝑚/𝑘 batches of size 𝑘. Let 𝑌𝑗 be the number of unique symbols observed in batch 𝑗.

Our estimator is

𝑆𝑘(𝑋𝑚
1 ) =

𝑘

𝑚

𝑚/𝑘∑︁
𝑗=1

𝑌𝑗.

Observe that E [𝑌𝑗] = 𝑆𝑘(𝑝), and that Var[𝑌𝑗] ≤ 𝑘. The latter can be seen by observing

that 𝑌𝑗 is the sum of 𝑘 negatively correlated indicator random variables, each one being

the indicator of whether that sample in the batch is the first time the symbol is observed.

This gives that 𝑆𝑘(𝑋𝑚
1 ) is an unbiased estimator of 𝑆𝑘(𝑝), with variance 𝑂(𝑘2/𝑚). By

Chebyshev’s inequality, since we want an estimate which is accurate up to ±𝛼𝑘, this gives

us that 𝐶𝑆𝑘
(𝑆𝑘(𝑝), 𝛼/2) = 𝑂

(︀
1
𝛼2

)︀
. Furthermore, we can see that the sensitivity of 𝑆𝑘(𝑋𝑚

1 ) is

at most 2𝑘/𝑚. By Lemma 41, there is a private algorithm for support coverage estimation

as long as

∆

(︃
𝑆𝑘(𝑋𝑚

1 )

𝑘

)︃
≤ 𝛼𝜀.

With the above bound on sensitivity, this is true with 𝑚 = 𝑂(1/𝛼𝜀), giving the desired

upper bound.

Now, we turn our attention to the case where 𝑘 ≥ 1
𝛼𝜀

, and we prove the upper bound

𝑂
(︁

𝑘 log(1/𝛼)
log 𝑘

+ 𝑘 log(1/𝛼)
log(2+𝜀𝑘)

)︁
. Let 𝜙𝑖 be the number of symbols that appear 𝑖 times in 𝑋𝑚

1 . We

will use the following non-private support coverage estimator from [OSW16]:

𝑆𝑘(𝑋𝑚
1 ) =

𝑚∑︁
𝑖=1

𝜙𝑖

(︀
1− (−𝑡)𝑖 · Pr[𝑍 ≥ 𝑖 ]

)︀
,

where 𝑍 is a Poisson random variable with mean 𝑟 (which is a parameter to be instantiated

later), and 𝑡 = (𝑘 −𝑚)/𝑚.

Our private estimator of support coverage is derived by adding Laplace noise to this non-

private estimator with the appropriate noise parameter, and thus the performance of our

private estimator, is analyzed by bounding the sensitivity and the bias of this non-private

estimator according to Lemma 41.

217



The sensitivity and bias of this estimator is bounded in the following lemmas.

Lemma 43. Suppose 𝑘 > 2𝑚, then the maximum coefficient of 𝜙𝑖 in 𝑆𝑘(𝑝) is at most

1 + 𝑒𝑟(𝑡−1).

Proof. By the definition of 𝑍, we know Pr[𝑍 ≥ 𝑖 ] =
∑︀∞

𝑗=𝑖 𝑒
−𝑟 𝑟𝑗

𝑗!
, hence we have:

|1 + (−𝑡)𝑖 · Pr[𝑍 ≥ 𝑖 ] | ≤ 1 + 𝑡𝑖
∞∑︁
𝑗=𝑖

𝑒−𝑟 𝑟
𝑗

𝑗!

≤ 1 + 𝑒−𝑟

∞∑︁
𝑗=𝑖

(𝑟𝑡)𝑗

𝑗!

≤ 1 + 𝑒−𝑟

∞∑︁
𝑗=0

(𝑟𝑡)𝑗

𝑗!

= 1 + 𝑒𝑟(𝑡−1)

The bias of the estimator is bounded in Lemma 4 of [ADOS17]:

Lemma 44. Suppose 𝑘 > 2𝑚, then

⃒⃒⃒
E
[︁
𝑆𝑘(𝑋𝑚

1 )
]︁
− 𝑆𝑘(𝑝)

⃒⃒⃒
≤ 2 + 2𝑒𝑟(𝑡−1) + min(𝑘, 𝑆(𝑝)) · 𝑒−𝑟.

Using these results, letting 𝑟 = log(1/𝛼), [OSW16] showed that there is a constant 𝐶,

such that with 𝑚 = 𝐶 𝑘
log 𝑘

log(1/𝛼) samples, with probability at least 0.9,

⃒⃒⃒⃒
⃒𝑆𝑘(𝑋𝑚

1 )

𝑘
− 𝑆𝑘(𝑝)

𝑘

⃒⃒⃒⃒
⃒ ≤ 𝛼.

Our upper bound in Theorem 44 is derived by the following analysis of the sensitivity of
𝑆𝑘(𝑋

𝑚
1 )

𝑘
.

If we change one sample in 𝑋𝑚
1 , at most two of the 𝜙𝑗’s change. Hence by Lemma 43,
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the sensitivity of the estimator satisfies

∆

(︃
𝑆𝑘(𝑋𝑚

1 )

𝑘

)︃
≤2

𝑘
·
(︀
1 + 𝑒𝑟(𝑡−1)

)︀
. (5.1)

By Lemma 41, there is a private algorithm for support coverage estimation as long as

∆

(︃
𝑆𝑘(𝑋𝑚

1 )

𝑘

)︃
≤ 𝛼𝜀,

which by (5.1) holds if

2(1 + exp(𝑟(𝑡− 1))) ≤ 𝛼𝜀𝑘.

Let 𝑟 = log(3/𝛼), note that 𝑡 − 1 = 𝑘
𝑚
− 2. Suppose 𝛼𝜀𝑘 > 2, then, the condition above

reduces to

log

(︂
3

𝛼

)︂
·
(︂
𝑘

𝑚
− 2

)︂
≤ log

(︂
1

2
𝛼𝜀𝑘 − 1

)︂
.

This is equivalent to

𝑚 ≥ 𝑘 log(3/𝛼)

log(1
2
𝛼𝜀𝑘 − 1) + 2 log(3/𝛼)

=
𝑘 log(3/𝛼)

log(3
2
𝜀𝑘 − 3/𝛼) + log(3/𝛼)

Suppose 𝛼𝜀𝑘 > 2, then the condition above reduces to the requirement that

𝑚 = Ω

(︂
𝑘 log(1/𝛼)

log(2 + 𝜀𝑘)

)︂
.

5.4.1.2 Lower Bound for Support Coverage Estimation

We now prove the lower bound described in Theorem 44. Note that the first term in the

lower bound is the sample complexity of non-private support coverage estimation, shown

in [OSW16]. Therefore, we turn our attention to prove the last term in the sample complexity.

Consider the following two distributions. 𝑢1 is uniform over [𝑘(1 + 𝛼)]. 𝑢2 is distributed

over 𝑘 + 1 elements [𝑘] ∪ {△} where 𝑢2[𝑖] = 1
𝑘(1+𝛼)

∀𝑖 ∈ [𝑘] and 𝑢2[△] = 𝛼
1+𝛼

. Moreover,

△ /∈ [𝑘(1 + 𝛼)]. Then,
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𝑆𝑘(𝑢1) = 𝑘(1 + 𝛼) ·

(︃
1−

(︂
1− 1

𝑘(1 + 𝛼)

)︂𝑘
)︃
,

and

𝑆𝑘(𝑢2) = 𝑘 ·

(︃
1−

(︂
1− 1

𝑘(1 + 𝛼)

)︂𝑘
)︃

+

(︃
1−

(︂
1− 𝛼

1 + 𝛼

)︂𝑘
)︃

hence,

𝑆𝑘(𝑢2)− 𝑆𝑘(𝑢1)

= 𝑘𝛼 ·

(︃
1−

(︂
1− 1

𝑘(1 + 𝛼)

)︂𝑘
)︃
−

(︃
1−

(︂
1− 𝛼

1 + 𝛼

)︂𝑘
)︃

= Ω(𝛼𝑘)

Hence we know there support coverage differs by Ω(𝛼𝑘). Moreover, their total variation

distance is 𝛼
1+𝛼

. The following lemma is folklore, based on the coupling interpretation of

total variation distance, and the fact that total variation distance is subadditive for product

measures.

Lemma 45. For any two distributions 𝑝, and 𝑞, there is a coupling between 𝑚 i.i.d. samples

from the two distributions with an expected Hamming distance of 𝑑TV(𝑝, 𝑞) ·𝑚.

Using Lemma 45 and 𝑑TV(𝑢1, 𝑢2) = 𝛼
1+𝛼

, we have

Lemma 46. Suppose 𝑢1 and 𝑢2 are as defined before, there is a coupling between 𝑢𝑚1 and

𝑢𝑚2 with expected Hamming distance equal to 𝛼
1+𝛼

𝑚.

Moreover, given 𝑚 samples, we must be able to privately distinguish between 𝑢1 and

𝑢2 given an 𝛼 accurate estimator of support coverage with privacy considerations. Thus,

according to Lemma 42 and 46, we have:

𝛼

1 + 𝛼
𝑚 ≥ 1

𝜀
⇒ 𝑚 = Ω

(︂
1

𝜀𝛼

)︂
.

5.4.2 Support Size Estimation

In this section, we prove our main theorem about support size estimation, Theorem 45:
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Theorem 45. The sample complexity of support size estimation is

𝐶(𝑆, 𝛼, 𝜀) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑂
(︁

𝑛 log2(1/𝛼)
log𝑛

+ 𝑛 log2(1/𝛼)
log(2+𝜀𝑛)

)︁
, when 𝑛 ≥ 1

𝛼𝜀

𝑂
(︀
𝑛 log(1/𝛼) + 1

𝛼𝜀

)︀
, when 1

𝛼
≤ 𝑛 ≤ 1

𝛼𝜀

𝑂
(︀
𝑛 log 𝑛+ 𝑛

𝜀

)︀
. when 𝑛 ≤ 1

𝛼

Furthermore,

𝐶(𝑆, 𝛼, 𝜀) =

⎧⎪⎨⎪⎩Ω
(︁

𝑛 log2(1/𝛼)
log𝑛

+ 1
𝛼𝜀

)︁
, when 𝑛 ≥ 1

𝛼

Ω
(︀
𝑛 log 𝑛+ 𝑛

𝜀

)︀
. when 𝑛 ≤ 1

𝛼

Our upper bound is described and analyzed in Section 5.4.2.1, while our lower bound appears

in Section 5.4.2.2.

5.4.2.1 Upper Bound for Support Size Estimation

We split the analysis into two regimes. First we consider the “sparse” case, where the

amount of data is relatively small. In particular, 𝑚 <
𝑛 log 3

𝛼

2
. In this case we show a bound

of 𝑂
(︁

𝑛 log2(1/𝛼)
log𝑛

+ 𝑛 log2(1/𝛼)
log(2+𝜀𝑛)

)︁
. This upper bound is less than 𝑛 log 3

𝛼

2
only when 𝑛 = Ω

(︀
1
𝛼𝜀

)︀
,

which is the condition for the sparse case.

Sparse case In [OSW16], it is shown that the support coverage estimator can be used to

obtain optimal results for estimating the support size of a distribution. In this fashion, taking

𝑘 = 𝑛 log(3/𝛼), we may use an estimator of the support coverage 𝑆𝑘(𝑝) as an estimator of

𝑆(𝑝). In particular, their result is based on the following observation.

Lemma 47. Suppose 𝑘 ≥ 𝑛 log(3/𝛼), then for any 𝑝 ∈ ∆≥ 1
𝑛
,

|𝑆𝑘(𝑝)− 𝑆(𝑝)| ≤ 𝛼𝑛

3
.
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Proof. From the definition of 𝑆𝑘(𝑝), we have 𝑆𝑘(𝑝) ≤ 𝑆(𝑝). For the other side,

𝑆(𝑝)− 𝑆𝑘(𝑝) =
∑︁
𝑥

(1− 𝑝(𝑥))𝑘 ≤
∑︁
𝑥

𝑒−𝑘𝑝(𝑥)

≤ 𝑛 · 𝑒− log(3/𝛼) =
𝑛𝛼

3
.

Therefore, estimating 𝑆𝑘(𝑝) for 𝑘 = 𝑛 log(3/𝛼), up to ±𝛼𝑛/3. Therefore, the goal is to

determine the smallest value of 𝑚 to solve the support coverage problem for 𝑘 = 𝑛 log(3/𝛼).

Suppose 𝑟 = log(3/𝛼), and 𝑘 = 𝑛 log(3/𝛼) = 𝑛·𝑟 in the support coverage problem. Then,

we have

𝑡 =
𝑘

𝑚
− 1 =

𝑛 log(3/𝛼)

𝑚
− 1. (5.2)

Then, by Lemma 44 in the previous section, we have

⃒⃒⃒
E
[︁
𝑆𝑘(𝑋𝑚

1 )
]︁
− 𝑆(𝑝)

⃒⃒⃒
≤
⃒⃒⃒
E
[︁
𝑆𝑘(𝑋𝑚

1 )
]︁
− 𝑆𝑘(𝑝)

⃒⃒⃒
+ |𝑆𝑘(𝑝)− 𝑆(𝑝)|

≤ 2 + 2𝑒𝑟(𝑡−1) + min{𝑘, 𝑛} · 𝑒−𝑟 +
𝑛𝛼

3

≤ 2 + 2𝑒𝑟(𝑡−1) + 𝑛 · 𝑒− log(3/𝛼) +
𝑛𝛼

3

≤ 2 + 2𝑒𝑟(𝑡−1) + 2
𝑛𝛼

3
.

We will find conditions on 𝑚 such that the middle term above is at most 𝑛𝛼. Toward

this end, note that 2𝑒𝑟(𝑡−1) ≤ 𝛼𝑛 holds if and only if 𝑟(𝑡− 1) ≤ log
(︀
𝛼𝑛
2

)︀
. Plugging in (5.2),

this holds when

log(3/𝛼) ·
(︂
𝑛 log(3/𝛼)

𝑚
− 2

)︂
≤ log

(︁𝛼𝑛
2

)︁
,

which is equivalent to

222



𝑚 ≥ 𝑛 log2(3/𝛼)

log 𝛼𝑛
2

+ 2 log 3
𝛼

= 𝑂

(︂
𝑛 log2(1/𝛼)

log 𝑛

)︂

where we have assumed without loss of generality that 𝛼 > 1
𝑛
.

The computations for sensitivity are very similar. From Lemma 41, we need to find the

value of 𝑚 such that

2 + 2𝑒𝑟(𝑡−1) ≤ 𝛼𝜀𝑛,

where we assume that𝑚 ≤ 1
2
𝑛 log(3/𝛼), else we just add noise to the true number of observed

distinct elements. By computations similar to the previous case, this reduces to

𝑚 ≥ 𝑛 log2(3/𝛼)

log 𝛼𝜀𝑛
2

+ log 3
𝛼

.

Therefore, this gives us a sample complexity of

𝑚 = 𝑂

(︂
𝑛 log2(1/𝛼)

log (2 + 𝜀𝑛)

)︂

for the sensitivity result to hold.

Dense case Then let us consider the dense case when 𝑛 ≤ 1
𝛼𝜀

. The algorithm under this

case will be the following. Let 𝑊 (𝑋𝑚
1 ) denote the set of symbols which appear in 𝑋𝑚

1 and

let 𝑁𝑥 denote the number of times 𝑥 appears, then our non-private estimator is

𝑆(𝑋𝑚
1 ) =

∑︁
𝑥∈𝑊 (𝑋𝑚

1 )

min

{︂
1,
𝑁𝑥
𝑚
3𝑛

}︂
.

To analyze the performance of the algorithm, we consider two cases, the case when 𝑛 ≤ 1
𝛼

and the case when 1
𝛼
≤ 𝑛 ≤ 1

𝛼𝜀
.

When 𝑛 ≤ 1
𝛼
, we have 𝑛𝛼 < 1, which means we need to know the exact support size. Our

algorithm gives correct answer when all the symbols appearing at least 𝑚
3𝑛

times. For any

symbol 𝑥 with 𝑝(𝑥) ≥ 1
𝑛
, according to the Chernoff bound, Pr

[︀
𝑁𝑥 <

𝑚
3𝑛

]︀
≤ exp(−

2𝑚2

9𝑛2

𝑚· 1
𝑛

) =

exp(−2𝑚
9𝑛

). Let 𝑚 ≥ 18𝑛 log 𝑛, we have Pr
[︀
𝑁𝑥 <

𝑚
3𝑛

]︀
≤ 1

𝑛4 . Then according to the union
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bound, the probability of all the symbols appearing at least 𝑚
3𝑛

is greater than 1 − 1
𝑛3 .

When 𝑛 ≥ 2, this is larger than 2/3, which means our algorithm gives correct answer with

probability more than 2
3
.

Furthermore, we can see that the sensitivity of 𝑆(𝑋𝑚
1 ) is at most 3𝑛/𝑚. By Lemma 41,

there is a private algorithm for support size estimation as long as

∆
(︁
𝑆(𝑋𝑚

1 )
)︁
≤ 𝜀.

With the above bound on sensitivity, this is true with 𝑚 = 𝑂(𝑛/𝜀), giving the desired upper

bound.

Next we consider the case when 1
𝛼
≤ 𝑛 ≤ 1

𝛼𝜀
. For any symbol 𝑥 with 𝑝(𝑥) ≥ 1

𝑛
, according

to the same argument, Pr
[︀
𝑁𝑥 <

𝑚
3𝑛

]︀
≤ exp(−

2𝑚2

9𝑛2

𝑚· 1
𝑛

) = exp(−2𝑚
9𝑛

). When 𝑚 ≥ 9𝑛 log(1/𝛼), we

have Pr
[︀
𝑁𝑥 <

𝑚
3𝑛

]︀
≤ 𝛼2 ≤ 0.5𝛼 if we suppose 𝛼 < 0.5. Let 𝑌 (𝑋𝑚

1 ) ,
∑︀

𝑥∈𝑆(𝑝) 1{𝑁𝑥 ≥ 𝑚
3𝑛
},

which is the number of symbols appearing more than 𝑚
3𝑛

times. We know that E [𝑌 (𝑋𝑚
1 )] >

𝑆(𝑝)(1 − 0.5𝛼) by linearity of expectations. Moreover, Var [𝑌 (𝑋𝑚
1 )] < 0.5𝛼 · 𝑆(𝑝) since it

is the sum of 𝑆(𝑝) negatively related Bernoulli random variables with bias less than 0.5𝛼.

According to Chebyshev’s inequality,

Pr[ (1− 0.5𝛼)𝑆(𝑝) < 𝑌 (𝑋𝑚
1 ) < 𝑆(𝑝) + 𝛼𝑆(𝑝) ] ≥ 1− 1

4.5𝛼𝑆(𝑝)
≥ 1− 1

4.5𝑛𝛼
≥ 2

3
,

where the last inequality comes from the fact 𝑛𝛼 ≥ 1. Therefore,

Pr[ (𝑆(𝑝)− 𝛼𝑛 < 𝑌 (𝑋𝑚
1 ) < 𝑆(𝑝) + 𝛼𝑛 ] ≥ Pr[ (1− 0.5𝛼)𝑆(𝑝) < 𝑌 (𝑋𝑚

1 ) < 𝑆(𝑝) + 𝛼𝑆(𝑝) ] ≥ 2

3
.

Furthermore, we can see that the sensitivity of 𝑆(𝑋𝑚
1 ) is the same, which is at most

3𝑛/𝑚. By Lemma 41, there is a private algorithm for support coverage estimation as long

as

∆
(︁
𝑆(𝑋𝑚

1 )
)︁
≤ 𝑛𝛼𝜀.

With the above bound on sensitivity, this is true with 𝑚 = 𝑂( 1
𝛼𝜀

), giving the desired upper

bound.
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5.4.2.2 Lower Bound for Support Size Estimation

In this section, we prove a lower bound for support size estimation, as described in Theo-

rem 45. The techniques are similar to those for support coverage in Section 5.4.1.2.

First let us focus on the case when 𝑛 ≥ 1
𝛼
, The first term of the complexity is the lower

bounds for the non-private setting, which follows by combining the lower bound of [OSW16]

for support coverage, with the equivalence between estimation of support size and coverage

as implied by Lemma 47. We focus on the final term in the sequel.

Consider the following two distributions: 𝑢1 is a uniform distribution over [𝑛] and 𝑢2 is a

uniform distribution over [(1− 𝛼)𝑛]. Then the support size of these two distribution differs

by 𝛼𝑛, and 𝑑TV(𝑢1, 𝑢2) = 𝛼.

Hence by Lemma 45, we know the following:

Lemma 48. Suppose 𝑢1 ∼ 𝒰𝑛 and 𝑢2 ∼ 𝒰(1−𝛼)𝑛, there is a coupling between 𝑢𝑚1 and 𝑢𝑚2 with

expected Hamming distance equal to 𝛼𝑚.

Moreover, given 𝑚 samples, we must be able to privately distinguish between 𝑢1 and 𝑢2

given an 𝛼 accurate estimator of entropy with privacy considerations. Thus, according to

Lemma 42 and Lemma 48, we have:

𝛼𝑚 ≥ 1

𝜀
⇒ 𝑚 = Ω

(︂
1

𝜀𝛼

)︂
.

Then we move to the second case when 𝑛 ≤ 1
𝛼
. Because 𝑛𝛼 < 1, we need to recover the

support size exactly. The first term of the complexity is the lower bound for the non-private

setting which can be proved using a coupon collector style argument, so here we focus on

the second term.

We consider the following two distributions: 𝑢1 is a uniform distribution over [𝑛] and 𝑢2

is a uniform distribution over [𝑛− 1]. We must distinguish between these two distributions,

for which 𝑑TV(𝑢1, 𝑢2) = 1
𝑛
. Hence, by Lemma 45, we have

𝑚

𝑛
≥ 1

𝜀
⇒ 𝑚 = Ω

(︁𝑛
𝜀

)︁
.
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5.4.3 Distance to Uniformity Estimation

In this section, we prove our main theorem about estimating distance to uniformity, Theo-

rem 46.

Theorem 46. Let 𝜆 > 0 be any small fixed constant. For instance, 𝜆 can be chosen to be any

constant between 0.01 and 1. We have the following upper bounds on the sample complexity

of estimating distance to uniformity:

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = 𝑂

(︂
𝑛

𝛼2
+

1

𝛼𝜀

)︂

and

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = 𝑂

(︃
𝑛

𝜆2𝛼2 log 𝑛
+

(︂
1

𝛼𝜀

)︂1+𝜆
)︃
.

Furthermore,

𝐶(‖𝑝− 𝒰𝑛‖1, 𝛼, 𝜀) = Ω

(︂
𝑛

𝛼2 log 𝑛
+

𝑛1/2

𝛼𝜀1/2
+

𝑛1/3

𝛼4/3𝜀2/3
+

1

𝛼𝜀

)︂
.

We describe and analyze two upper bounds. The first is based on the empirical estimator,

and is described and analyzed in Section 5.4.3.1. The second is based on the method of

best-polynomial approximation, and appears in Section 5.4.3.2. Finally, our lower bound is

in Section 5.4.3.3.

5.4.3.1 Upper Bound for Estimating Distance to Uniformity: The Empirical

Estimator

Our first private distance to uniformity estimator is based on adding Laplace noise into the

empirical estimator. The parameter of the Laplace noise is dependent on the sensitivity of

the empirical estimator. By analyzing its sensitivity and bias, we prove the first upper bound

in Theorem 46,

Let 𝑝𝑚 be the empirical distribution, and let ‖𝑝𝑚 − 𝒰𝑛‖1 be the distance to uniformity
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of the empirical distribution. The theorem is based on the following three facts:

∆(‖𝑝𝑚 − 𝒰𝑛‖1) = 𝑂

(︂
min

{︂
1

𝑛
,

1

𝑚

}︂)︂
, (5.3)

E [‖𝑝𝑚 − 𝒰𝑛‖1]− ‖𝑝− 𝒰𝑛‖1 = 𝑂

(︂√︂
𝑛

𝑚

)︂
, (5.4)

Var [‖𝑝𝑚 − 𝒰𝑛‖1] = 𝑂

(︂
1

𝑚

)︂
. (5.5)

With these three facts in hand, the sample complexity of the empirical estimator can be

bounded as follows. By Lemma 41, we need ∆(‖𝑝𝑚 − 𝒰𝑛‖1) ≤ 𝛼𝜀, which gives 𝑚 = 𝑂
(︀

1
𝛼𝜀

)︀
.

We also need E [‖𝑝𝑚 − 𝒰𝑛‖1] − ‖𝑝 − 𝒰𝑛‖1 = 𝑂 (𝛼) and Var [‖𝑝𝑚 − 𝒰𝑛‖1] = 𝑂 (𝛼2), which

gives 𝑚 = 𝑂
(︀

𝑛
𝛼2

)︀
.

Proof of (5.3). The largest change in any𝑁𝑥 when we change one symbol is one. Moreover,

at most two 𝑁𝑥 change. Clearly we have ∆(‖𝑝𝑚 − 𝒰𝑛‖1) ≤
2
𝑚

.

Then suppose 𝑛 ≥ 𝑚, we use 𝜑𝑖 to denote the number of symbols which appear 𝑖 times.

‖𝑝𝑚 − 𝒰𝑛‖1 =
𝜑0

𝑛
+

𝑚∑︁
𝑖=1

𝜑𝑖 ·
(︂
𝑖

𝑚
− 1

𝑛

)︂
=

𝑚∑︁
𝑖=1

𝜑𝑖 · 𝑖
𝑚
−

𝑚∑︁
𝑖=1

𝜑𝑖

𝑛
+ 𝜑0 ·

1

𝑛

=
2

𝑛
𝜑0

The last equality comes from
∑︀𝑚

𝑖=1 𝜑𝑖 = 𝑛− 𝜑0 and
∑︀𝑚

𝑖=1 𝜑𝑖 · 𝑖 = 𝑚.

The largest change in 𝜑0 when we change one symbol is one. Therefore when 𝑛 ≥ 𝑚,

∆(‖𝑝𝑚 − 𝒰𝑛‖1) ≤
2
𝑛
.
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Proof of (5.4).

E [‖𝑝𝑚 − 𝒰𝑛‖1] = E

[︃
𝑛∑︁

𝑖=1

⃒⃒⃒⃒
𝑝𝑖 −

1

𝑛

⃒⃒⃒⃒]︃

≤
𝑛∑︁

𝑖=1

E [|𝑝𝑖 − 𝑝𝑖|] +
𝑛∑︁

𝑖=1

⃒⃒⃒⃒
𝑝𝑖 −

1

𝑛

⃒⃒⃒⃒

≤
𝑛∑︁

𝑖=1

E [|𝑝𝑖 − 𝑝𝑖|] + ‖𝑝− 𝒰𝑛‖1

≤
√
𝑛 ·

𝑛∑︁
𝑖=1

E [‖𝑝𝑖 − 𝑝𝑖‖2] + ‖𝑝− 𝒰𝑛‖1 (5.6)

≤
√︂
𝑛

𝑚
+ ‖𝑝− 𝒰𝑛‖1 (5.7)

Equation (5.6) comes from Cauchy-Schwarz inequality.

Proof of (5.5). We apply the bounded differences inequality in the form stated in Corollary

3.2 of [BLM13].

Lemma 49. Let 𝑓 : Ω𝑚 → R be a function. Suppose further that

max
𝑧1,...,𝑧𝑚,𝑧

′
𝑖

⃒⃒⃒
𝑓(𝑧1, . . . , 𝑧𝑚)− 𝑓(𝑧1, . . . , 𝑧𝑖−1, 𝑧

′

𝑖, . . . , 𝑧𝑚)
⃒⃒⃒
≤ 𝑐𝑖.

Then for independent variables 𝑍1, . . . , 𝑍𝑚,

Var (𝑓(𝑍1, . . . , 𝑍𝑚)) ≤ 1

4

𝑚∑︁
𝑖=1

𝑐2𝑖 .

By Lemma 49 and Equation (5.3), we have

Var [‖𝑝𝑚 − 𝒰𝑛‖1] ≤ 𝑚 · 1

𝑚2
≤ 1

𝑚
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5.4.3.2 Upper Bound for Estimating Distance to Uniformity: Best-Polynomial

Approximation

We prove an upper bound on the sample complexity if one adds Laplace noise to the best-

polynomial estimator. This will give us the second upper bound in Theorem 46. We use

the algorithm of [ADOS17]. This estimator has the order-optimal sample complexity, but

smaller sensitivity in comparison to previous estimators.

Lemma 50 (Lemma 7 of [ADOS17]). Let 𝜆 > 0 be a fixed small constant, which may be

taken to be any value between 0.01 and 1. Then there is an estimator with sample complexity

𝑂

(︂
1

𝜆2
· 𝑛

𝛼2 log 𝑛

)︂
,

and has sensitivity 𝑚𝜆/𝑚.

We can now invoke Lemma 41 on the estimator in this lemma to obtain the second upper

bound on private entropy estimation.

5.4.3.3 Lower Bound for Estimating Distance to Uniformity

We now prove a lower bound for estimating distance to uniformity. The first term in the lower

bound of Theorem 46 comes from lower bounds for non-private estimation (see, i.e, [JHW16]).

Note that estimating distance to uniformity is a harder problem than uniformity testing,

which tests whether 𝑝 is either uniform distribution or 𝛼-far away from it. According to the

private uniformity testing lower bound given by Theorem 13 in [ASZ17],

Θ

(︂
𝑛

𝛼2 log 𝑛
+ max

{︂
𝑛1/2

𝛼𝜀1/2
,

𝑛1/3

𝛼4/3𝜀2/3
,

1

𝛼𝜀

}︂)︂

We get the lower bound part on the sample complexity in Theorem 46.

5.4.4 Entropy Estimation

In this section, we prove our main theorem about entropy estimation, Theorem 47:
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Theorem 47. Let 𝜆 > 0 be any small fixed constant. For instance, 𝜆 can be chosen to be any

constant between 0.01 and 1. We have the following upper bounds on the sample complexity

of entropy estimation:

𝐶(𝐻,𝛼, 𝜀) = 𝑂

(︂
𝑛

𝛼
+

log2(min{𝑛,𝑚})
𝛼2

+
1

𝛼𝜀
log

(︂
1

𝛼𝜀

)︂)︂

and

𝐶(𝐻,𝛼, 𝜀) = 𝑂

(︃
𝑛

𝜆2𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

+

(︂
1

𝛼𝜀

)︂1+𝜆
)︃
.

Furthermore,

𝐶(𝐻,𝛼, 𝜀) = Ω

(︂
𝑛

𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

+
log 𝑛

𝛼𝜀

)︂
.

We describe and analyze two upper bounds. The first is based on the empirical entropy

estimator, and is described and analyzed in Section 5.4.4.1. The second is based on the

method of best-polynomial approximation, and appears in Section 5.4.4.2. Finally, our lower

bound is in Section 5.4.4.3.

5.4.4.1 Upper Bound for Entropy Estimation: The Empirical Estimator

Our first private entropy estimator is derived by adding Laplace noise into the empirical

estimator. The parameter of the Laplace distribution is Δ(𝐻(𝑝𝑚))
𝜀

, where ∆(𝐻(𝑝𝑚)) denotes

the sensitivity of the empirical estimator. By analyzing its sensitivity and bias, we prove

an upper bound on the sample complexity for private entropy estimation and get the first

upper bound in Theorem 47.

Let 𝑝𝑚 be the empirical distribution, and let 𝐻(𝑝𝑚) be the entropy of the empirical

distribution. The theorem is based on the following three facts:

∆(𝐻(𝑝𝑚)) = 𝑂

(︂
log𝑚

𝑚

)︂
, (5.8)

|𝐻 (𝑝)− E [𝐻(𝑝𝑚)]| = 𝑂
(︁ 𝑛
𝑚

)︁
, (5.9)

Var [𝐻(𝑝𝑚)] = 𝑂

(︂
log2(min{𝑛,𝑚})

𝑚

)︂
. (5.10)

With these three facts in hand, the sample complexity of the empirical estimator can be
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bounded as follows. By Lemma 41, we need ∆(𝐻(𝑝𝑚)) ≤ 𝛼𝜀, which gives𝑚 = 𝑂
(︀

1
𝛼𝜀

log( 1
𝛼𝜀

)
)︀
.

We also need |𝐻 (𝑝)− E [𝐻(𝑝𝑚)]| = 𝑂 (𝛼) and Var [𝐻(𝑝𝑚)] = 𝑂 (𝛼2), which gives 𝑚 =

𝑂
(︁

𝑛
𝛼

+ log2(min{𝑛,𝑚})
𝛼2

)︁
.

Proof of (5.8). The largest change in any𝑁𝑥 when we change one symbol is one. Moreover,

at most two 𝑁𝑥 change. Therefore,

∆(𝐻(𝑝𝑚)) ≤ 2 · max
𝑗=1...𝑚−1

⃒⃒⃒⃒
𝑗 + 1

𝑚
log

𝑚

𝑗 + 1
− 𝑗

𝑚
log

𝑚

𝑗

⃒⃒⃒⃒
= 2 · max

𝑗=1...𝑚−1

⃒⃒⃒⃒
𝑗

𝑚
log

𝑗

𝑗 + 1
+

1

𝑚
log

𝑚

𝑗 + 1

⃒⃒⃒⃒
(5.11)

≤ 2 · max
𝑗=1...𝑚−1

max

{︂⃒⃒⃒⃒
𝑗

𝑚
log

𝑗

𝑗 + 1

⃒⃒⃒⃒
,

⃒⃒⃒⃒
1

𝑚
log

𝑚

𝑗 + 1

⃒⃒⃒⃒}︂
(5.12)

≤ 2 ·max

{︂
1

𝑚
,
log𝑚

𝑚

}︂
,

= 2 · log𝑚

𝑚
. (5.13)

Proof of (5.9). By the concavity of entropy function, we know that

E [𝐻 (𝑝𝑚)] ≤ 𝐻 (𝑝) .
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Therefore,

E [|𝐻 (𝑝)−𝐻 (𝑝𝑚)|] = 𝐻 (𝑝)− E [𝐻 (𝑝𝑚)]

= E

[︃∑︁
𝑥

(𝑝𝑛(𝑥) log 𝑝𝑛(𝑥)− 𝑝(𝑥) log 𝑝(𝑥))

]︃

= E

[︃∑︁
𝑥

𝑝𝑛(𝑥) log
𝑝𝑛(𝑥)

𝑝(𝑥)

]︃
+ E

[︃∑︁
𝑥

(𝑝𝑛(𝑥)− 𝑝(𝑥)) log 𝑝(𝑥)

]︃
= E [𝑑KL (𝑝𝑚, 𝑝)] (5.14)

≤ E [𝑑𝜒2 (𝑝𝑚, 𝑝)] (5.15)

= E

[︃∑︁
𝑥

(𝑝𝑛(𝑥)− 𝑝(𝑥))2

𝑝(𝑥)

]︃

≤
∑︁
𝑥

(𝑝(𝑥)/𝑚)

𝑝(𝑥)
(5.16)

=
𝑛

𝑚
. (5.17)

Proof of (5.10). The variance bound of log2 𝑛
𝑚

is given precisely in Lemma 15 of [JVHW17].

To obtain the other half of the bound, we use Lemma 49 and Equation (5.8)

Var [𝐻(𝑝𝑚)] ≤ 𝑚 ·
(︂

4 log2𝑚

𝑚2

)︂
=

4 log2𝑚

𝑚
.

5.4.4.2 Upper Bound for Entropy Estimation: Best-Polynomial Approximation

We prove an upper bound on the sample complexity for private entropy estimation if one

adds Laplace noise into best-polynomial estimator.This will give us the second upper bound

in Theorem 47.

In the non-private setting the optimal sample complexity of estimating 𝐻(𝑝) over ∆𝑛 is

given by Theorem 1 of [WY16]

Θ

(︂
𝑛

𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

)︂
.

However, this estimator can have a large sensitivity. [ADOS17] designed an estimator that

has the same sample complexity but a smaller sensitivity. We restate Lemma 6 of [ADOS17]
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here:

Lemma 51. Let 𝜆 > 0 be a fixed small constant, which may be taken to be any value between

0.01 and 1. Then there is an entropy estimator with sample complexity

Θ

(︂
1

𝜆2
· 𝑛

𝛼 log 𝑛
+

log2(min{𝑛,𝑚})
𝛼2

)︂
,

and has sensitivity 𝑚𝜆/𝑚.

We can now invoke Lemma 41 on the estimator in this lemma to obtain the upper bound

on private entropy estimation.

5.4.4.3 Lower Bound for Entropy Estimation

We now prove the lower bound for entropy estimation. Note that any lower bound on

privately testing two distributions 𝑝, and 𝑞 such that 𝐻(𝑝)−𝐻(𝑞) = Θ(𝛼) is a lower bound

on estimating entropy.

We analyze the following construction for Proposition 2 of [WY16]. The two distributions

𝑝, and 𝑞 over [𝑛] are defined as:

𝑝(1) =
2

3
, 𝑝(𝑖) =

1− 𝑝(1)

𝑛− 1
, for 𝑖 = 2, . . . , 𝑛, (5.18)

𝑞(1) =
2− 𝜂

3
, 𝑞(𝑖) =

1− 𝑞(1)

𝑛− 1
, for 𝑖 = 2, . . . , 𝑛. (5.19)

Then, by the grouping property of entropy,

𝐻(𝑝) = ℎ(2/3) +
1

3
· log(𝑛− 1), and 𝐻(𝑞) = ℎ((2− 𝜂)/3) +

1 + 𝜂

3
· log(𝑛− 1),

which gives

𝐻(𝑝)−𝐻(𝑞) = Ω(𝜂 log 𝑛).

For 𝜂 = 𝛼/ log 𝑛, the entropy difference becomes Θ(𝛼).

The total variation distance between 𝑝 and 𝑞 is 𝜂/3. By Lemma 45, there is a coupling over

𝑋𝑚
1 , and 𝑌 𝑚

1 generated from 𝑝 and 𝑞 with expected Hamming distance at most 𝑑TV(𝑝, 𝑞) ·𝑚.

This along with Lemma 42 gives a lower bound of Ω (log 𝑛/𝛼𝜀) on the sample complexity.
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5.5 Experiments

In this section, we experimentally evaluate our methods for identity testing, entropy estima-

tion, and support coverage on synthetic and real data. For identity testing, privacy seems

to be a non-negligible cost, while for the other problems, privacy is very cheap: private

estimators achieve accuracy which is comparable or near-indistinguishable to non-private

estimators in many settings. Our results on identity testing, entropy estimation, and sup-

port coverage appear in Sections 5.5.1, 5.5.2, and 5.5.3, respectively. We present supple-

mentary experimental results without discussion in Section 5.5.4. Code of our implemen-

tations are available at https://github.com/hoonose/privit and https://github.com/

HuanyuZhang/INSPECTRE.

5.5.1 Identity Testing

We performed an empirical evaluation of our algorithm, Priv’IT, on synthetic datasets. All

experiments were performed on a laptop computer with a 2.6 GHz Intel Core i7-6700HQ

CPU and 8 GB of RAM. Significant discussion is required to provide a full comparison with

prior work in this area, since performance of the algorithms varies depending on the regime.

We compared our algorithm with two recent algorithms for differentially private hypoth-

esis testing:

1. The Monte Carlo Goodness of fit test with Laplace noise from [GLRV16], MCGOF;

2. The projected Goodness of Fit test from [KR17], zCDP-GOF.

We note that we implemented a modified version of Priv’IT, which differs from Algo-

rithm 13 in lines 14 to 21. In particular, we instead consider a statistic

𝑍 =
∑︁
𝑖∈𝒜

(𝑁𝑖 −𝑚𝑞𝑖)2 −𝑁𝑖

𝑚𝑞𝑖
.

We add Laplace noise to 𝑍, with scale parameter Θ(∆/𝜀), where ∆ is the sensitivity of

𝑍, which guarantees (𝜀/2, 0)-differential privacy. Then, similar to the other algorithms, we

choose a threshold for this noised statistic such that we have the desired type I error. This
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algorithm can be analyzed to provide identical theoretical guarantees as Algorithm 13, but

with the practical advantage that there are fewer parameters to tune.

To begin our experimental evaluation, we started with uniformity testing. Our experi-

mental setup was as follows. The algorithms were provided 𝑞 as the uniform distribution

over [𝑛]. The algorithms were also provided with samples from some distribution 𝑝. This

(unknown) 𝑝 was 𝑞 for the case 𝑝 = 𝑞, or a distribution which we call the “Paninski con-

struction” for the case 𝑑TV(𝑝, 𝑞) ≥ 𝛼. The Paninski construction is a distribution where half

the elements of the support have mass (1 + 𝛼)/𝑛 and half have mass (1 − 𝛼)/𝑛. We use

this name for the construction as [Pan08] showed that this example is one of the hardest

to distinguish from uniform: one requires Ω(
√
𝑛/𝛼2) samples to (non-privately) distinguish

a random permutation of this construction from the uniform distribution. We fixed pa-

rameters 𝜀 = 0.1 and 𝛼 = 0.1. In addition, recall that Proposition 13 implies that pure

differential privacy (the privacy guaranteed by Priv’IT) is stronger than zCDP (the privacy

guaranteed by zCDP-GOF). In particular, our guarantee of 𝜀-pure differential privacy implies

𝜀2/2-zCDP. As a result, we ran zCDP-GOF with a privacy parameter of 0.005-zCDP, which is

equivalent to the amount of zCDP our algorithm provides. Our experiments were conducted

on a number of different support sizes 𝑛, ranging from 10 to 10600. For each 𝑛, we ran the

testing algorithms with increasing sample sizes 𝑚 in order to discover the minimum sample

size when the type I and type II errors were both empirically below 1/3. To determine these

empirical error rates, we ran all algorithms 1000 times for each 𝑛 and 𝑚, and recorded the

fraction of the time each algorithm was correct. As the other algorithms take a parameter

𝛽I as a target type I error, we input 1/3 as this parameter.

The results of our first test are provided in Figure 5-1. The x-axis indicates the support

size, and the y-axis indicates the minimum number of samples required. We plot three lines,

which demonstrate the empirical number of samples required to obtain 1/3 type I and type

II error for the different algorithms. We can see that in this case, zCDP-GOF is the most

statistically efficient, followed by MCGOF and Priv’IT.

To explain this difference in statistical efficiency, we note that the theoretical guarantees

of Priv’IT imply that it performs well even when data is sparsely sampled. More precisely,

one of the benefits of our tester is that it can reduce the variance induced by elements whose
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Figure 5-1: The sample complexities of Priv’IT, MCGOF, and zCDP-GOF for uniformity testing

expected number of occurrences is less than 1. Since none of these testers reach this regime

(i.e., even zCDP-GOF at 𝑛 = 10000 expects to see each element 10 times), we do not reap

the benefits of Priv’IT. Ideally, we would run these algorithms on the uniform distribution

at sufficiently large support sizes. However, since this is prohibitively expensive to do with

thousands of repetitions (for any of these methods), we instead demonstrate the advantages

of our tester on a different distribution.

Our second test is conducted with 𝑞 being a 2-histogram2, where all but a vanishing

fraction of the probability mass is concentrated on a small, constant fraction of the support3.

This serves as our proxy for a very large support, since now we will have elements which have

a sub-constant expected number of occurrences. The algorithms are provided with samples

from a distribution 𝑝, which is either 𝑞 or a similar Paninski construction as before, where the

total variation distance from 𝑞 is placed on the support elements containing non-negligible

mass. We ran the test on support sizes 𝑛 ranging from 10 to 6800. All other parameters are

the same as in the previous test.

The results of our second test are provided in Figure 5-2. In this case, we compare

Priv’IT and zCDP-GOF, and note that our test is slightly better for all support sizes 𝑛,

though the difference can be pronounced or diminished depending on the construction of the

distribution 𝑞. We found that MCGOF was incredibly inefficient on this construction – even

2A 𝑘-histogram is a distribution where the domain can be partitioned into 𝑘 intervals such that the
distribution is uniform over each interval.

3In particular, in Figure 5-3, 𝑛/200 support elements contained 1 − 10/𝑛 probability mass, but similar
trends hold with modifications of these parameters.
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Figure 5-2: The sample complexities of Priv’IT and zCDP-GOF for identity testing on a
2-histogram

for 𝑛 = 400 it required 130000 samples, which is a factor of 10 worse than zCDP-GOF on a

support of size 𝑛 = 6800. To explain this phenomenon, we can inspect the contribution of a

single domain element 𝑖 to their statistic:

(𝑁𝑖 + 𝑌𝑖 −𝑚𝑞𝑖)2

𝑚𝑞𝑖
.

In the case where 𝑚𝑞𝑖 ≪ 1 and 𝑝 = 𝑞, this is approximately equal to 𝑌 2
𝑖

𝑚𝑞𝑖
. The standard

deviation of this term will be of the order 1
𝑚𝑞𝑖𝜀2

, which can be made arbitrarily large as

𝑚𝑞𝑖 → 0. While zCDP-GOF may naively seem susceptible to this same pitfall, their projection

method appears to elegantly avoid it.

As a final test, we note that zCDP-GOF guarantees zCDP, while Priv’IT guarantees

(vanilla) differential privacy. In our previous tests, our guarantee was 𝜀-differential privacy,

while theirs was 𝜀2

2
-zCDP: by Proposition 13, our guarantees imply theirs. In the third

test, we revisit uniformity testing, but when their guarantees imply ours. More specifically,

again with 𝜀 = 0.1, we ran zCDP-GOF with the guarantee of 𝜀2

2
-zCDP and Priv’IT with the

guarantee of ( 𝜀
2

2
+ 𝜀
√︀

2 log(1/𝛿), 𝛿) for various 𝛿 > 0. We note that 𝛿 is often thought in

theory to be “cryptographically small” (such as 2−100), but we compare with a wide range of

𝛿, both large and small: 𝛿 = 1/𝑒𝑡 for 𝑡 ∈ {1, 2, 4, 8, 16}. This test was conducted on support

sizes 𝑛 ranging from 10 to 6000.

The results of our third test are provided in Figure 5-3. We found that, for all 𝛿 tested,
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Figure 5-3: The sample complexities of Priv’IT and zCDP-GOF for uniformity testing, with
approximate differential privacy

Priv’IT required fewer samples than zCDP-GOF. This is unsurprising for 𝛿 very large and

small, since the differential privacy guarantees become very easy to satisfy, but we found

it to be true for even “moderate” values of 𝛿. This implies that if an analyst is satisfied

with approximate differential privacy, she might be better off using Priv’IT, rather than an

algorithm which guarantees zCDP.

While the main focus of our evaluation was statistical in nature, we will note that Priv’IT

was more efficient in runtime than our implementation of MCGOF, and more efficient in mem-

ory usage than our implementation of zCDP-GOF. The former point was observed by noting

that, in the same amount of time, Priv’IT was able to reach a trial corresponding to a sup-

port size of 20000, while MCGOF was only able to reach 10000. The latter point was observed

by noting that zCDP-GOF ran out of memory at a support size of 11800. This is likely because

zCDP-GOF requires matrix computations on a matrix of size 𝑂(𝑛2). It is plausible that all

of these implementations could be made more time and memory efficient, but we found our

implementations to be sufficient for the sake of our comparison.

5.5.2 Entropy

We compare the performance of our entropy estimator with a number of alternatives, both

private and non-private. Non-private algorithms considered include the plug-in estimator

(plug-in), the Miller-Madow Estimator (MM) [Mil55], the sample optimal polynomial ap-

proximation estimator (poly) of [WY16]. We analyze the privatized versions of plug-in, and
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poly in Sections 5.4.4.1 and 5.4.4.2, respectively. The implementation of the latter is based

on code from the authors of [WY16]4. We compare performance on different distributions

including uniform, a distribution with two steps, Zipf(1/2), a distribution with Dirichlet-1

prior, and a distribution with Dirichlet-1/2 prior, and over varying support sizes.

While plug-in, and MM are parameter free, poly (and its private counterpart) have to

choose the degree 𝐿 of the polynomial to use, which manifests in the parameter 𝜆 in the

statement of Theorem 47. [WY16] suggests the value of 𝐿 = 1.6 log 𝑛 in their experiments.

However, since we add further noise, we choose a single 𝐿 as follows: (i) Run privatized poly

for different 𝐿 values and distributions for 𝑛 = 2000, 𝜀 = 1, (b) Choose the value of 𝐿 that

performs well across different distributions (See Figure 5-4). We choose 𝐿 = 1.2 · log 𝑛 from

this, and use it for all other experiments. To evaluate the sensitivity of poly, we computed

the estimator’s value at all possible input values, computed the sensitivity, (namely, ∆ =

max𝑑h𝑎𝑚𝑚𝑖𝑛𝑔(𝑋𝑚
1 ,𝑌 𝑚

1 )≤1 |poly(𝑋𝑚
1 )− poly(𝑌 𝑚

1 )|), and added noise distributed as Lap
(︀
0, Δ

𝜀

)︀
.
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Figure 5-4: RMSE comparison between private Polynomial Approximation Estimators for
entropy with various values for degree 𝐿, 𝑛 = 2000, 𝜀 = 1. The degree 𝐿 represents a bias-
variance tradeoff: a larger degree decreases the bias but increases the sensitivity, necessitating
the addition of Laplace noise with a larger variance.

The RMSE of various estimators for 𝑛 = 1000, and 𝜀 = 1 for various distributions are

illustrated in Figure 5-5. The RMSE is averaged over 100 iterations in the plots.

We observe that the performance of our private-poly is near-indistinguishable from the

non-private poly, particularly as the number of samples increases. It also performs signif-

icantly better than all other alternatives, including the non-private Miller-Madow and the
4See https://github.com/Albuso0/entropy for their code for entropy estimation.
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Figure 5-5: Comparison of various estimators for entropy, 𝑛 = 1000, 𝜀 = 1.

plug-in estimator. The cost of privacy is minimal for several other settings of 𝑛 and 𝜀, for

which results appear in Section 5.5.4.

5.5.3 Support Coverage

We investigate the cost of privacy for the problem of support coverage. We provide a compar-

ison between the Smoothed Good-Toulmin estimator (SGT) of [OSW16] and our algorithm,

which is a privatized version of their statistic (see Section 5.4.1.1). Our implementation is

based on code provided by the authors of [OSW16]. As shown in our theoretical results, the

sensitivity of SGT is at most 2(1 + 𝑒𝑟(𝑡 − 1)), necessitating the addition of Laplace noise

with parameter 2(1 + 𝑒𝑟(𝑡−1))/𝜀. Note that while the theory suggests we select the param-

eter 𝑟 = log(1/𝛼), 𝛼 is unknown. We instead set 𝑟 = 1
2𝑡

log𝑒
𝑚(𝑡+1)2

𝑡−1
, as previously done

in [OSW16].

5.5.3.1 Evaluation on Synthetic Data

In our synthetic experiments, we consider different distributions over different support sizes

𝑛. We generate 𝑚 = 𝑛/2 samples, and then estimate the support coverage at 𝑘 = 𝑚 · 𝑡.

For large 𝑡, estimation is harder. Some results of our evaluation on synthetic are displayed

in Figure 5-6. We compare the performance of SGT, and privatized versions of SGT with

parameters 𝜀 = 1, 2, and 10. For this instance, we fixed the domain size 𝑛 = 20000. We ran

the methods described above with 𝑚 = 𝑛/2 samples, and estimated the support coverage at
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𝑘 = 𝑚𝑡, for 𝑡 ranging from 1 to 10. The performance of the estimators is measured in terms

of RMSE over 1000 iterations.
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Figure 5-6: Comparison between our private support coverage estimator with non-private
SGT when 𝑛 = 20000

We observe that, in this setting, the cost of privacy is relatively small for reasonable values

of 𝜀. This is as predicted by our theoretical results, where unless 𝜀 is extremely small (less

than 1/𝑛) the non-private sample complexity dominates the privacy requirement. However,

we found that for smaller support sizes (as shown in Section 5.5.4.2), the cost of privacy can

be significant. We provide an intuitive explanation for why no private estimator can perform

well on such instances. To minimize the number of parameters, we instead argue about the

related problem of support-size estimation. Suppose we are trying to distinguish between

distributions which are uniform over supports of size 100 and 200. We note that, if we draw

𝑚 = 50 samples, the “profile” of the samples (i.e., the histogram of the histogram) will be

very similar for the two distributions. In particular, if one modifies only a few samples (say,

five or six), one could convert one profile into the other. In other words, these two profiles are

almost-neighboring datasets, but simultaneously correspond to very different support sizes.

This pits the two goals of privacy and accuracy at odds with each other, thus resulting in a

degradation in accuracy.

5.5.3.2 Evaluation on Census Data and Hamlet

We conclude with experiments for support coverage on two real-world datasets, the 2000 US

Census data and the text of Shakespeare’s play Hamlet, inspired by investigations in [OSW16]
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and [VV17b]. Our investigation on US Census data is also inspired by the fact that this is

a setting where privacy is of practical importance, evidenced by the proposed adoption of

differential privacy in the 2020 US Census [DLS+17].

The Census dataset contains a list of last names that appear at least 100 times. Since the

dataset is so oversampled, even a small fraction of the data is likely to contain almost all the

names. As such, we make the task non-trivial by subsampling 𝑘𝑡𝑜𝑡𝑎𝑙 = 86080 individuals from

the data, obtaining 20412 distinct last names. We then sample 𝑚 of the 𝑘𝑡𝑜𝑡𝑎𝑙 individuals

without replacement and attempt to estimate the total number of last names. Figure 5-

7 displays the RMSE over 100 iterations of this process. We observe that even with an

exceptionally stringent privacy budget of 𝜀 = 0.5, the performance is almost indistinguishable

from the non-private SGT estimator.
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Figure 5-7: Comparison between our private support coverage estimator with the SGT on
Census Data.

The Hamlet dataset has 𝑘𝑡𝑜𝑡𝑎𝑙 = 31, 999 words, of which 4804 are distinct. Since the

distribution is not as oversampled as the Census data, we do not need to subsample the data.

Besides this difference, the experimental setup is identical to that of the Census dataset. Once

again, as we can see in Figure 5-8, we get near-indistinguishable performance between the

non-private and private estimators, even for very small values of 𝜀. Our experimental results

demonstrate that privacy is realizable in practice, with particularly accurate performance on

real-world datasets.
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Figure 5-8: Comparison between our private support coverage estimator with the SGT on
Hamlet.

5.5.4 Additional Experimental Results

This section contains additional plots of our synthetic experimental results. Section 5.5.4.1

contains experiments on entropy estimation, while Section 5.5.4.2 contains experiments on

estimation of support coverage.

5.5.4.1 Entropy Estimation

We present four more plots of our synthetic experimental results for entropy estimation.

Figures 5-9 and 5-10 are on a smaller support of 𝑛 = 100, with 𝜀 = 1 and 2, respectively.

Figures 5-11 and 5-12 are on a support of 𝑛 = 1000, with 𝜀 = 0.5 and 2.

5.5.4.2 Support Coverage

We present three additional plots of our synthetic experimental results for support coverage

estimation. In particular, Figures 5-13, 5-14, and 5-15 show support coverage for 𝑛 = 1000,

5000, 100000.
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Figure 5-9: Comparison of various estimators for the entropy, 𝑛 = 100, 𝜀 = 1.
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Figure 5-10: Comparison of various estimators for the entropy, 𝑛 = 100, 𝜀 = 2.
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Figure 5-11: Comparison of various estimators for the entropy, 𝑛 = 1000, 𝜀 = 0.5.
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Figure 5-12: Comparison of various estimators for the entropy, 𝑛 = 1000, 𝜀 = 2.
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Figure 5-13: Comparison between the private estimator with the non-private SGT when
𝑛 = 1000.
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Figure 5-14: Comparison between the private estimator with the non-private SGT when
𝑛 = 5000.
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Figure 5-15: Comparison between the private estimator with the non-private SGT when
𝑛 = 100000.
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Chapter 6

Testing with Conditional Samples

6.1 Introduction

Up until this point, our objective has been to obtain algorithms which are sublinear in 𝑛,

the size of the domain. However, as previously discussed in Chapter 4, in modern data

analysis we may encounter settings in which the domain is exceptionally large, necessitating

a complexity which is logarithmic in (or even independent of) the domain size. This goal

seems at odds with polynomial lower bounds on the sample complexity of most natural

testing questions (cf. Theorems 2 and 3). Some ways of avoiding these lower bounds involve

instance-by-instance analysis (which is outside the scope of this thesis, see e.g. [ADJ+11,

ADJ+12, AJOS13, VV17a, VV15, OS15, JHW16, BCG17, BW17a] for examples of this style

of analysis) or assuming some sort of structure on the underlying density (a la Chapter 4).

In this chapter, we pursue a different direction: we give ourself additional power when

interacting with the distribution.

In recent years, the most popular method of augmenting the power of distribution testers

in the theory community has been contained by the conditional sampling model. This

model was recently introduced concurrently by Chakraborty, Fischer, Goldhirsh, and Mat-

sliah [CFGM13, CFGM16] and Canonne, Ron, and Servedio [CRS14, CRS15]. The algorithm

is able to query a distribution in the following way: it submits a query set 𝑆 to an oracle,

which returns a sample from the distribution conditioned on being from 𝑆. Additionally, we

will distinguish between conditional sampling models where the algorithm’s queries may be
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adaptive (COND) or non-adaptive (NACOND) 1. In comparison, we will use SAMP to refer

to the standard sampling model.

The conditional model was introduced in part to capture the more dynamic nature of

modern data collection. Classically, a statistician might refer to a pre-existing dataset, and

then perform some statistical analysis upon it. Nowadays, the dataset and the analysis

are often gathered and performed at the same time and by the same people, perhaps even

with modifications to the data acquisition procedure based on the results of preliminary

tests. In such an interactive statistical setting, design of efficient algorithms corresponds to

a principled method for non-wasteful data collection in the design of experiments. This is

also explored in the literature on active learning, discussed in Section 6.1.2.

One may wonder in which specific settings one will have access to a conditional sam-

pling oracle. Some motivating examples are provided in [CFGM13], including testing lottery

machines and asymmetric communication schemes. We highlight their example of politi-

cal polling: when one attempts to generate poll numbers, this generally does not involve

questioning wholly random individuals from the population. Instead, a pollster will condi-

tion their sample upon various demographics, including age, sex, and education. Another

motivation for studying non-traditional oracles is to demonstrate their advantages to the

database community. Indeed, if one can show that alternative models of data access can

yield significantly faster algorithms, database researchers can work towards optimizing the

cost of these non-traditional queries in their system [KXS+16].

Conditional sampling often dramatically reduces the complexity of distribution test-

ing problems. For example, as previously discussed, given SAMP access to a distribu-

tion, the sample complexity of testing uniformity is Θ(
√
𝑛/𝜀2) [Pan08, VV17a, ADK15,

DKN15b, DGPP16, DGPP18]. However, given COND access, the query complexity drops

to Θ̃(1/𝜀2) [FJO+15], completely removing the dependence on the support size. Similarly,

significant qualitative savings can be realized for almost all natural distribution properties.

To highlight an even more extreme example, consider the “estimation” version of the above

problem: estimating the distance between a distribution and the uniform distribution. In

SAMP, the complexity of this problem is known to be Θ
(︁

𝑛
log𝑛

)︁
[VV10a, VV10b, VV11a,

1A formal definition of these concepts is given in Definition 18
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VV11b, JHW16, HJW16, JVHW17]. But once again, given COND access, the complexity

drops significantly, to 𝑂̃
(︀

1
𝜀20

)︀
. In other words, one of the hardest property estimation tasks

(with complexity which is “barely” sublinear) becomes one of the easiest (as the complexity

is independent of 𝑛).

In this chapter, we present a number of results on distributional property testing and

estimation and discuss their interplay with each other and the existing literature. More

precisely, we will describe upper and lower bounds for uniformity, identity, equivalence testing

and support-size estimation, in both the COND and NACOND models. Along the way, we will

point out interesting qualitative relationships between the complexities of various problems,

in an effort to identify precisely from where the power of the conditional sampling model is

derived.

6.1.1 Results, Techniques, and Discussion

Our results are summarized pictorially in Table 6.1.

SAMP NACOND COND

Uniformity Θ
(︁√

𝑛
𝜀2

)︁
𝑂̃
(︀
log𝑛
𝜀2

)︀
[this work] Θ̃

(︀
1
𝜀2

)︀
[CRS15]

[Pan08, VV17a] Ω
(︀
log𝑛
𝜀

)︀
[this work]

Identity Θ
(︁√

𝑛
𝜀2

)︁
𝑂̃
(︁

log2 𝑛
𝜀2

)︁
[this work] 𝑂̃

(︀
1
𝜀2

)︀
[FJO+15]

[Pan08, VV17a] Ω
(︀
log𝑛
𝜀

)︀
[this work] Ω

(︀
1
𝜀2

)︀
[CRS15]

Equivalence Θ
(︁

max
(︁

𝑛2/3

𝜀4/3
, 𝑛

1/2

𝜀2

)︁)︁
𝑂̃
(︁

log12 𝑛
𝜀2

)︁
[this work] 𝑂̃

(︀
log log𝑛

𝜀5

)︀
[FJO+15]

[CDVV14] Ω
(︀
log𝑛
𝜀

)︀
[this work] Ω

(︀√
log log 𝑛

)︀
[this work]

Support-Size Θ
(︁

𝑛
log𝑛

)︁
𝑂
(︀
poly

(︀
log𝑛
𝜀

)︀)︀
[this work] 𝑂̃

(︀
log log𝑛

𝜀3

)︀
[this work]

Estimation [VV17b, OSW16] Ω
(︀
log𝑛
𝜀

)︀
[this work] Ω

(︀√
log log 𝑛

)︀
[CFGM13]

Table 6.1: Summary of results, and a comparison of various testing problems in different
sampling oracle models. For the first three rows, problems get harder as one moves down
and to the left in this table. The row on support-size estimation is incomparable with the
other rows.

6.1.1.1 A Lower Bound for Adaptive Equivalence Testing

Our first result considers the sample complexity of testing equivalence with adaptive queries

under the COND model. This resolves (in the negative) the question of whether constant-

251



query complexity was achievable, an open problem explicitly posed by Fischer [Fis14].

Theorem 50 (Adaptive Equivalence Testing Lower Bound). Any algorithm which, given

COND access to unknown distributions 𝑝, 𝑞 on [𝑛], distinguishes between the cases 𝑝 = 𝑞 and

𝑑TV(𝑝, 𝑞) ≥ 1/4 with probability at least 2/3 must make at least Ω
(︀√

log log 𝑛
)︀

queries.

Combined with the 𝑂̃ (log log 𝑛) upper bound of Falahatgar et al. [FJO+15], this almost

(i.e., up to a quadratic factor) settles the sample complexity of this question. Furthermore,

as the related task of identity testing can be performed with a constant number of queries in

the COND model, this demonstrates an intriguing and intrinsic qualitative difference between

the two problems. Our result can also be interpreted as showing a fundamental distinction

from the usual sampling model, where both identity and equivalence testing have polynomial

sample complexity.

In order to prove Theorem 50, we have to deal with one main conceptual issue: adaptivity.

While the standard sampling model does not, by definition, allow any choice on what the next

query to the oracle should be, this is no longer the case for COND algorithms. Quantifying

the power that this grants an algorithm makes things much more difficult. To handle this

point, we follow the approach of Chakraborty et al. [CFGM13] and focus on a restricted

class of algorithms they introduce, called “core adaptive testers” (see Section 6.2 for a formal

definition). They show that this class of testers is equivalent to general algorithms for

the purpose of testing a broad class of properties, namely those which are invariant to

any permutation of the domain. Using this characterization, it remains for us to show

that none of these structurally much simpler core testers can distinguish whether they are

given conditional access to (a) a pair of random identical distributions (𝑝, 𝑝), or (b) two

distributions (𝑝, 𝑞) drawn according to a similar process, which are far apart.

At a high level, our lower bound works by designing instances where the property can be

tested if and only if the support size is known to the algorithm. Our construction randomizes

the support size by embedding the instance into a polynomially larger domain. Since the

algorithm is only allowed a small number of queries, Yao’s Minimax Principle allows us to

argue that, with high probability, a deterministic algorithm is unable to “guess” the support

size. This separates queries into several cases. First, in a sense we make precise, it is
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somehow “predictable” whether or not a query will return an element previously observed.

If this occurs, it is similarly predictable which element the query will return. On the other

hand, if a fresh element is observed, the query set is either “too small” or “too large.” In the

former case, the query will entirely miss the support, and the sampling process is identical

for both types of instance. In the latter case, the query will hit a large portion of the support,

and the amount of information gleaned from a single sample is minimal.

At a lower level, this process itself is reminiscent of the “hard” instances underlying the

lower bound of Canonne, Ron, and Servedio [CRS14] for testing identity (with a PAIRCOND

oracle, which can only query on sets of size 2), with one pivotal twist. As in their work,

both 𝑝 and 𝑞 are uniform within each of 𝜔(1) “buckets” whose size grows exponentially and

are grouped into “bucket-pairs.” Then, 𝑞 is obtained from 𝑝 by internally redistributing the

probability mass of each pair of buckets, so that the total mass of each pair is preserved but

each particular bucket has mass going up or down by a constant factor (see Section 6.3.1

for details of the construction). However, we now add a final step, where in both 𝑝 and 𝑞

the resulting distribution’s support is scaled by a random factor, effectively reducing it to a

(randomly) negligible fraction of the domain. Intuitively, this last modification has the role

of “blinding” the testing algorithm. We argue that unless its queries are on sets whose size

somehow match (in a sense formalized in Section 6.3.2) this random size of the support, the

sequences of samples it will obtain under 𝑝 and 𝑞 are almost identically distributed. The

above discussion crucially hides many significant aspects and technical difficulties which we

address in Section 6.3. Moreover, we observe that the lower bound we obtain seems to be

optimal with regard to our proofs techniques (specifically, to the decision tree approach),

and not an artifact of our lower bound instances. Namely, there appear to be conceptual

barriers to strengthening our result, which would require new ideas.

6.1.1.2 An Upper Bound for Adaptive Support-Size Estimation

We provide the following theorem for adaptively estimating the support size of a distribution.

Theorem 51 (Adaptive Support-Size Estimation). Let 𝜏 > 0 be any constant. There exists

an adaptive algorithm which, given COND access to an unknown distribution 𝑝 on [𝑛] (guar-

anteed to have probability mass at least 𝜏/𝑛 on every element of its support) and accuracy
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parameter 𝜀 ∈ (0, 1), makes 𝑂̃ ((log log 𝑛)/𝜀3) queries to the oracle2 and outputs a value 𝜔̃

such that the following holds. With probability at least 2/3, 𝜔̃ ∈ [ 1
1+𝜀
· 𝜔, (1 + 𝜀) · 𝜔], where

𝜔 = | supp(𝑝) |.

Our algorithm is simple in spirit, and follows a guess-and-check strategy. In more detail,

it first obtains a “reference point” outside the support, to check whether subsequent samples

it may consider belong to the support. Then, it attempts to find a rough upper bound on

the size of the support, of the form 22𝑗 (so that only log log 𝑛 many options have to be

considered); by using its reference point to check if a uniform random subset of this size

contains, as it should, at least one point from the support. Once such an upper bound has

been obtained using this double-exponential strategy, a refined bound is then obtained via a

binary search on the new range of values for the exponent, {2𝑗−1, . . . , 2𝑗}. Not surprisingly,

our algorithm draws on similar ideas as in [RT16, Sto85], with some additional machinery

to supplement the differences in the models. Interestingly, as a side-effect, this upper bound

shows our analysis of Theorem 50 to be tight up to a quadratic improvement. Indeed,

the lower bound construction we consider (see Section 6.3.1) can be easily “defeated” if an

estimate of the support size is known, and therefore cannot yield better than a Ω (log log 𝑛)

lower bound. Similarly, this further shows that the adaptive lower bound for support-size

estimation of Chakraborty et al. [CFGM13] is also tight up to a quadratic improvement.

6.1.1.3 Anaconda: Non-Adaptive Upper Bounds

At this point, we have a developed understanding of the power of the COND oracle with re-

spect to the aforementioned distribution testing problems. Perhaps surprisingly, the relative

complexities of certain problems have qualitatively different relationships between SAMP

and COND. To be precise, the sample complexities of identity testing and equivalence test-

ing in SAMP are Θ(𝑛1/2) ([Pan08, VV17a]) and Θ(𝑛2/3) ([CDVV14]) respectively: there is

a polynomial relationship between the two. However, their query complexities in COND are

Θ(1) ([CRS15, FJO+15]) and logΘ(1) log 𝑛 ([FJO+15] and Theorem 50) respectively: there is

a “chasm” between the two complexities, as we go from no dependence on the domain size

to a doubly logarithmic one.
2We remark that the constant in the 𝑂̃ depends polynomially on 1/𝜏 .
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However, the picture is much less clear when it comes to the non-adaptive NACOND

model. We know that the complexity of identity testing is poly log 𝑛 ([CFGM13] and The-

orem 56 below), though the upper and lower bounds are quite far from each other. On the

other hand, the complexity of equivalence testing is far less clear: the best lower bound

is Ω(log 𝑛) (Theorem 56 below), and the best upper bound is 𝑂(𝑛2/3) ([CDVV14]). Given

the interesting qualitative behavior observed for the COND model, this begs the following

question:

Question 7. What is the relationship of the query complexities of identity and equivalence

testing in the NACOND model?

In particular, are they polynomially related, as in the SAMP model? Or is there a larger

gap between the two, as in the COND model? Stated another way, do we require both

conditional samples and adaptivity simultaneously in order to reap the benefits for testing

equivalence?

We provide a qualitative resolution to this problem: we give a poly log 𝑛-query algorithm

for equivalence testing.

Theorem 52 (Non-Adaptive Equivalence Testing). There exists an algorithm which, given

NACOND access to unknown distributions 𝑝, 𝑞 on [𝑛], makes 𝑂̃
(︁

log12 𝑛
𝜀2

)︁
queries to the oracle

on each distribution and distinguishes between the cases 𝑝 = 𝑞 and 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with

probability at least 2/3.

For the special case of uniformity testing, we have a sharper analysis, allowing us to obtain

a 𝑂̃(log 𝑛) query algorithm, which nearly matches the Ω(log 𝑛) lower bound of Theorem 56:

Theorem 53 (Non-Adaptive Uniformity Testing). There exists an algorithm which, given

NACOND access to an unknown distribution 𝑝 on [𝑛], makes 𝑂̃
(︀
log𝑛
𝜀2

)︀
queries to the oracle

on 𝑝 and distinguishes between the cases 𝑝 = 𝒰𝑛 and 𝑑TV(𝑝,𝒰𝑛) ≥ 𝜀 with probability at least

2/3, where 𝒰𝑛 is the uniform distribution on [𝑛].

As a corollary of Theorem 53, we can obtain an improved upper bound for identity testing

with an adaptation of the reduction from identity testing to uniformity testing of [CFGM16]

(inspired by the bucketing techniques of [BFR+00, BFF+01]).
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Theorem 54 (Non-Adaptive Identity Testing). There exists an algorithm which, given NA-

COND access to an unknown distribution 𝑝 on [𝑛] and a description of a distribution 𝑞 over

[𝑛], makes 𝑂̃
(︁

log2 𝑛
𝜀2

)︁
queries to the oracle on 𝑝 and distinguishes between the cases 𝑝 = 𝑞

and 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with probability at least 2/3.

We present a unified algorithm, Anaconda, for both equivalence and uniformity testing,

the only difference is in the choice of parameters. Anaconda is quite simple to describe,

requiring only four sentences below.3 We consider this algorithmic simplicity to be an ad-

vantage of Anaconda, though we regret that its analysis is less simple.

Our bound for equivalence testing in the NACOND model is the first tailored to this

setting. Specifically, the best upper bound was 𝑂(𝑛2/3) (for the harder problem of equivalence

testing in the SAMP model [CDVV14]), and the best lower bound was Ω(log 𝑛) (for the easier

problem of uniformity testing in the NACOND model (Theorem 56)). These results left open

the question of the true complexity of equivalence testing: is it polynomial in log 𝑛, or

polynomial in 𝑛? Our algorithm gives an exponential improvement in the query complexity

by showing that the former is true: equivalence testing enjoys significant savings in the query

complexity when we switch from the SAMP to the NACOND oracle model.

More generally, as mentioned before, our results expose a qualitatively interesting rela-

tionship between identity and equivalence testing in the NACOND model. In the standard

sampling model (SAMP), the complexity of these problems is known to be polynomially

related (Θ(𝑛1/2) versus Θ(𝑛2/3)). However, in the conditional sampling model with adaptiv-

ity (COND), there is a “chasm” between these two complexities: one has a constant query

complexity, while the other has a complexity which is doubly logarithmic in 𝑛 (Θ(1) versus

poly log log 𝑛). Our results demonstrate that when we remove adaptivity from the condi-

tional sampling model (NACOND), the relationship is qualitatively quite different. In this

setting, the “chasm” closes, and the complexity of both problems is once again polynomially

related: both are poly log 𝑛. Interestingly, this complexity is intermediate to the complexity

of the same problems in the SAMP and COND models, by an exponential factor on either

side. These relationships are all summarized in Table 6.1. We note that our results fur-

ther address the aforementioned open problem of Fischer [Fis14], which inquires about the
3Perhaps if we tried harder, we could describe it in two sentences, plus the word “repeat.”
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complexity of equivalence testing with conditional samples.

In terms of specific sample complexities, we observe that our upper bound for unifor-

mity testing is nearly tight: our 𝑂̃
(︀
log𝑛
𝜀2

)︀
upper bound is complemented by the Ω(log 𝑛)

lower bound of Theorem 56. It improves upon the algorithm of [CFGM13], which has query

complexity 𝑂
(︁

log12.5 𝑛
𝜀17

)︁
. Our algorithm for identity testing, with complexity 𝑂̃

(︁
log2 𝑛
𝜀2

)︁
, also

significantly improves over theirs, which has a similar complexity as their algorithm for

uniformity testing. We again mention that our bound for equivalence testing is exponen-

tially better than the previous best algorithm for this problem (which is the 𝑂(𝑛2/3)-query

algorithm in the SAMP model of [CDVV14]).

Techniques and Proof Ideas At the core of our approach is reducing the problem from

ℓ1-testing to ℓ∞-testing, the latter of which is much cheaper in terms of sample complexity.

In particular, throughout this exposition, keep in mind that one can estimate a distribution

up to 𝜀 in ℓ∞-distance at a cost of 𝑂(1/𝜀2) samples (cf. Lemma 1). In order to give intuition

on how such an approach could possibly work, we focus on two very simple instances of

uniformity testing. In the first instance, 𝑝 is a distribution with a single “spike”: for some

𝑖* ∈ [𝑛], 𝑝(𝑖*) = 1
𝑛

+ 𝜀, and for 𝑖 ̸= 𝑖*, 𝑝(𝑖) = 1−𝜀
𝑛

. This can be detected by simply choosing

𝑆 = [𝑛] and querying it with NACOND 𝑂(1/𝜀2) times: the empirical distribution 𝑝(𝑖*) will

have a similar spike, betraying that the distribution is non-uniform. In the second instance,

𝑝 is the “Paninski construction” (used as the lower bound in [Pan08]): a random half of the

domain elements have probability 1+𝜀
𝑛

, while the other half have probability 1−𝜀
𝑛

. This can be

detected by choosing 𝑆 to be two random symbols, and again querying this subset 𝑂(1/𝜀2)

times. With constant probability, the two symbols will be from different sets. While the

ℓ∞ distance from uniformity on each symbol is only 𝜀
𝑛
, in this conditional distribution, it is

increased to 𝜀, allowing easy detection.

These two examples illustrate the heart of our approach: our algorithm, Anaconda,

attempts to find a query set in which the discrepancy of a single item is large in compar-

ison to the total probability mass of the set. One of our key lemmas (Lemma 61) shows

that this is possible with probability ≥ Ω
(︁

1
log𝑛

)︁
. The flavor is somewhat reminiscent of

Levin’s Economical Work Investment Strategy [Gol14]. While the two instances above are
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straightforward, a more careful analysis is required to avoid paying excess factors of log 𝑛,

particularly for uniformity and identity testing. That said, all the complexity is pushed to

the analysis, and the algorithm itself is very simple to describe:

First, the algorithm chooses a random power of two between 2 and 𝑛 – roughly,

this serves as a “guess” for (the inverse of) the size of the set which represents

the discrepany between the distributions. Next, the algorithm chooses a random

set 𝑆 ⊆ [𝑛] of this size. Finally, it performs NACOND queries to 𝑆 (on both

distributions, for equivalence testing), in order to form an empirical distribution

(which is accurate in ℓ∞-distance) and check whether there is a discrepant symbol

or not. This process is repeated several times, and if we fail to ever detect a

discrepant symbol, we can conclude that the distributions are equal.

Since uniformity testing is relatively well-behaved, the key lemma mentioned above

(Lemma 61) does most of the work. This is because in this setting, once we have a handle on

the distribution of the discrepancy, it is easy to reason about how much of the mass from the

uniform distribution is contained in a query set. We require a few additional concentration

arguments on the total discrepancy and probability mass contained in the query set, as well

as a separate analysis for the case where |𝑆| needs to be small and this concentration does

not hold.

We then leverage our algorithm for uniformity testing to provide an algorithm for identity

testing. This uses the reduction of [CFGM13]4, which partitions the domain so that the

conditional distribution on each part is close to uniform, and tests for identity on each part.

This requires a non-adaptive identity tester for distributions which are close to uniform (in

ℓ∞-distance) – we show our analysis for uniformity testing can be adapted to handle this

case. Our application crucially modifies their reduction in order to minimize the sample

complexity, as Anaconda can test against distributions which are further from uniform

than theirs (𝑂(1/𝑛), rather than 𝑂(𝜀/𝑛)).

Finally, we turn to the most technically difficult problem of equivalence testing. This case

turns out to be more challenging, as we must simultaneously reason about 𝑝(𝑖), 𝑝(𝑆 ∖ 𝑖), 𝑞(𝑖),
4We note that the reduction of [Gol16], from identity testing to uniformity testing, is not known to apply

in either the NACOND or COND models.

258



and 𝑞(𝑆 ∖ 𝑖) – as mentioned prior, it is much easier to control the latter two quantities

for uniformity testing. To establish our result, we must argue that Anaconda identifies

a set 𝑆 where both differences 𝑝(𝑖) − 𝑞(𝑖) and 𝑝(𝑆 ∖ 𝑖) − 𝑞(𝑆 ∖ 𝑖) have opposite signs and

are simultaneously relatively large compared to the magnitudes of 𝑝(𝑖), 𝑝(𝑆 ∖ 𝑖), 𝑞(𝑖), and

𝑞(𝑆 ∖ 𝑖) (Proposition 23). We consider the distribution of the discrepancy 𝑝− 𝑞, with a case

analysis depending on the relationship between the “typical” magnitudes of the positive and

negative discrepancies. If these magnitudes are close, then we can select a “smaller” set 𝑆

(where “smaller” is defined based on these magnitudes) which has a reasonable probability of

including a positively and negatively discrepant element of these magnitudes (Lemma 64).

On the other hand, if these magnitudes are far, then with an appropriate choice of the size of

the set 𝑆, there is a significant chance that our set will contain an element 𝑖 with significant

positive discrepancy 𝑝(𝑖) − 𝑞(𝑖), while the total discrepancy in the set 𝑝(𝑆 ∖ 𝑖) − 𝑞(𝑆 ∖ 𝑖)

is very negative (Case 2 in Lemma 65). Despite all these technicalities, we emphasize that

the algorithm itself is still quite simple; in particular, it is identical to the algorithm for

uniformity testing (modulo some parameter modifications).

Besides the above testing results, we also sketch how to adapt our algorithm for adap-

tive support-size estimation (Theorem 51) to the non-adaptive setting. This exploits our

𝑂̃(log 𝑛)-query algorithm for non-adaptive uniformity testing (Theorem 53) to obtain an

𝑂̃(log2 𝑛)-query algorithm.

6.1.1.4 Non-Adaptive Lower Bounds

We conclude by complementing our NACOND upper bounds with NACOND lower bounds.

Specifically, we establish a logarithmic lower bound on non-adaptive support-size estimation,

for any (large enough) constant factor. This improves on the result of Chakraborty et

al. [CFGM13], which gave a doubly logarithmic lower bound for constant factor support-size

estimation.

Theorem 55 (Non-Adaptive Support-Size Estimation Lower Bound). Any algorithm which,

given NACOND access to an unknown distribution 𝑝 on [𝑛], estimates the size of the support

up to a factor of 𝛾 ≥
√

2 must make at least Ω
(︁

log𝑛
log2 𝛾

)︁
queries.

259



Moreover, the approach used to prove this theorem also implies an analogous lower

bound on non-adaptive uniformity testing in the conditional model, answering a conjecture

of Chakraborty et al. [CFGM13]:

Theorem 56 (Non-Adaptive Uniformity Testing Lower Bound). Any algorithm which, given

NACOND access to an unknown distribution 𝑝 on [𝑛], distinguishes between the cases 𝑝 = 𝒰𝑛
and 𝑑TV(𝑝,𝒰𝑛) ≥ 𝜀 with probability at least 2/3 must make at least Ω (log 𝑛/𝜀) queries.

These results complement poly log(𝑛)-query upper bounds for uniformity, identity, and

equivalence testing, and support-size estimation, as discussed in Section 6.1.1.3. This shows

that all of these problems have query complexity logΘ(1) 𝑛 in the NACOND model.

We proceed to outline our approach for proving Theorem 55. We define two families

of distributions 𝒫 and 𝒬, where an instance is either a draw (𝑝, 𝑞) from 𝒫 × 𝒬, or simply

(𝑝, 𝑝). Any distribution in 𝒬 has support size 𝛾 times that of its corresponding distribution

in 𝒫 . Yet, we argue that no non-adaptive deterministic tester making too few queries can

distinguish between these two cases, as the tuple of samples it will obtain from 𝑝 or (the

corresponding) 𝑞 is almost identically distributed (where the randomness is over the choice of

the instance itself). To show this last point, we analyze separately the case of “small” queries

(conditioning on sets which turn out to be much smaller than the actual support size, and

thus with high probability will not even intersect it) and the “large” ones (where the query

set 𝑆 is so big compared to the support 𝑇 that a uniform sample from 𝑆 ∩ 𝑇 is essentially

indistinguishable from a uniform sample from 𝑆). We conclude the proof by invoking Yao’s

Principle, carrying the lower bound back to the setting of non-adaptive randomized testers.

Interestingly, this argument essentially gives us Theorem 56 “for free.” Indeed, the big-

query-set case above is handled by proving that the distribution of samples returned on

those queries is indistinguishable, both for 𝒫 and 𝒬, from samples obtained from the actual

uniform distribution. Considering again the small-query-set case separately, this allows us

to argue that a random distribution from (say) 𝒫 is indistinguishable from uniform.

260



6.1.1.5 Relation to the Ron-Tsur model

Recent work of Ron and Tsur [RT16] studies a model which is slightly different – and more

favorable to the algorithm – than ours. In their setting, the algorithm still performs queries

consisting of a subset of the domain, as in our case. However, the algorithm is also given the

promise that the distribution is uniform on a subset of the domain, and whenever a query

set contains 0 probability mass the oracle explicitly indicates this is the case. Their paper

provides a number of results for support-size estimation in this model.

We point out two connections between our work and theirs. First, our Ω (log 𝑛) lower

bound for non-adaptive support-size estimation (Theorem 55) holds in the model of Ron

and Tsur. Although lower bounds in the conditional sampling setting do not apply directly

to their model, our construction and analysis do carry over, and provide a nearly tight

answer to a question left unanswered in their paper. Also, our 𝑂̃ (log log 𝑛)-query algorithm

for adaptive support-size estimation (Theorem 51) can be seen as generalizing their result

to the weaker conditional sampling model (most significantly, when we are not given the

promise that the distribution be uniform).

6.1.2 Related Work

As mentioned before, the conditional sampling model was introduced in [CFGM13, CRS14]

(the journal versions of these papers appear as [CRS15, CFGM16]). These initial works

studied a number of distribution testing and property estimation problems in adaptive and

non-adaptive settings, as well as under various types of conditional sampling oracles, includ-

ing those which can only perform conditional samples on sets which are simple, for example,

sets of size 2 or intervals. The general picture established by these works demonstrates that

one can enjoy significantly reduced query complexity when one has conditional sampling

access to a distribution.

Since the introduction of conditional sampling, a number of works have refined the com-

plexity landscape of distribution testing problems in this model. [Can15a] provides bounds

for testing monotonicity in the general conditional sampling model and when query sets

must be intervals (as well as a number of other non-conditional distribution sampling mod-
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els). [FJO+15] provides better algorithms for testing identity and equivalence, reducing the

former complexity to 𝑂̃(1/𝜀2) (nearly matching the information theoretic limit), and the

latter from poly log 𝑛 to poly log log 𝑛. This equivalence testing upper bound is comple-

mented by the Ω(
√

log log 𝑛) lower bound of [ACK15b], showing that conditional samples

grant a doubly-exponential improvement in the sample complexity for this problem, as well

as demonstrating a “chasm” between the complexity of equivalence and identity testing with

conditional samples. [ACK15b] also contains upper bounds for support-size estimation, as

well as lower bounds for non-adaptive support-size estimation and uniformity testing. [KT18]

delves deeper on non-adaptive distribution testing upper bounds, significantly reducing the

complexity of testing uniformity, identity, and equivalence. An alternative method for prov-

ing COND lower bounds is presented in [BCG17], which involves reductions from testing

to communication complexity protocols. [FLV17] studies the testing of composite hypothe-

ses (a la Chapter 3) with adaptive and non-adaptive conditional samples. The quantum

conditional sampling oracle is introduced in [SSJ17], demonstrating additional power over

classical oracles for testing problems (both distributional and functional). Finally, [BC18]

studies distribution testing on multivariate domains when query sets must be subcubes of the

domain. The results contained in this thesis are from two of these works [ACK15b, KT18].

The conditional sampling model has also attracted attention outside the field of dis-

tribution testing. For instance, the weighted group testing model in [ACK15a] is inspired

by the conditional sampling model. [GTZ17] studies the impact of a conditional oracle for

more classical problems, such as 𝑘-means clustering and estimating the weight of a minimum

spanning tree. [RT16] investigates the problem of estimating the size of a hidden set in a

conditional-sampling-esque model. Finally, [GTZ18] gives verification-based algorithms for

crowdsourcing tasks, in a method that is very reminiscent of conditional sampling.

There have been numerous other proposed oracle models which enable savings for distri-

bution testing problems. Some examples include when the algorithm may query the PDF or

CDF of the distribution [BDKR05, GMV06, RS09, CR14], or is given probability-revealing

sample [OS18].

The conditional sampling model falls into a broader body of work on interactive learning,

in which the algorithm has additional power when eliciting data. Perhaps the best known
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line of work within this field is the active learning model for supervised learning. In this

model, the algorithm is provided with unlabeled examples only (which are somehow “cheap”

to obtain), and it may adaptively request labels for these points (which is considered to be a

much more expensive operation). See [Set12, Han14] for surveys of this area, and [BBBY12]

for a work on functional property testing in the active model.

6.1.3 Organization

In Section 6.2, we discuss preliminaries and the notation that we use throughout the chapter.

In Section 6.3, we present a lower bound for testing equivalence in the COND model. In

Section 6.4, we give an upper bound for estimating the support size of a distribution in the

COND model. In Section 6.5, we describe Anaconda, which results in a number of upper

bounds in the NACOND model. Finally, in Section 6.6, we prove lower bounds for uniformity

testing and support-size estimation in the NACOND model.

6.2 Preliminaries

For a set 𝑆, let 𝑝(𝑆) =
∑︀

𝑖∈𝑆 𝑝(𝑖). Furthermore, let 𝑝𝑆 be the conditional distribution of 𝑝

restricted to 𝑆, i.e., 𝑝𝑆(𝑖) = 𝑝(𝑖)/𝑝(𝑆).

We use the following definition of the conditional sampling model. Note that this uses

the convention of [CFGM13] of sampling uniformly from query sets with 0 measure, rather

than the convention of [CRS14] which immediately fails if given such a set, as the latter

convention trivializes NACOND, reducing it to SAMP.

Definition 18. A conditional sampling oracle for a distribution 𝑝 is defined as follows: the

oracle takes as input a query set 𝑆 ⊆ [𝑛], and returns a symbol 𝑖 ∈ 𝑆, where the probability

that 𝑖 is returned is equal to 𝑝𝑆(𝑖) = 𝑝(𝑖)/𝑝(𝑆). If 𝑝(𝑆) = 0, then a symbol 𝑖 ∈ 𝑆 is returned

uniformly at random.

Given an adaptive conditional sampling oracle (a COND oracle), the algorithm may query

adaptively: before submitting each query set 𝑖, the algorithm is allowed to view the results

of queries 1 through 𝑖 − 1. In contrast, given a non-adaptive conditional sampling oracle
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(a NACOND oracle), the algorithm must be non-adaptive: it must submit all query sets in

advance of viewing any of their results.

Adaptive Core Testers In order to deal with adaptivity in our lower bounds, we will

use ideas introduced by Chakraborty et al. [CFGM13]. These ideas, for the case of label-

invariant properties5 allow one to narrow down the range of possible testers and focus on

a restricted class of such algorithms called adaptive core testers. These core testers do not

have access to the full information of the samples they draw, but instead only get to see the

relations (inclusions, equalities) between the queries they make and the samples they get.

Yet, Chakraborty et al. [CFGM13] show that any tester for a label-invariant property can

be converted into a core tester with same query complexity; thus, it is enough to prove lower

bounds against this – seemingly – weaker class of algorithms.

We here rephrase the definitions of a core tester and the view they have of the interaction

with the oracle (the configuration of the samples), tailored to our setting.

Definition 19 (Atoms and partitions). Given a family 𝒜 = (𝐴1, . . . , 𝐴𝑚) ⊆ [𝑛]𝑚, the

atoms generated by 𝒜 are the (at most) 2𝑚 distinct sets of the form
⋂︀𝑚

𝑟=1𝐶𝑟, where 𝐶𝑟 ∈

{𝐴𝑟, [𝑛]∖𝐴𝑟}. The family of all such atoms, denoted At(𝒜), is the partition generated by 𝒜.

This definition essentially captures “all sets (besides the 𝐴𝑖’s) about which something can

be learnt from querying the oracle on the sets of 𝒜.” Now, given such a sequence of queries

𝒜 = (𝐴1, . . . , 𝐴𝑚) and pairs of samples s = ((𝑠
(1)
1 , 𝑠

(2)
1 ), . . . , (𝑠

(1)
𝑚 , 𝑠

(2)
𝑚 )) ∈ 𝐴2

1 × · · · × 𝐴2
𝑚, we

would like to summarize “all the label-invariant information available to an algorithm that

obtains ((𝑠
(1)
1 , 𝑠

(2)
1 ), . . . , (𝑠

(1)
𝑚 , 𝑠

(2)
𝑚 )) upon querying 𝐴1, . . . , 𝐴𝑚 for 𝑝 and 𝑞.” This calls for the

following definition:

Definition 20 (𝑚-configuration). Given 𝒜 = (𝐴1, . . . , 𝐴𝑚) and s = ((𝑠
(1)
𝑗 , 𝑠

(2)
𝑗 ))1≤𝑗≤𝑚 as

above, the 𝑚-configuration of s consists of the 6𝑚2 bits indicating, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚,

whether

∙ 𝑠(𝛼)𝑖 = 𝑠
(𝛽)
𝑗 , for 𝛼, 𝛽 ∈ {1, 2}; and (relations between samples)

5Recall that a property is label-invariant (or symmetric) if it is closed under relabeling of the elements of
the support. More precisely, a property of distributions (resp. pairs of distributions) 𝒞 is label-invariant if for
any distribution 𝑝 ∈ 𝒞 (resp. (𝑝, 𝑞) ∈ 𝒞) and permutation 𝜎 of [𝑛], one has 𝑝 ∘ 𝜎 ∈ 𝒞 (resp. (𝑝 ∘ 𝜎, 𝑞 ∘ 𝜎) ∈ 𝒞).
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∙ 𝑠(𝛼)𝑖 ∈ 𝐴𝑗, for 𝛼 ∈ {1, 2}. (relations between samples and query sets)

In other terms, it summarizes which is the unique atom 𝑆𝑖 ∈ At(𝒜) that contains 𝑠(𝛼)𝑖 , and

what collisions between samples have been observed.

As aforementioned, the key idea is to argue that, without loss of generality, one can

restrict one’s attention to algorithms that only have access to 𝑚-configurations, and generate

their queries in a specific (albeit adaptive) fashion:

Definition 21 (Core adaptive tester). A core adaptive distribution tester for pairs of dis-

tributions is an algorithm 𝒯 that acts as follows.

∙ In the 𝑖-th phase, based only on its own internal randomness and the configuration

of the previous queries 𝐴1, . . . , 𝐴𝑖−1 and samples obtained (𝑠
(1)
1 , 𝑠

(2)
1 ), . . . , (𝑠

(1)
𝑖−1, 𝑠

(2)
𝑖−1) –

whose labels it does not actually know, 𝒯 provides:

– a number 𝜁𝐴𝑖 for each 𝐴 ∈ At(𝐴1, . . . , 𝐴𝑖−1), between 0 and |𝐴∖{𝑠(1)𝑗 , 𝑠
(2)
𝑗 }1≤𝑗≤𝑖−1|

(How many fresh, not-already-seen elements of each particular atom 𝐴 should be

included in the next query.)

– sets 𝐾(1)
𝑖 , 𝐾

(2)
𝑖 ⊆ {1, . . . , 𝑖−1} (Which of the samples 𝑠(𝑘)1 , . . . , 𝑠

(𝑘)
𝑖−1 will be included

in the next query. The labels of these samples are unknown, but are indexed by

the index of the query which returned them.)

∙ based on these specifications, the next query 𝐴𝑖 is drawn (but not revealed to 𝒯 ) by

– drawing uniformly at random a set Λ𝑖 in

{︁
Λ ⊆ [𝑛] ∖ {𝑠(1)𝑗 , 𝑠

(2)
𝑗 }1≤𝑗≤𝑖−1 : ∀𝐴 ∈ At(𝐴1, . . . , 𝐴𝑖−1), |Λ ∩ 𝐴| = 𝜁𝐴𝑖

}︁
. (6.1)

That is, among all sets, containing only “fresh elements,” whose intersection with

each atom contains as many elements as 𝒯 requires.

– adding the selected previous samples to this set:

Γ𝑖 ,
{︁
𝑠
(1)
𝑗 : 𝑗 ∈ 𝐾(1)

𝑖

}︁
∪
{︁
𝑠
(2)
𝑗 : 𝑗 ∈ 𝐾(2)

𝑖

}︁
; 𝐴𝑖 , Λ𝑖 ∪ Γ𝑖 . (6.2)
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This results in a set 𝐴𝑖, not fully known to 𝒯 besides the samples it already got and

decided to query again; in which the labels of the fresh elements are unknown, but the

proportions of elements belonging to each atom are known.

∙ samples 𝑠(1)𝑖 ∼ (𝑝)𝐴𝑖
and 𝑠(2)𝑖 ∼ (𝑞)𝐴𝑖

are drawn (but not disclosed to 𝒯 ). This defines

the 𝑖-configuration of 𝐴1, . . . , 𝐴𝑖 and (𝑠
(1)
1 , 𝑠

(2)
1 ), . . . , (𝑠

(1)
𝑖 , 𝑠

(2)
𝑖 ), which is revealed to 𝒯 .

Put differently, the algorithm only learns (i) to which of the 𝐴ℓ’s the new sample belongs,

and (ii) if it is one of the previous samples, in which stage(s) and for which of 𝑝, 𝑞 it

has already seen it.

After 𝑚 = 𝑚(𝜀, 𝑛) such stages, 𝒯 outputs either yes or no, based only on the configuration

of 𝐴1, . . . , 𝐴𝑚 and (𝑠
(1)
1 , 𝑠

(2)
1 ), . . . , (𝑠

(1)
𝑚 , 𝑠

(2)
𝑚 ) (which is all the information it ever had access

to).

Note that in particular, 𝒯 does not know the labels of samples it got, nor the actual

queries it makes: it knows all about their sizes and sizes of their intersections, but not the

actual “identity” of the elements they contain.

On the use of Yao’s Principle in our lower bounds We recall Yao’s Principle (e.g.,

see Chapter 2.2 of [MR95]), a technique which is ubiquitous in the analysis of randomized

algorithms. Consider a set 𝑆 of instances of some problem: what this principle states is that

the worst-case expected cost of a randomized algorithm on instances in 𝑆 is lower-bounded

by the expected cost of the best deterministic algorithm on an instance drawn randomly

from 𝑆.

As an example, we apply it in a standard way in Section 6.6: instead of considering

a randomized algorithm working on a fixed instance, we instead analyze a deterministic

algorithm working on a random instance. (We note that, importantly, the randomness in

the samples returned by the COND oracle is “external” to this argument, and these samples

behave identically in an application of Yao’s Principle.)

On the other hand, our application in Section 6.3 is slightly different, due to our use of

adaptive core testers. Once again, we focus on deterministic algorithms working on random

instances, and the randomness in the samples is external and therefore unaffected by Yao’s
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Principle. However, we stress that the randomness in the choice of the set Λ𝑖 is also external

to the argument, and therefore unaffected – similar to the randomness in the samples, the

algorithm has no control here. Another way of thinking about this randomness is via another

step in the distribution over instances: after an instance (which is a pair of distributions)

is randomly chosen, we permute the labels on the elements of the distribution’s domain

uniformly at random. We note that since the property in question is label-invariant, this

does not affect its value. We can then use the adaptive core testing model as stated above

for ease of analysis, observing that this can be considered an application of the principle of

deferred decisions (as in Chapter 3.5 of [MR95]).

6.3 A Lower Bound for Adaptive Equivalence Testing

We prove Theorem 50, a lower bound on the sample complexity of testing equivalence be-

tween unknown distributions:

Theorem 50 (Adaptive Equivalence Testing Lower Bound). Any algorithm which, given

COND access to unknown distributions 𝑝, 𝑞 on [𝑛], distinguishes between the cases 𝑝 = 𝑞 and

𝑑TV(𝑝, 𝑞) ≥ 1/4 with probability at least 2/3 must make at least Ω
(︀√

log log 𝑛
)︀

queries.

We construct two priors 𝒴 and 𝒩 over pairs of distributions (𝑝, 𝑞) over [𝑛]. 𝒴 is a distri-

bution over pairs of distributions of the form (𝑝, 𝑝), namely the case when the distributions

are identical. Similarly, 𝒩 is a distribution over (𝑝, 𝑞) with 𝑑TV(𝑝, 𝑞) ≥ 1
4
. We then show

that no algorithm making 𝑂
(︀√

log log 𝑛
)︀

queries to COND𝑝,COND𝑞 can distinguish between

a draw from 𝒴 and 𝒩 with constant probability (over the choice of (𝑝, 𝑞), the randomness

in the samples it obtains, and its internal randomness).

We describe the construction of 𝒴 and 𝒩 in Section 6.3.1, and provide a detailed analysis

in Section 6.3.2.

6.3.1 Construction

We now summarize how a pair of distribution is constructed under 𝒴 and 𝒩 . (Each specific

step will be described in more detail in the subsequent paragraphs.)
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1. Effective Support

(a) Pick 𝑘𝑏 from the set {0, 1, . . . , 1
2

log 𝑛} at random.

(b) Let 𝑏 = 2𝑘𝑏 and 𝑘 , 𝑏 · 𝑛1/4.

2. Buckets

(a) Choose 𝜌 and 𝑟 such that
∑︀2𝑟

𝑖=1 𝜌
𝑖 = 𝑛1/4.

(b) Divide {1, . . . , 𝑘} into intervals 𝐵1, . . . , 𝐵2𝑟 with |𝐵𝑖| = 𝑏 · 𝜌𝑖.

3. Distributions

(a) For each 𝑖 ∈ [2𝑟], assign probability mass 1
2𝑟

uniformly over 𝐵𝑖 to generate distri-

bution 𝑝.

(b) For each 𝑖 ∈ [𝑟] independently, pick 𝜋𝑖 to be a Bernoulli with Pr(𝜋𝑖 = 0) = 1
2
;

if 𝜋𝑖 = 0 then assign probability mass 1
4𝑟

and 3
4𝑟

over 𝐵2𝑖−1 and 𝐵2𝑖 respectively,

else 3
4𝑟

and 1
4𝑟

respectively. This generates a distribution 𝑞.

4. Support relabeling

(a) Pick a permutation 𝜎 ∈ 𝑆𝑛 of the total support 𝑛.

(b) Relabel the symbols of 𝐷1 and 𝐷2 according to 𝜎.

5. Output: Generate (𝑝, 𝑝) for 𝒴 , and (𝑝, 𝑞) otherwise.

We now describe the various steps of the construction in greater detail.

Effective support. Both 𝑝 and 𝑞, albeit distributions on [𝑛], will have (common) sparse

support. The support size is taken to be 𝑘 , 𝑏 · 𝑛1/4. Note that, from the above definition,

𝑘 is chosen uniformly at random from products of 𝑛1/4 with powers of 2, resulting in values

in [𝑛1/4, 𝑛3/4].

In this step 𝑏 will act as a random scaling factor. The objective of this random scaling is to

induce uncertainty in the algorithm’s knowledge of the true support size of the distributions,

and to prevent it from leveraging this information to test equivalence. In fact one can verify
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𝐵1𝐵2 𝐵3 𝐵4 (. . . )

𝑝(𝑖), 𝑞(𝑖)

𝑖
𝑘 𝑛

Figure 6-1: A no-instance (𝑝, 𝑞) (before permutation).

that the class of distributions induced for a single value of 𝑏, namely all distributions have

the same value of 𝑘, then one can distinguish the 𝒴 and 𝒩 cases with only 𝑂(1) conditional

queries. The test would (roughly) go as follows. Since |𝐵𝑖| is known, one can choose a

random subset 𝑆 of the domain which (with high probability) has no intersection with 𝐵𝑖

for 𝑖 ≤ 2𝑟 − 2, a 𝑂(1) size intersection with 𝐵2𝑟−1, and a 𝑂(𝜌) size intersection with 𝐵2𝑟.

Perform 𝑂(1) conditional queries over the set 𝑆, for both distributions. Given these queries,

we can then identify which elements of 𝑆 belong to 𝐵2𝑟−1 or 𝐵2𝑟 – namely, those which occur

at most once belong to 𝐵2𝑟, and those which occur at least twice belong to 𝐵2𝑟−1. In a 𝒴

instance, then in both distributions, a 1/2 fraction of queries will belong to 𝐵2𝑟−1, whereas

in a 𝒩 instance, one distribution will have either a 1/4 or 3/4 fraction of queries in 𝐵2𝑟−1,

allowing us to distinguish the two cases.

Buckets. Our construction is inspired by the lower bound of Canonne, Ron, and Serve-

dio [CRS14, Theorem 8] for the more restrictive PAIRCOND access model. We partition

the support into 2𝑟 consecutive intervals (henceforth referred to as buckets) 𝐵1, . . . , 𝐵2𝑟,

where the size of the 𝑖-th bucket is 𝑏𝜌𝑖. We note that 𝑟 and 𝜌 will be chosen such that∑︀2𝑟
𝑖=1 𝑏𝜌

𝑖 = 𝑏𝑛1/4, i.e., the buckets fill the effective support.
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Distributions. We output a pair of distributions (𝑝, 𝑞). Each distribution that we con-

struct is uniform within any particular bucket 𝐵𝑖. In particular, the first distribution assigns

the same mass 1/2𝑟 to each bucket. Therefore, points within 𝐵𝑖 have the same probability

mass 1/2𝑟𝑏𝜌𝑖. For the 𝒴 case, the second distribution is identical to the first. For the 𝒩

case, we pair buckets in 𝑟 consecutive bucket-pairs Π1, . . . ,Π𝑟, with Π𝑖 = 𝐵2𝑖−1 ∪ 𝐵2𝑖. For

the second distribution 𝑞, we consider the same buckets as 𝑝, but repartition the mass 1/𝑟

within each Π𝑖. More precisely, in each pair, one of the buckets gets now total probability

mass 1/4𝑟 while the other gets 3/4𝑟 (so that the probability of every point is either decreased

by a factor 1/2 or increased by 3/2). The choice of which goes up and which goes down is

done uniformly and independently at random for each bucket-pair determined by the random

choices of 𝜋𝑖’s.

Random relabeling. The final step of the construction randomly relabels the symbols,

namely is a random injective map from [𝑘] to [𝑛]. This is done to ensure that no information

about the individual symbol labels can be used by the algorithm for testing. For example,

without this the algorithm can consider a few symbols from the first bucket and distinguish

the 𝒴 and 𝒩 cases. As mentioned in Section 6.2, for ease of analysis, the randomness in the

choice of the permutation is, in some sense, deferred to the randomness in the choice of Λ𝑖

during the algorithm’s execution.

Summary. A no-instance (𝑝, 𝑞) is thus defined by the following parameters: the support

size 𝑘, the vector (𝜋1, . . . , 𝜋𝑟) ∈ {0, 1}𝑟 (which only impacts 𝑞), and the final permutation 𝜎

of the domain. A yes-instance (𝑝, 𝑝) follows an identical process, however, 𝜋⃗ has no influence

on the final outcome. See Figure 6-1 for an illustration of such a (𝑝, 𝑞) when 𝜎 is the identity

permutation and thus the distribution is supported over the first 𝑘 natural numbers.

Values for 𝜌 and 𝑟. By setting 𝑟 = log 𝑛/(8 log 𝜌)+𝑂(1), we have as desired
∑︀2𝑟

𝑖=1 |𝐵𝑖| = 𝑘

and there is a factor (1 + 𝑜(1))𝑛1/4 between the height of the first bucket 𝐵1 and the one

of the last, 𝐵2𝑟. It remains to choose the parameter 𝜌 itself; we shall take it to be 2
√
log𝑛,

resulting in 𝑟 = 1
8

√
log 𝑛+𝑂(1). (Note that for the sake of the exposition, we ignore technical

details such as the rounding of parameters, e.g. bucket sizes; these can be easily taken care
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of at the price of cumbersome case analyses, and do not bring much to the argument.)

6.3.2 Analysis

We now prove our main lower bound, by analyzing the behavior of core adaptive testers (as

per Definition 21) on the families 𝒴 and 𝒩 from the previous section. In Section 6.3.2.1,

we argue that, with high probability, the sizes of the queries performed by the algorithm

satisfy some specific properties. Conditioned upon this event, in Section 6.3.2.2, we show

that the algorithm will get similar information from each query, whether it is running on a

yes-instance or a no-instance.

Before moving to the heart of the argument, we state the following fact, straightforward

from the construction of our no-instances:

Fact 2. For any (𝑝, 𝑞) drawn from 𝒩 , one has 𝑑TV(𝑝, 𝑞) = 1/4.

Moreover, as allowing more queries can only increase the probability of success, we hereafter

focus on a core adaptive tester that performs exactly 𝑞 = 1
10

√
log log 𝑛 (adaptive) queries;

and will show that it can only distinguish between yes and no-instances with probability

𝑜(1).

6.3.2.1 Banning “bad queries”

As mentioned in Section 6.3.1, the draw of a yes or no-instance involves a random scaling of

the size of the support of the distributions, meant to “blind” the testing algorithm. Recall that

a testing algorithm is specified by a decision tree, which at step 𝑖, specifies how many unseen

elements from each atom to include in the query ({𝜁𝐴𝑖 }) and which previously seen elements

to include in the query (sets 𝐾(1)
𝑖 , 𝐾

(2)
𝑖 , as defined in Section 6.2), where the algorithm’s

choice depends on the observed configuration at that time. Note that, using Yao’s Principle

(as discussed in Section 6.2), these choices are deterministic for a given configuration – in

particular, we can think of all {𝜁𝐴𝑖 } and 𝐾(1)
𝑖 , 𝐾

(2)
𝑖 in the decision tree as being fixed. In this

section, we show that all 𝜁𝐴𝑖 values satisfy with high probability some particular conditions

with respect to the choice of distribution, where the randomness is over the choice of the

support size.
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First, we recall an observation from [CFGM13], though we modify it slightly to apply

to configurations on pairs of distributions and we apply a slightly tighter analysis. This

essentially limits the number of states an algorithm could be in by a function of how many

queries it makes.

Proposition 15. The number of nodes in a decision tree corresponding to a 𝑚-sample

algorithm is at most 26𝑚2+1.

Proof. As mentioned in Definition 20, an 𝑖-configuration can be described using 6𝑖2 bits,

resulting in at most 26𝑖2 𝑖-configurations. Since each 𝑖-configuration leads us to some node

on the 𝑖-th level of the decision tree, the total number of nodes can be upper bounded by

summing over the number of 𝑖-configurations for 𝑖 ranging from 0 to 𝑚, giving us the desired

bound.

For the sake of the argument, we will introduce a few notions applying to the sizes of

query sets: namely, the notions of a number being small, large, or stable, and of a vector

being incomparable. Roughly speaking, a number is small if a uniformly random set of this

size does not, in expectation, hit the largest bucket 𝐵2𝑟 – in other words, the set is likely

to be disjoint from the support. On the other hand, it is large if we expect such a set to

intersect many bucket-pairs (i.e., a significant fraction of the support).

The definition of stable numbers is slightly more quantitative: a number 𝛽 is stable if a

random set of size 𝛽, for each bucket 𝐵𝑖, is either disjoint from 𝐵𝑖 or has an intersection with

𝐵𝑖 of size close to the expected value. In the latter case, we say the set concentrates over

𝐵𝑖. Finally, a vector of values (𝛽𝑗) is incomparable if the union of random sets 𝑆1, . . . , 𝑆𝑚

of sizes 𝛽1, . . . , 𝛽𝑚 contains (with high probability) an amount of mass 𝑝
(︁⋃︀

𝑗 𝑆𝑗

)︁
which is

either much smaller or much larger than the probability 𝑝(𝑠) of any single element 𝑠.

We formalize these concepts in the definitions below. To motivate them, it will be useful to

bear in mind that, from the construction described in Section 6.3.1, the expected intersection

of a uniform random set of size 𝛽 with a bucket 𝐵𝑖 is of size 𝛽𝑏𝜌𝑖/𝑛; while the expected

probability mass from 𝐵𝑖 it contains (under either 𝑝 or 𝑞) is 𝛽/2𝑟𝑛.

Definition 22. Let 𝜒 be an integer, and let 𝜙 = Θ(𝜒5/2). A number 𝛽 is said to be small if

𝛽 < 𝑛
𝑏𝜌2𝑟

; it is large (with relation to some integer 𝜒) if 𝛽 ≥ 𝑛
𝑏𝜌2𝑟−2𝜙 .
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Note that the latter condition equivalently means that, in expectation, a set of large

size will intersect at least 𝜙 + 1 bucket-pairs (as it hits an expected 2𝜙 + 1 buckets, since

𝛽|𝐵2𝑟−2𝜙|/𝑛 ≥ 1). From the above definitions we get that, with high probability, a random

set of any fixed size will in expectation either hit many or no buckets:

Proposition 16. A number is either small or large with probability 1−𝑂
(︁

𝜙 log 𝜌
log𝑛

)︁
.

Proof. A number 𝛽 is neither large nor small if 𝜌2𝜙𝑛
𝛽𝜌2𝑟
≤ 𝑏 ≤ 𝑛

𝛽𝜌2𝑟
. The ratio of the endpoints

of the interval is 𝜌2𝜙. Since 𝑏 = 2𝑘𝑏 , this implies that at most log 𝜌2𝜙 = 2𝜙 log 𝜌 values of 𝑘𝑏

could result in a fixed number falling in this range. As there are Θ (log 𝑛) values for 𝑘𝑏, the

proposition follows.

The next definition characterizes the sizes of query sets for which the expected intersection

with any bucket is either close to 0 (less than 1/𝛼, for some threshold 𝛼), or very big (more

than 𝛼). (It will be helpful to keep in mind that we will eventually use this definition with

𝛼 = poly(𝑚).)

Definition 23. A number 𝛽 is said to be 𝛼-stable (for 𝛼 ≥ 1) if, for each 𝑗 ∈ [2𝑟], 𝛽 /∈[︁
𝑛

𝛼𝑏𝜌𝑗
, 𝛼𝑛
𝑏𝜌𝑗

]︁
. A vector of numbers is said to be 𝛼-stable if all numbers it contains are 𝛼-stable.

Proposition 17. A number is 𝛼-stable with probability 1−𝑂
(︁

𝑟 log𝛼
log𝑛

)︁
.

Proof. Fix some 𝑗 ∈ [2𝑟]. A number 𝛽 does not satisfy the definition of 𝛼-stability for this 𝑗

if 𝑛
𝛼𝛽𝜌𝑗
≤ 𝑏 ≤ 𝑛𝛼

𝛽𝜌𝑗
. Since 𝑏 = 2𝑘𝑏 , this implies that at most log 2𝛼 values of 𝑘𝑏 could result in

a fixed number falling in this range. Noting that there are Θ(log 𝑛) values for 𝑘𝑏 and taking

a union bound over all 2𝑟 values for 𝑗, the proposition follows.

The following definition characterizes the sizes of query sets which have a probability

mass far from the probability mass of any individual element. (For the sake of building

intuition, the reader may replace 𝜈 in the following by the parameter 𝑏 of the distribution.)

Definition 24. A vector of numbers (𝛽1, . . . , 𝛽ℓ) is said to be (𝛼, 𝜏)-incomparable with

respect to 𝜈 (for 𝜏 ≥ 1) if the two following conditions hold.

∙ (𝛽1, . . . , 𝛽ℓ) is 𝛼-stable.
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∙ Let ∆𝑗 be the minimum ∆ ∈ {0, . . . , 2𝑟} such that 𝛽𝑗𝜈𝜌
2𝑟−Δ

𝑛
≤ 1

𝛼
, or 2𝑟 if no such ∆

exists. For all 𝑖 ∈ [2𝑟], 1
2𝑟𝑛

∑︀ℓ
𝑗=1 𝛽𝑗∆𝑗 ̸∈

[︁
1

𝜏2𝑟𝜈𝜌𝑖
, 𝜏
2𝑟𝜈𝜌𝑖

]︁
.

Recall from the definition of 𝛼-stability of a number that a random set of this size either has

essentially no intersection with a bucket or “concentrates over it” (i.e., with high probability,

the probability mass contained in the intersection with this bucket is very close to the

expected value). The above definition roughly captures the following. For any 𝑗, ∆𝑗 is the

number of buckets that will concentrate over a random set of size 𝛽𝑗. The last condition

asks that the total probability mass from 𝑝 (or 𝑞) enclosed in the union of 𝑚 random sets of

size 𝛽1, . . . , 𝛽ℓ be a multiplicative factor of 𝜏 from the individual probability weight 1/2𝑟𝑏𝜌𝑖

of a single element from any of the 2𝑟 buckets.

Proposition 18. Given that a vector of numbers of length ℓ is 𝛼-stable, it is (𝛼,𝑚2)-

incomparable with respect to 𝑏 with probability at least 1−𝑂
(︁

𝑟 log𝑚
log𝑛

)︁
.

Proof. Fix any vector (𝛽1, . . . , 𝛽ℓ). By the definition above, for each value 𝑏 such that

(𝛽1, . . . , 𝛽ℓ) is 𝛼-stable, we have

𝛽𝑗 ·
𝛼𝜌2𝑟

𝑛
≤ 𝜌Δ𝑗

𝑏
< 𝛽𝑗 ·

𝛼𝜌2𝑟+1

𝑛
, 𝑗 ∈ [ℓ]

or, equivalently,

log
𝛼𝛽𝑗

𝑛

log 𝜌
+ 2𝑟 +

log 𝑏

log 𝜌
≤ ∆𝑗 <

log
𝛼𝛽𝑗

𝑛

log 𝜌
+ 2𝑟 +

log 𝑏

log 𝜌
+ 1, 𝑗 ∈ [ℓ].

Writing 𝜆𝑗 ,
log

𝛼𝛽𝑗
𝑛

log 𝜌
+ 2𝑟 for 𝑗 ∈ [ℓ], we obtain that

ℓ∑︁
𝑗=1

𝛽𝑗∆𝑗𝑏 = 𝑏

ℓ∑︁
𝑗=1

𝛽𝑗(𝜆𝑗 +𝑂(1)) +
𝑏 log 𝑏

log 𝜌

ℓ∑︁
𝑗=1

𝛽𝑗. (6.3)

∙ If it is the case that log 𝜌 ·
∑︀ℓ

𝑗=1 𝛽𝑗(𝜆𝑗 + 𝑂(1)) ≪ log 𝑏 ·
∑︀ℓ

𝑗=1 𝛽𝑗. Then, for any

fixed 𝑖 ∈ [2𝑟], to meet the second item of the definition of incomparability we need∑︀ℓ
𝑗=1 𝛽𝑗∆𝑗𝑏 /∈ [𝑛/(200𝑚𝜌𝑖), 200𝑚𝑛/𝜌𝑖]. This is essentially, with the assumption (6.3)
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above, requiring that

𝑏 log 𝑏 /∈

[︃
𝑛 log 𝜌

2𝑚2𝜌𝑖
∑︀ℓ

𝑗=1 𝛽𝑗
,
2𝑚2𝑛 log 𝜌

𝜌𝑖
∑︀ℓ

𝑗=1 𝛽𝑗

]︃
.

Recalling that 𝑏 log 𝑏 = 𝑘𝑏2
𝑘𝑏 , this means that 𝑂 (log𝑚/ log log𝑚) values of 𝑘𝑏 are to

be ruled out. (Observe that this is the number of possible “bad values” for 𝑏 without

the condition from the case distinction above; since we add an extra constraint on 𝑏,

there are at most this many values to avoid.)

∙ Conversely, if log 𝜌 ·
∑︀ℓ

𝑗=1 𝛽𝑗(𝜆𝑗 +𝑂(1))≫ log 𝑏 ·
∑︀ℓ

𝑗=1 𝛽𝑗 the requirement becomes

𝑏 /∈

[︃
𝑛 log 𝜌

2𝑚2𝜌𝑖
∑︀ℓ

𝑗=1 𝛽𝑗(𝜆𝑗 +𝑂(1))
,

2𝑚2𝑛 log 𝜌

𝜌𝑖
∑︀ℓ

𝑗=1 𝛽𝑗(𝜆𝑗 +𝑂(1))

]︃
.

ruling out this time 𝑂 (log𝑚) values for 𝑘𝑏.

∙ Finally, the two terms are comparable only if log 𝑏 = Θ
(︁

log 𝜌 ·
∑︀ℓ

𝑗=1 𝛽𝑗(𝜆𝑗 + 𝑂(1)) ·(︁∑︀ℓ
𝑗=1 𝛽𝑗

)︁−1 )︁
; given that log 𝑏 = 𝑘𝑏, this rules out this time 𝑂(1) values for 𝑘𝑏.

A union bound over the 2𝑟 possible values of 𝑖, and the fact that 𝑘𝑏 can take Θ (log 𝑛) values,

complete the proof.

We put these together to obtain the following lemma.

Lemma 52. With probability at least 1 − 𝑂
(︁

26𝑚
2+𝑚(𝑟 log𝛼+𝜙 log 𝜌)+26𝑚

2
(𝑟 log𝑚)

log𝑛

)︁
, the following

holds for the decision tree corresponding to a 𝑚-query algorithm:

∙ the size of each atom is 𝛼-stable and either large or small;

∙ the size of each atom, after excluding elements we have previously observed,6 is 𝛼-stable

and either large or small;

∙ for each 𝑖, the vector (𝜁𝐴𝑖 )𝐴∈At(𝐴1,...,𝐴𝑖) is (𝛼,𝑚2)-incomparable (with respect to 𝑏).
6More precisely, we mean to say that for each 𝑖 ≤ 𝑚, for every atom 𝐴 defined by the partition of

(𝐴1, . . . , 𝐴𝑖), the values 𝑘𝐴𝑖 and |𝐴 ∖ {𝑠(1)1 , 𝑠
(2)
1 , . . . , 𝑠

(1)
𝑖−1, 𝑠

(2)
𝑖−1}| − 𝑘𝐴𝑖 are 𝛼-stable and either large or small;

275



Proof. From Proposition 15, there are at most 26𝑚2+1 tree nodes, each of which contains one

vector (𝜁𝐴𝑖 )𝐴, and at most 2𝑚 atom sizes. The first point follows from Propositions 16 and 17

and applying the union bound over all 26𝑚2+1 · 2 · 2𝑚 sizes, where we note the additional

factor of 2 comes from either including or excluding the old elements. The latter point follows

from Proposition 18 and applying the union bound over all 26𝑚2+1 nodes in the tree (each

containing a single 𝜁𝐴𝑖 vector).

6.3.2.2 Key lemma: bounding the variation distance between decision trees

In this section, we prove a key lemma on the variation distance between the distribution on

leaves of any decision tree, when given access to either an instance from 𝒴 or 𝒩 . This lemma

will in turn directly yield Theorem 50. Hereafter, we set the parameters 𝛼 (the threshold for

stability), 𝜙 (the parameter for smallness and largeness) and 𝛾 (an accuracy parameter for

how well things concentrate over their expected value) as follows.7 𝛼 , 𝑚7, 𝜙 , 𝑚5/2 and

𝛾 , 1/𝜙 = 𝑚−5/2. (Recall further that 𝑚 = 1
10

√
log log 𝑛.)

Lemma 53. Conditioned on the events of Lemma 52, consider the distribution over leaves

of any decision tree corresponding to a 𝑚-query adaptive algorithm when the algorithm is

given a yes-instance, and when it is given a no-instance. These two distributions have total

variation distance 𝑜(1).

Proof. This proof is by induction on 1 ≤ 𝑖 ≤ 𝑚. We will have three inductive hypotheses,

𝐸1(𝑡),𝐸2(𝑡), and 𝐸3(𝑡). Assuming all three hold for all 𝑡 < 𝑖, we prove 𝐸1(𝑖). Additionally

assuming 𝐸1(𝑖), we prove 𝐸2(𝑖) and 𝐸3(𝑖).

Roughly, the first inductive hypothesis states that the query sets behave similarly to

as if we had picked a random set of that size. It also implies that whether or not we get

an element we have seen before is “obvious” based on past observances and the size of the

query we perform. The second states that we never observe two distinct elements from the

same bucket-pair. The third states that the next sample is distributed similarly in either

a yes-instance or a no-instance. Note that this distribution includes both features which
7This choice of parameters is not completely arbitrary: combined with the setting of 𝑚, 𝑟 and 𝜌, they

ensure a total bound 𝑜(1) on variation distance and probability of “bad events” as well as a (relative) simplicity
and symmetry in the relevant quantities.
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our algorithm can observe (i.e., the atom which the sample belongs to and if it collides

with a previously seen sample), as well as those which it can not (i.e., which bucket-pair

the observed sample belongs to). It is necessary to show the latter, since the bucket-pair a

sample belongs to may determine the outcome of future queries.

More precisely, the three inductive hypotheses are as follows:

∙ 𝐸1(𝑖): In either a yes-instance or a no-instance, the following occurs: For an atom 𝑆

in the partition generated by 𝐴1, . . . , 𝐴𝑖, let 𝑆 ′ = 𝑆 ∖ {𝑠(1)1 , 𝑠
(2)
1 , . . . , 𝑠

(1)
𝑖−1, 𝑠

(2)
𝑖−1}. For

every such 𝑆 ′, let ℓ𝑆′ be the largest index ℓ ∈ {0, . . . , 2𝑟} such that |𝑆′|𝑏𝜌ℓ
𝑛
≤ 1

𝛼
, or 0 if

no such ℓ exists. We claim that ℓ𝑆′ ∈ {0, . . . , 2𝑟− 𝜙− 2} ∪ {2𝑟}, and say 𝑆 ′ is small if

ℓ𝑆
′
= 2𝑟 and large otherwise. Additionally:

– for 𝑗 ≤ ℓ𝑆
′ , |𝑆 ′ ∩𝐵𝑗| = 0;

– for 𝑗 > ℓ𝑆
′ , |𝑆 ′ ∩𝐵𝑗| lies in [1− 𝑖𝛾, 1 + 𝑖𝛾] |𝑆′|𝑏𝜌𝑗

𝑛
.

Furthermore, let 𝑝1 and 𝑝2 be the probability mass contained in Λ𝑖 and Γ𝑖, respectively.

Then 𝑝1
𝑝1+𝑝2

≤ 𝑂
(︀

1
𝑚2

)︀
or 𝑝2

𝑝1+𝑝2
≤ 𝑂

(︀
1
𝑚2

)︀
(that is, either almost all the probability mass

comes from elements which we have not yet observed, or almost all of it comes from

previously seen ones).

∙ 𝐸2(𝑖): No two elements from the set {𝑠(1)1 , 𝑠
(2)
1 , . . . , 𝑠

(1)
𝑖 , 𝑠

(2)
𝑖 } belong to the same bucket-

pair.

∙ 𝐸3(𝑖): Let 𝑇 yes
𝑖 be the random variable representing the atoms and bucket-pairs8 con-

taining (𝑠
(1)
𝑖 , 𝑠

(2)
𝑖 ), as well as which of the previous samples they intersect with, when

the 𝑖-th query is performed on a yes-instance, and define 𝑇 no
𝑖 similarly for no-instances.

Then 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 ) ≤ 𝑂 (1/𝑚2 + 1/𝜌+ 𝛾 + 1/𝜙) = 𝑜(1).

We will show that 𝐸1(𝑖) holds with probability 1−𝑂 (2𝑖 exp(−2𝛾2𝛼/3)) and 𝐸2(𝑖) holds with

probability 1 − 𝑂 (𝑖/𝜙). Let 𝑇 yes be the random variable representing the 𝑚-configuration

and the bucket-pairs containing each of the observed samples in a yes-instance, and define

𝑇 no similarly for a no-instance. We note that this random variable determines which leaf of

8If a sample 𝑠
(𝑘)
𝑖 does not belong to any bucket (if the corresponding 𝑖-th query did not intersect the

support), it is marked in 𝑇 yes
𝑖 with a “dummy label” to indicate so.
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the decision tree we reach, which 𝐸3(𝑚) bounds. We can then take a union bound over all

𝑖 ∈ [𝑚] to upper bound the probability that 𝐸1(𝑖) and 𝐸2(𝑖) do not hold, and use 𝐸3(𝑖)

and the coupling interpretation of total variation distance to upper bound the probability

that 𝑇 yes
𝑖 and 𝑇 no

𝑖 ever differ. Any of these “failure” events happens with probability at most

𝑂(2𝑚 exp(−2𝛾2𝛼
3

) + 𝑚2

𝜙
+ 1

𝑚
+ 𝑚

𝜌
+𝑚𝛾 + 𝑚

𝜙
) = 𝑜(1) (from our choice of 𝛼, 𝛾, 𝜙). This upper

bounds the total variation distance between 𝑇 yes and 𝑇 no, giving the desired result.

We proceed with the inductive proofs of 𝐸1(𝑖), 𝐸2(𝑖), and 𝐸3(𝑖), noting that the base

cases hold trivially for all three of these statements. Throughout this proof, recall that Λ𝑖

is the set of unseen support elements which we query, and Γ𝑖 is the set of previously seen

support elements which we query.

Lemma 54. Assume that 𝐸1(𝑡),𝐸2(𝑡),𝐸3(𝑡) hold for all 1 ≤ 𝑡 ≤ 𝑖 − 1. Then 𝐸1(𝑖) holds

with probability at least 1−𝑂
(︁

2𝑖 exp
(︁
−2𝛾2𝛼

3

)︁)︁
= 1− 2𝑖−Ω(𝑚2).

Proof. We start with the first part of 𝐸1(𝑖) (the statement prior to “Furthermore”). Let 𝑆

(and the corresponding 𝑆 ′) be any atom as in 𝐸1(𝑖). First, we note that ℓ𝑆′ ∈ {0, . . . , 2𝑟 −

𝜙 − 2} ∪ {2𝑟} since we are conditioning on Lemma 52: |𝑆 ′| is 𝛼-stable and either large or

small, which enforces this condition.

Next, suppose 𝑆 ′ is contained in some other atom 𝑇 generated by 𝐴1, . . . , 𝐴𝑖−1, and let

𝑇 ′ = 𝑇 ∖ {𝑠(1)1 , 𝑠
(2)
1 , . . . , 𝑠

(1)
𝑖−1, 𝑠

(2)
𝑖−1}. Since |𝑆 ′| ≤ |𝑇 ′|, this implies that ℓ𝑇 ′ ≤ ℓ𝑆

′ . We argue

about |𝑇 ′ ∩𝐵𝑗| for three regimes of 𝑗:

∙ The first case is 𝑗 ≤ ℓ𝑇
′ . By the inductive hypothesis, |𝑇 ′ ∩ 𝐵𝑗| = 0, so |𝑆 ′ ∩ 𝐵𝑗| = 0

with probability 1.

∙ The next case is ℓ𝑇 ′
< 𝑗 ≤ ℓ𝑆

′ . Recall from the definition of a core adaptive tester that

𝑆 ′ will be chosen uniformly at random from all subsets of 𝑇 ′ of appropriate size. By

the inductive hypothesis,

|𝑇 ′ ∩𝐵𝑗|
|𝑇 ′|

∈ [1− (𝑖− 1)𝛾, 1 + (𝑖− 1)𝛾]
𝑏𝜌𝑗

𝑛
,
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and therefore

E [|𝑆 ′ ∩𝐵𝑗|] ∈ [1− (𝑖− 1)𝛾, 1 + (𝑖− 1)𝛾]
|𝑆 ′|𝑏𝜌𝑗

𝑛
, implying E [|𝑆 ′ ∩𝐵𝑗|] ≤

2

𝛼𝜌ℓ𝑆
′−𝑗

;

where the inequality is by the definition of ℓ𝑆′ and using the fact that (𝑖 − 1)𝛾 ≤ 1.

Using a Chernoff bound for hypergeometric random variables (Lemma 3), and writing

𝜇 , E [|𝑆 ′ ∩𝐵𝑗|] for conciseness,

Pr[ |𝑆 ′ ∩𝐵𝑗| ≥ 1 ] = Pr

[︂
|𝑆 ′ ∩𝐵𝑗| ≥

(︂
1 +

1− 𝜇
𝜇

)︂
𝜇

]︂
≤ exp

(︂
−(1− 𝜇)2

3𝜇

)︂
≤ exp

(︂
− 1

12
𝛼𝜌ℓ

𝑆′−𝑗

)︂
,

where the second inequality holds because 𝜇 ≤ 2/𝛼𝜌ℓ
𝑆′−𝑗 and (1 − 𝜇)2 ≥ 1/2 for 𝑛

sufficiently large.

∙ The final case is 𝑗 > ℓ𝑆
′ . As in the previous one,

E [|𝑆 ′ ∩𝐵𝑗|] ∈ [1− (𝑖− 1)𝛾, 1 + (𝑖− 1)𝛾]
|𝑆 ′|𝑏𝜌𝑗

𝑛
, implying E [|𝑆 ′ ∩𝐵𝑗|] ≥

𝛼𝜌𝑗−ℓ𝑆
′−1

2
;

where the inequality is by the definition of ℓ𝑆′ , 𝛼-stability, and using the fact that

(𝑖 − 1)𝛾 ≤ 1/2. Using again a Chernoff bound for hypergeometric random variables

(Lemma 3),

Pr

[︂
|𝑆 ′ ∩𝐵𝑗| − E [|𝑆 ′ ∩𝐵𝑗|] ≥ 𝛾

|𝑆 ′|𝑏𝜌𝑗

𝑛

]︂
≤ Pr[ |𝑆 ′ ∩𝐵𝑗| − E [|𝑆 ′ ∩𝐵𝑗|] ≥ 𝛾2E [|𝑆 ′ ∩𝐵𝑗|] ]

≤ 2 exp

(︂
−(2𝛾)2E [|𝑆 ′ ∩𝐵𝑗|]

3

)︂
≤ 2 exp

(︂
−2

3
𝛾2𝛼𝜌𝑗−ℓ𝑆

′−1

)︂
,

where the first inequality comes from 2(1− (𝑖− 1)𝛾) ≥ 1, the second is from Chernoff

bound, and the third follows from E [|𝑆 ′ ∩𝐵𝑗|] ≥ 𝛼𝜌𝑗−ℓ𝑆
′−1/2.
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Since we wish to prove the statement for all buckets 𝐵𝑗 simultaneously, we take a union bound

over all 𝑗. Recall that we want to bound the probability that 𝑆 ′ satisfies two conditions, for

𝑗 ≤ ℓ𝑆
′ , |𝑆 ′ ∩ 𝐵𝑗| = 0; and for 𝑗 > ℓ𝑆

′ , |𝑆 ′ ∩ 𝐵𝑗| lies in [1− 𝑖𝛾, 1 + 𝑖𝛾] |𝑆′|𝑏𝜌𝑗
𝑛

. Using bounds

from all three of these regimes of 𝑗, and a union bound, the probability that 𝑆 ′ does not

satisfy the conditions of 𝐸1(𝑖) is at most

∑︁
𝑗≤ℓ𝑇 ′

0 +
∑︁

ℓ𝑇 ′<𝑗≤ℓ𝑆′

exp

(︂
− 1

12
𝛼𝜌ℓ

𝑆′−𝑗

)︂
+
∑︁
𝑗>ℓ𝑆

′

2 exp

(︂
−2

3
𝛾2𝛼𝜌𝑗−ℓ𝑆

′−1

)︂
.

This probability is maximized when ℓ𝑆′
= ℓ𝑇

′
= 0, in which case it is

2𝑟∑︁
𝑗=1

2 exp

(︂
−2

3
𝛾2𝛼𝜌𝑗−1

)︂
≤

∞∑︁
𝑗=1

2 exp

(︂
−2

3
𝛾2𝛼𝜌𝑗−1

)︂
≤ 3 exp

(︂
−2

3
𝛾2𝛼

)︂
.

Taking a union bound over at most 2𝑖 sets gives us the desired probability bound.

Finally, we prove the remainder of 𝐸1(𝑖) (the statement following “Furthermore”); this

will follow from the definition of incomparability (Definition 24).

∙ First, we focus on Γ𝑖. Suppose that Γ𝑖 contains at least one element with positive

probability mass (if not, the statement trivially holds). Let 𝑝′2 be the probability mass

of the heaviest element in Γ𝑖. Since our inductive hypothesis implies that Γ𝑖 has no

elements in the same bucket pair, the maximum possible value for 𝑝2 is

𝑝2 ≤ 𝑝′2 +
3𝑝′2
𝜌

+
3𝑝′2
𝜌3

+ · · · ≤ 𝑝′2 +
3𝑝′2
𝜌

∞∑︁
𝑘=0

1

𝜌2𝑘
=

(︂
1 +

3

𝜌

𝜌2

𝜌2 − 1

)︂
𝑝′2

≤ (1 + 𝑜(1))𝑝′2

Therefore, 𝑝2 ∈ [𝑝′2, (1 + 𝑜(1))𝑝′2]. Supposing this heaviest element belongs to bucket 𝑗,

we can say that 𝑝2 ∈ [1
2
, (1 + 𝑜(1))3

2
] 1
2𝑟𝑏𝜌𝑗

.

∙ Next, we focus on Λ𝑖. Consider some atom 𝐴, from which we selected 𝑘𝐴 elements

which have not been previously observed: call the set of these elements 𝐴′. In the

first part of this proof, we showed that for each bucket 𝐵𝑘, either |𝐴′ ∩ 𝐵𝑘| = 0 or

|𝐴′ ∩ 𝐵𝑘| ∈ [1− 𝑖𝛾, 1 + 𝑖𝛾] |𝐴′|𝑏𝜌𝑘/𝑛. In the latter case, noting that 𝑖𝛾 ≤ 1
2

and that
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the probability of an individual element in 𝐵𝑘 is within [1, 3] 1
4𝑟𝑏𝜌𝑘

, the probability mass

contained by |𝐴′ ∩ 𝐵𝑘| belongs to [1, 9] |𝐴
′|

8𝑟𝑛
. Recalling the definition of ∆𝐴 as stated

in Definition 24, as shown earlier in this proof, this non-empty intersection happens

for exactly ∆𝐴 buckets. Therefore, the total probability mass in Λ𝑖 is in the interval[︀
1
4
, 9
4

]︀
1

2𝑟𝑛

∑︀
𝐴∈At(𝐴1,...,𝐴𝑖)

𝜁𝐴𝑖 ∆𝐴.

Recall that we are conditioning on Lemma 52 which states that the vector (𝜁𝐴𝑖 )𝐴∈At(𝐴1,...,𝐴𝑖) is

(𝛼,𝑚2)-incomparable with respect to 𝑏. Applying this definition to the bounds just obtained

on the probability masses in Λ𝑖 and Γ𝑖 gives Lemma 54.

Lemma 55. Assume that 𝐸1(𝑡),𝐸2(𝑡),𝐸3(𝑡) hold for all 1 ≤ 𝑡 ≤ 𝑖 − 1, and additionally

𝐸1(𝑖) holds. Then 𝐸2(𝑖) holds with probability at least 1−𝑂
(︁

𝑖
𝜙

)︁
.

Proof. We focus on 𝑠
(1)
𝑖 . If 𝑠(1)𝑖 ∈ Γ𝑖, the conclusion is trivial, so suppose 𝑠(1)𝑖 ∈ Λ𝑖. From

𝐸1(𝑖), no small atom intersects any of the buckets, so let us condition on the fact that 𝑠(1)𝑖

belongs to some large atom 𝑆. Since we want 𝑠(1)𝑖 to fall in a distinct bucket-pair from

2(𝑖−1)+1 other samples, there are at most 2𝑖−1 bucket-pairs which 𝑠(1)𝑖 should not land in.

Using 𝐸1(𝑖), the maximum probability mass contained in the intersection of these bucket-

pairs and 𝑆 is (1 + 𝑖𝛾)(2𝑖 − 1)|𝑆|/𝑟𝑛. Similarly, using the definition of a large atom, the

minimum probability mass contained in 𝑆 is (1− 𝑖𝛾)𝜙|𝑆|/𝑟𝑛. Taking the ratio of these two

terms gives an upper bound on the probability of breaking this invariant, conditioned on

landing in 𝑆, as 𝑂(𝑖/𝜙), where we note that 1+𝑖𝛾
1−𝑖𝛾

= 𝑂(1). Since the choice of which large

atom was arbitrary, we can remove the conditioning. Taking a union bound for 𝑠(1)𝑖 and 𝑠(2)𝑖

gives the result.

Lemma 56. Assume that 𝐸1(𝑡),𝐸2(𝑡),𝐸3(𝑡) hold for all 1 ≤ 𝑡 ≤ 𝑖 − 1, and additionally

𝐸1(𝑖) holds. Then 𝐸3(𝑖) holds.

Proof. We fix some setting of the intersection history, i.e. the configuration and the bucket-

pairs the past elements belong to, and show that the results of the next query will behave

similarly, whether the instance is a yes-instance or a no-instance. We note that, since we are

assuming the inductive hypotheses hold, certain settings which violate these hypotheses are
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not allowed. We also note that 𝑠(1)𝑖 is distributed identically in both instances, so we focus

on 𝑠𝑖 , 𝑠
(2)
𝑖 for the remainder of this proof.

First, we condition that, based on the setting of the past history, 𝑠𝑖 will either come from Λ𝑖

or Γ𝑖 – this event happens with probability 1−𝑂(1/𝑚2).

Proposition 19. In either a yes-instance or a no-instance, 𝑠𝑖 will either come from Λ𝑖 with

probability 1 − 𝑂
(︀

1
𝑚2

)︀
, or Γ𝑖 with probability 1 − 𝑂

(︀
1
𝑚2

)︀
, where the choice of which one is

deterministic based on the fixed configuration and choice for the bucket-pairs of previously

seen elements.

Proof. This is simply a rephrasing of the portion of 𝐸1(𝑖) following “Furthermore.”

We now try to bound the total variation distance between 𝑇 yes
𝑖 and 𝑇 no

𝑖 conditioning on

this event. In the case when it does not hold, we trivially bound the total variation distance

by 1, incurring a cost of 𝑂 (1/𝑚2) to the total variation distance between the unconditioned

variables. Since our target was for this quantity was 𝑂 (1/𝑚2 + 1/𝜌+ 𝛾 + 1/𝜙), it remains

to show, in the conditioned space, that the total variation distance in either case is at most

𝑂 (1/𝜌+ 𝛾 + 1/𝜙) = 𝑂(1/𝑚5/2). We break this into two cases, the first being when 𝑠 comes

from Γ𝑖. In this case, we incur a cost in total variation distance which is 𝑂 (1/𝜌):

Proposition 20. In either a yes-instance or a no-instance, condition that 𝑠𝑖 comes from Γ𝑖.

Then one of the following holds:

∙ |Γ𝑖 ∩𝐵𝑗| = 0 for all 𝑗 ∈ [2𝑟], in which case 𝑠𝑖 is distributed uniformly at random from

the elements of Γ𝑖;

∙ or |Γ𝑖 ∩ 𝐵𝑗| ̸= 0 for some 𝑗 ∈ [2𝑟], in which case 𝑠𝑖 will be equal to some 𝑠 ∈ Γ𝑖

with probability 1 − 𝑂 (1/𝜌), where the choice of 𝑠 is deterministic based on the fixed

configuration and choice for the bucket-pairs of previously seen elements.

Proof. The former case follows from the definition of the sampling model. For the latter case,

let 𝑝 be the probability mass of the heaviest element in Γ𝑖. Since our inductive hypothesis

implies that Γ𝑖 has no elements in the same bucket-pair, the maximum possible value for the
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rest of the elements is

3𝑝

𝜌
+

3𝑝

𝜌3
+

3𝑝

𝜌5
+ · · · ≤ 3𝑝

𝜌

∞∑︁
𝑘=0

1

𝜌2𝑘
=

3𝑝

𝜌

𝜌2

𝜌2 − 1
= 𝑂

(︂
𝑝

𝜌

)︂
.

Since the ratio of this value and 𝑝 is 𝑂 (1/𝜌), with probability 1−𝑂 (1/𝜌) the sample returned

is the heaviest element in Γ𝑖.

Finally, we examine the case when 𝑠 comes from Λ𝑖:

Proposition 21. Condition that 𝑠𝑖 comes from Λ𝑖. Then either:

∙ |Λ𝑖 ∩𝐵𝑗| = 0 for all 𝑗 ∈ [2𝑟], in which case 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 ) = 0;

∙ or |Λ𝑖∩𝐵𝑗| ≠ 0 for some 𝑗 ∈ [2𝑟], in which case 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 ) ≤ 𝑂
(︁
𝛾 + 1

𝜙

)︁
= 𝑂

(︀
1

𝑚5/2

)︀
Proof. The former case follows from the definition of the sampling model – since Λ𝑖 does not

intersect any of the buckets, the sample will be labeled as such. Furthermore, the sample

returned will be drawn uniformly at random from Λ𝑖, and the probability of each atom

will be proportional to the cardinality of its intersection with Λ𝑖, in both the yes and the

no-instances.

We next turn to the latter case. Let 𝒳 be the event that, if the intersection of Λ𝑖 and

some atom 𝐴 has a non-empty intersection with an odd number of buckets, then 𝑠𝑖 does

not come from the unpaired bucket. Note that 𝐸1(𝑖) and the definition of a large atom

imply that an unpaired bucket can only occur if the atom intersects at least 𝜙 bucket-pairs:

conditioned on the sample coming from a particular atom, the probability that it comes

from the unpaired bucket is 𝑂 (1/𝜙). Since the choice of 𝐴 was arbitrary, we may remove

the conditioning, and note that Pr(𝒳 ) = 1−𝑂 (1/𝜙).

Since

𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 ) ≤ 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 | 𝒳 ) Pr(𝒳 ) + 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 | 𝒳 ) Pr(𝒳 )

≤ 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 | 𝒳 ) +𝑂 (1/𝜙), (6.4)

it remains to show that 𝑑TV(𝑇 yes
𝑖 , 𝑇 no

𝑖 | 𝒳 ) ≤ 𝑂 (𝛾).
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First, we focus on the distribution over atoms, conditioned on 𝒳 . Let 𝑁𝐴 be the number

of bucket-pairs with which 𝐴 intersects both buckets, i.e., conditioned on 𝒳 , the sample

could come from 2𝑁𝐴 buckets, and let 𝑁 ,
∑︀

𝐴∈At(𝐴1,...,𝐴𝑖)
𝑁𝐴. By 𝐸1(𝑖), the maximum

amount of probability mass that can be assigned to atom 𝐴 is (1+𝛾)|𝑆|𝑁𝐴/𝑟𝑛
(1−𝛾)|𝑆|𝑁/𝑟𝑛

, and the minimum

is (1−𝛾)|𝑆|𝑁𝐴/𝑟𝑛
(1+𝛾)|𝑆|𝑁/𝑟𝑛

, so the total variation distance in the distribution incurred by this atom is at

most 𝑂(𝛾𝑁𝐴/𝑁). Summing over all atoms, we get the desired result of 𝑂(𝛾).

Finally, we bound the distance on the distribution over bucket-pairs, again conditioned

on 𝒳 . By 𝐸1(𝑖) only large atoms will contain non-zero probability mass, so condition on the

sample coming from some large atom 𝐴. Let 𝑁𝐴 be the number of bucket-pairs with which 𝐴

intersects both buckets, i.e., conditioned on 𝒳 , the sample could come from 2𝑁𝐴 buckets. Us-

ing 𝐸1(𝑖), the maximum amount of probability mass that can be assigned to any intersecting

bucket-pair is (1 + 𝛾) |𝐴|
𝑟𝑛

((1− 𝛾) |𝐴|
𝑟𝑛
𝑁𝐴)−1, and the minimum is (1− 𝛾) |𝐴|

𝑟𝑛
((1 + 𝛾) |𝐴|

𝑟𝑛
𝑁𝐴)−1,

so the total variation distance in the distribution incurred by this bucket-pair is at most

𝑂(𝛾/𝑁𝐴). Summing this difference over all 𝑁𝐴 bucket-pairs, we get 2𝛾
1−𝛾2 = 𝑂(𝛾). Since the

choice of large atom 𝐴 was arbitrary, we can remove the conditioning on the choice of atom.

The statement follows by applying the union bound on the distribution over bucket-pairs

and the distribution over atoms. This concludes the proof of Proposition 21.

We note that in both cases, the cost in total variation distance which is incurred is

𝑂(1
𝜌

+ 𝛾 + 1
𝜙

), which implies 𝐸3(𝑖) – proving Lemma 56 .

This concludes the proof of Lemma 53.

With Lemma 53 in hand, the proof of the main theorem is straightforward:

Proof of Theorem 50: Conditioned on Lemma 52, Lemma 53 implies that the distribution

over the leaves in a yes-instance vs. a no-instance is 𝑜(1). Since an algorithm’s choice to

accept or reject depends deterministically on which leaf is reached, this bounds the difference

between the conditional probability of reaching a leaf which accepts. Since Lemma 52 occurs

with probability 1− 𝑜(1), the difference between the unconditional probabilities is also 𝑜(1).
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6.4 An Upper Bound for Adaptive Support-Size Estima-

tion

We prove our upper bound for constant-factor support-size estimation, Theorem 51:

Theorem 51 (Adaptive Support-Size Estimation). Let 𝜏 > 0 be any constant. There exists

an adaptive algorithm which, given COND access to an unknown distribution 𝑝 on [𝑛] (guar-

anteed to have probability mass at least 𝜏/𝑛 on every element of its support) and accuracy

parameter 𝜀 ∈ (0, 1), makes 𝑂̃ ((log log 𝑛)/𝜀3) queries to the oracle9 and outputs a value 𝜔̃

such that the following holds. With probability at least 2/3, 𝜔̃ ∈ [ 1
1+𝜀
· 𝜔, (1 + 𝜀) · 𝜔], where

𝜔 = | supp(𝑝) |.

Before describing and analyzing our algorithm, we shall need the following results, that

we will use as subroutines: the first one will help us detecting when the support is already

dense. The second, assuming the support is sparse enough, will enable us to find an element

with zero probability mass, which can afterwards be used as a “reference” to verify whether

any given element is inside or outside the support. Finally, the last one will use such a

reference point to check whether a candidate support size 𝜎 is smaller or significantly bigger

than the actual support size.

Lemma 57. Given 𝜏 > 0 and COND access to a distribution 𝑝 such that each support

element has probability at least 𝜏/𝑛, as well as parameters 𝜀 ∈ (0, 1/2), 𝛿 ∈ (0, 1), there exists

an algorithm TestSmallSupport (Algorithm 15) that makes 𝑂̃ (1/(𝜏𝜀2) + 1/𝜏 2) · log(1/𝛿)

queries to the oracle, and satisfies the following. (i) If supp(𝑝) ≥ (1− 𝜀/2)𝑛, then it outputs

yes with probability at least 1−𝛿; (ii) if supp(𝑝) ≤ (1−𝜀)𝑛, then it outputs no with probability

at least 1− 𝛿.

Lemma 58. Given COND access to a distribution 𝑝, an upper bound 𝑡 < 𝑛 on supp(𝑝), as

well as parameter 𝛿 ∈ (0, 1), there exists an algorithm GetNonSupport (Algorithm 16)

that makes 𝑂̃
(︀
log2 1

𝛿
log−2 𝑛

𝑡

)︀
queries to the oracle, and returns an element 𝑟 ∈ [𝑛] such that

𝑟 /∈ supp(𝑝) with probability at least 1− 𝛿.
9We remark that the constant in the 𝑂̃ depends polynomially on 1/𝜏 .
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Lemma 59. Given COND access to a distribution 𝑝, inputs 𝜎 ≥ 2 and 𝑟 /∈ supp(𝑝), as well

as parameters 𝜀 ∈ (0, 1/2), 𝛿 ∈ (0, 1), there exists an algorithm IsAtMostSupportSize

(Algorithm 17) that makes 𝑂̃ (1/𝜀2) log(1/𝛿) queries to the oracle, and satisfies the following.

The algorithm returns either yes or no, and (i) if 𝜎 ≤ supp(𝑝), then it outputs yes with

probability at least 1 − 𝛿; (ii) if 𝜎 > (1 + 𝜀) supp(𝑝), then it outputs no with probability at

least 1− 𝛿.

We defer the proofs of these three lemmata, and for the time being, turn to the proof of

the theorem.

Proof. The algorithm is given in Algorithm 14, and at a high-level works as follows: if first

checks whether the support size is big (an 1 − 𝑂 (𝜀) fraction of the domain), in which case

it can already stop and return a good estimate. If this is not the case, however, then the

support is sparse enough to efficiently find an element 𝑟 outside the support, by taking a few

uniform points, comparing and ordering them by probability mass (and keeping the lightest).

This element 𝑟 can then be used as a reference point in a (doubly exponential) search for

a good estimate: for each guess 𝜔̃, a random subset 𝑆 of size roughly 𝜔̃ is taken, a point 𝑥

is drawn from 𝑝𝑆, and 𝑥 is compared to 𝑟 to check if 𝑝(𝑥) > 0. If so, then 𝑆 intersects the

support, meaning that 𝜔̃ is an upper bound on 𝜔; repeating until this is no longer the case

results in an accurate estimate of 𝜔.
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Algorithm 14 EstimateSupport𝑝

1: if TestSmallSupport𝑝(𝜀,
1
10

) returns yes then return 𝜔̃ ← (1− 𝜀2)𝑛

2: end if

3: Call GetNonSupport𝑝((1− 𝜀
2
)𝑛, 1

10
) to obtain a non-support reference point 𝑟.

4: for 𝑗 from 0 to log1+𝜀 log1+𝜀 𝑛 do

5: Set 𝜔̃ ← (1 + 𝜀)(1+𝜀)𝑗 .

6: Call IsAtMostSupportSize𝑝(𝜔̃, 𝑟, 𝜀,
1

100·(𝑗+1)2
) to check if 𝜔̃ is an upper bound on

𝜔.

7: if the call returned no then

8: Perform a binary search on {(1 + 𝜀)𝑗−1, . . . , (1 + 𝜀)𝑗} to find 𝑖*, the smallest 𝑖 ≥ 2

such that IsAtMostSupportSize𝑝((1 + 𝜀)𝑖, 𝑟, 𝜀, 1
10(𝑗+1)

) returns no.

9: return 𝜔̃ ← (1 + 𝜀)𝑖
*−1.

10: end if

11: end for

In the rest of this section, we formalize and rigorously argue the above. Conditioning

on each of the calls to the subroutines TestSmallSupport, GetNonSupport and IsAt-

MostSupportSize being correct (which overall happens except with probability at most

1/10 + 1/10 +
∑︀∞

𝑗=1 1/(100𝑗2) + 1/10 < 1/3 by a union bound), we show that the output 𝜔̃

of EstimateSupport is indeed within a factor (1 + 𝜀) of 𝜔.

∙ If the test on Step 1 passes, then by Lemma 57 we must have supp(𝑝) > (1 − 𝜀)𝑛.

Thus, the estimate we output is correct, as [(1− 𝜀)𝑛, 𝑛] ⊆ [𝜔̃/(1 + 𝜀), (1 + 𝜀)𝜔̃].

∙ Otherwise, if it does not then by Lemma 57 it must be the case that supp(𝑝) <

(1− 𝜀/2)𝑛.

Therefore, if we reach Step 3 then (1−𝜀/2)𝑛 is indeed an upper bound on 𝜔, and GetNonSupport

will return a point 𝑟 /∈ supp(𝑝) as expected. The analysis of the rest of the algorithm is

straightforward: from the guarantee of IsAtMostSupportSize, the binary search will be

performed for the first index 𝑗 such that 𝜔 ∈ [(1 + 𝜀)(1+𝜀)𝑗−1
, (1 + 𝜀)(1+𝜀)𝑗 ]; and will be

on a set of (1 + 𝜀)𝑗−1 values. Similarly, for the value 𝑖* eventually obtained, it must be
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the case that (1 + 𝜀)𝑖
*
> 𝜔 (by contrapositive, as no was returned by the subroutine) but

(1 + 𝜀)𝑖
*−1 ≤ (1 + 𝜀)𝜔 (again, as the subroutine returned yes). But then, 𝜔̃ = (1 + 𝜀)𝑖

*−1 ∈

(𝜔/(1 + 𝜀), (1 + 𝜀)𝜔] as claimed.

Query complexity. The query complexity of our algorithm originates from the following

different steps:

∙ the call to TestSmallSupport, which from Lemma 57 costs 𝑂̃ (1/𝜀2) queries;

∙ the call to GetNonSupport, on Step 3, that from the choice of the upper bound also

costs 𝑂̃ (1/𝜀2) queries;

∙ the (at most) log1+𝜀 log1+𝜀 𝑛 = 𝑂 ((log log 𝑛)/𝜀) calls to IsAtMostSupportSize on

Step 6. Observing that the query complexity of IsAtMostSupportSize is only

𝑂̃ (1/𝜀2) · log(1/𝛿), and from the choice of 𝛿 = 1
(𝑗+1)2

at the 𝑗-th iteration this step

costs at most

𝑂̃

(︂
1

𝜀2

)︂
·
log1+𝜀 log1+𝜀 𝑛∑︁

𝑗=1

𝑂
(︀
log(𝑗2)

)︀
= 𝑂̃

(︂
1

𝜀2
log1+𝜀 log1+𝜀 𝑛

)︂
= 𝑂̃

(︂
1

𝜀3
log1+𝜀 log1+𝜀 𝑛

)︂

queries.

∙ Similarly, Step 8 results in at most 𝑗 ≤ log log 𝑛 calls to IsAtMostSupportSize

with 𝛿 set to 1/(10(𝑗 + 1)), again costing 𝑂̃
(︀

1
𝜀2

)︀
· log 𝑗 = 𝑂̃

(︀
1
𝜀2

log1+𝜀 log1+𝜀 𝑛
)︀

=

𝑂̃
(︀

1
𝜀3

log log 𝑛
)︀

queries.

Gathering all terms, the overall query complexity is 𝑂̃
(︀
log log𝑛

𝜀3

)︀
, as claimed.

Proof of Lemma 57. Hereafter, we assume without loss of generality that 𝜏 < 2: indeed,

if 𝜏 ≥ 2 then the support is of size at most 𝑛/2, and it suffices to output no to meet the

requirements of the lemma. We will rely on the (easy) fact below, which ensures that any

distribution with dense support and minimum non-zero probability 𝜏/𝑛 put significant mass

on “light” elements:
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Fact 3. Fix any 𝜀 ∈ [0, 1). Assume 𝑝 satisfies both supp(𝑝) ≥ (1− 𝜀)𝑛 and 𝑝(𝑥) ≥ 𝜏/𝑛 for

𝑥 ∈ supp(𝑝). Then, setting 𝐿𝜀 , {𝑥 ∈ [𝑛] : 𝑝(𝑥) ∈ [𝜏/𝑛, 2/𝑛]}, we have |𝐿𝜀| ≥ (1/2 − 𝜀)𝑛

and 𝑝(𝐿𝜀) ≥ (1/2− 𝜀)𝜏 .

Proof. As the second claim follows directly from the first and the minimum mass of elements

of 𝐿𝜀, it suffices to prove that |𝐿𝜀| ≥ (1/2− 𝜀)𝑛. This follows from observing that

1 = 𝑝([𝑛]) ≥ 𝑝([𝑛] ∖ 𝐿𝜀) ≥ (| supp(𝑝) | − |𝐿𝜀|)
2

𝑛
≥ 2(1− 𝜀)− 2|𝐿𝜀|

𝑛

and rearranging the terms.

Description and intuition. The algorithm (as described in Algorithm 15) works as fol-

lows: it first takes enough uniformly distributed samples 𝑠1, . . . , 𝑠ℓ to get (with high proba-

bility) an accurate enough fraction of them falling in the support to distinguish between the

two cases. The issue is now to detect those 𝑠𝑗’s which indeed are support elements; note that

we do not care about underestimating this fraction in case (b) (when the support is at most

(1− 𝜀)𝑛, but importantly do not want to underestimate it in case (a) (when the support size

is at least (1−𝜀/2)𝑛). To perform this detection, we take constantly many samples according

to 𝑝 (which are therefore ensured to be in the support), and use pairwise conditional queries

to sort them by increasing probability mass (up to approximation imprecision), and keep

only the lightest of them, 𝑡. In case (a), we now from Fact 3 that with high probability our 𝑡

has mass in [1/𝑛, 2/𝑛], and will therefore be either much lighter than or comparable to any

support element: this will ensure that in case (a) we do detect all of the 𝑠𝑗’s that are in the

support.

This also works in case (b), even though Fact 3 does not give us any guarantee on the

mass of 𝑡. Indeed, either 𝑡 turns out to be light (and then the same argument ensures us our

estimate of the number of “support” 𝑠𝑗’s is good), or 𝑡 is too heavy – and then our estimate

will end up being smaller than the true value. But this is fine, as the latter this only means

we will reject the distribution (as we should, since we are in the small-support case).

Correctness. Let 𝜂 be the fraction of the 𝑠𝑗’s that are in the support of the distribution.

By a multiplicative Chernoff bound and a suitable constant in our choice of ℓ, we get that

289



Algorithm 15 TestSmallSupport𝑝

Require: COND access to 𝑝; accuracy parameter 𝜀 ∈ (0, 1/2), threshold 𝜏 > 0, probability
of failure 𝛿

1: Repeat the following 𝑂 (log(1/𝛿)) times and output the majority vote.
2: loop
3: Draw ℓ , Θ

(︀
1
𝜀2

)︀
independent samples 𝑠1, . . . , 𝑠ℓ ∼ 𝒰𝑛.

4: Draw 𝑘 , Θ
(︀
1
𝜏

)︀
independent samples 𝑡1, . . . , 𝑡𝑘 ∼ 𝑝.

5: for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 do ◁ Order the 𝑡𝑗’s
6: Call Compare({𝑡𝑖}, {𝑡𝑗}, 𝜂 = 1

2
, 𝐾 = 2, 1

4𝑘2
) to get a 2-approx. 𝜌 of 𝑝(𝑡𝑗)

𝑝(𝑡𝑖)
, High or

Low.
7: if Compare returned High or a value 𝜌 then
8: Record 𝑡𝑖 ⪯ 𝑡𝑗
9: else

10: Record 𝑡𝑗 ≺ 𝑡𝑗
11: end if
12: end for
13: Set 𝑡 to be (any of the) smallest 𝑡𝑗’s, according to ⪯.
14: for all 1 ≤ 𝑗 ≤ ℓ do ◁ Find the fraction of support elements among the 𝑠𝑗’s
15: Call Compare({𝑡}, {𝑠𝑗}, 𝜂 = 1

2
, 𝐾 = 2

𝜏
, 1
4ℓ

) to get either a value 𝜌, High or Low.
16: if Compare returned High or a value 𝜌 ≥ 1/2 then
17: Record 𝑠𝑗 as “support.”
18: end if
19: end for
20: if the number of 𝑠𝑗’s marked “support” is at least (1− 3

4
𝜀)ℓ then return yes

21: else return no
22: end if
23: end loop

(i) if supp(𝑝) ≥ 1 − 𝜀/2, then Pr[ 𝜂 < 1− 3𝜀/4 ] ≤ 1/12, while (ii) if supp(𝑝) ≤ 1 − 𝜀/2,

then Pr[ 𝜂 ≥ 1− 3𝜀/4 ] ≤ 1/12. We hereafter condition on this (i.e., 𝜂 being a good enough

estimate). We also condition on all calls to Compare yielding results as per specified, which

by a union bound overall happens except with probability 1/12 + 1/12 = 1/6, and break the

rest of the analysis in two cases.

(a) Since the support size 𝜔 is in this case at least (1 − 𝜀/2)𝑛, from Fact 3 we get that

𝑝(𝐿𝜀/2) ≥ 1−𝜀
2
𝜏 ≥ 𝜏

4
. Therefore, except with probability at most (1 − 𝜏/4)𝑘 < 1/12,

at least one of the 𝑡𝑗’s will belong to 𝐿𝜀/2. When this happens, and by the choice of

parameters in the calls to Compare, we get that 𝑡 ∈ 𝐿𝜀/2; that is 𝑝(𝑡) ∈ [𝜏/𝑛, 2/𝑛].

But then the calls to the routine on Step 15 will always return either a value (since 𝑡
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is “comparable” to all 𝑥 ∈ 𝐿𝜀/2 – i.e., has probability within a factor 2/𝜏 of them) or

High (possible for those 𝑠𝑗’s that have weight greater than 2/𝑛), unless 𝑠𝑗 has mass 0

(that is, is not in the support). Therefore, the fraction of points marked as support is

exactly 𝜂, which by the foregoing discussion is at least 1− 3𝜀/4: the algorithm returns

yes at Step 20.

(b) Conversely, if 𝜔 ≤ (1 − 𝜀)𝑛, there will be a fraction 1 − 𝜂 > 3𝜀/4 of the 𝑠𝑗’s having

mass 0. However, no matter what 𝑡 is it will still be in the support and therefore have

𝑝(𝑡) ≥ 𝜏/𝑛: for these 𝑠𝑗’s, the call to Compare on Step 15 can thus only return Low.

This means that there can only be less than (1− 3
4
𝜀)ℓ points marked “support” among

the 𝑠𝑗’s, and hence that the algorithm will output no as it should.

Overall, the inner loop of the algorithm thus only fails with probability at most 1/12+1/6+

1/12 = 1/3 (respectively for 𝜂 failing to be a good estimate, the calls to Compare failing

to yield results as guaranteed, or no 𝑡𝑗 hitting 𝐿𝜀/2 in case (a)). Repeating independently

log(1/𝛿) times and taking the majority vote boosts the probability of success to 1− 𝛿.

Query complexity. The sample complexity comes from the 𝑘2 calls on Step 4 (each

costing 𝑂 (log 𝑘) queries) and the ℓ calls on Step 15 (each costing 𝑂
(︀
1
𝜏

log ℓ
)︀

queries). By

the setting of ℓ and because of the log(1/𝛿) repetitions, this results in an overall query

complexity 𝑂
(︀(︀

1
𝜏2

log 1
𝜏

+ 1
𝜏𝜀2

log 1
𝜀

)︀
log 1

𝛿

)︀
.

Proof of Lemma 58. As described in Algorithm 16, the subroutine is fairly simple: using

its knowledge of an upper bound on the support size, it takes enough uniformly distributed

samples to have (with high probability) at least one falling outside the support. Then, it

uses the conditional oracle to “order” these samples according to their probability mass, and

returns the lightest of them – i.e., one with zero probability mass.

Correctness. It is straightforward to see that provided at least one of the 𝑠𝑗’s falls outside

the support and that all calls to Compare behave as expected, then the procedure returns

one of the “lightest” 𝑠𝑗’s, i.e. a non-support element. By a union bound, the latter holds

with probability at least 1− 𝛿/2; as for the former, since 𝑡 is by assumption an upper bound
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Algorithm 16 GetNonSupport𝑝(𝑚, 𝛿)

Require: COND access to 𝑝; upper bound 𝑡 on supp(𝑝), probability of failure 𝛿
Ensure: Returns 𝑟 ∈ [𝑛] such that, with probability at least 1− 𝛿, 𝑟 /∈ supp(𝑝)
1: Set 𝑘 , ⌈log 2

𝛿
log−1 𝑛

𝑡
⌉.

2: Draw independently 𝑘 points 𝑠1, . . . , 𝑠𝑘 ∼ 𝒰𝑛
3: for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 do
4: Call Compare({𝑠𝑖}, {𝑠𝑗}, 𝜂 = 1

2
, 𝐾 = 2, 𝛿

2𝑘2
) to get a 2-approx. 𝜌 of 𝑝(𝑠𝑗)

𝑝(𝑠𝑖)
, High or

Low.
5: if Compare returned High or a value 𝜌 then
6: Record 𝑠𝑖 ⪯ 𝑠𝑗
7: else
8: Record 𝑠𝑗 ≺ 𝑠𝑗
9: end if

10: end for
11: return arg min⪯{𝑠1, . . . , 𝑠𝑘} ◁ Return (any) minimal element for ⪯.

on the support size it holds with probability at least 1− (𝑡/𝑛)𝑘 ≥ 1− 𝛿/2 (from our setting

of 𝑘). Overall, the procedure’s output is correct with probability at least 1− 𝛿, as claimed.

Query complexity. The query complexity of GetNonSupport is due to the
(︀
𝑘
2

)︀
calls

to Compare, and is therefore 𝑂
(︀
𝑘2 log 𝑘

𝛿

)︀
because of our setting for 𝜂 and 𝐾 (which is in

turn 𝑂̃
(︀
log2 1

𝛿
log−2 𝑛

𝑡

)︀
). (In our case, we shall eventually take 𝑡 = (1− 𝜀/2)𝑛 and 𝛿 = 1/10,

thus getting 𝑘 = 𝑂 (1/𝜀) and a query complexity of 𝑂̃ (1/𝜀2).)

Proof of Lemma 59. Our final subroutine, described in Algorithm 17, essentially de-

rives from the following observation: a random set 𝑆 of size (approximately) 𝜎 obtained

by including independently each element of the domain with probability 1/𝜎 will intersect

the support on 𝜔/𝜎 points on expectation. What we can test given our reference point

𝑟 /∈ supp(𝑝), however, is only whether 𝑆 ∩ supp(𝑝) = ∅. But this is enough, as by repeating

sufficiently many times (taking a random 𝑆 and testing whether it intersects the support

at all) we can distinguish between the two cases we are interested in. Indeed, the expected

fraction of times 𝑆 includes a support element in either cases is known to the algorithm and

differs by roughly Ω (𝜀), so 𝑂 (1/𝜀2) repetitions are enough to tell the two cases apart.
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Algorithm 17 IsAtMostSupportSize𝑝(𝜎, 𝑟, 𝜀, 𝛿)

Require: COND access to 𝑝; size 𝜎 ≥ 2, non-support element 𝑟, accuracy 𝜀, probability of

failure 𝛿

Ensure: Returns, with probability at least 1 − 𝛿, yes if 𝜎 ≤ | supp(𝑝) | and no if 𝜎 >

(1 + 𝜀)| supp(𝑝) |.

1: Set 𝛼←
(︀
1− 1

𝜎

)︀𝜎 ∈ [1
4
, 𝑒−1], 𝜏 ← 𝛼(𝛼− 𝜀

2 − 1) = Θ (𝜀).

2: Repeat the following 𝑂 (log(1/𝛿)) times and output the majority vote.

3: loop

4: for 𝑘 = 𝑂
(︀

1
𝜏2

)︀
times do

5: Draw a subset 𝑆 ⊆ [𝑛] by including independently each 𝑥 ∈ [𝑛] with probability

1/𝜎.

6: Draw 𝑥 ∼ 𝑝𝑆.

7: Call Compare({𝑥}, {𝑟}, 𝜂 = 1
2
, 𝐾 = 1, 1

100𝑘
) ◁ Low if 𝑆 ∩ supp(𝑝) ̸= ∅; 𝜌 ∈ [1

2
, 2)

o.w.

8: Record yes if Compare returned Low, no otherwise.

9: end for

10: return yes if at least 𝑘
(︀
𝛼 + 𝜏

2

)︀
“yes” ’s were recorded, no otherwise. ◁ Thresholding.

11: end loop

Correctness. We condition on all calls to Compare being correct: by a union bound,

this overall happens with probability at least 99/100. We shall consider the two cases 𝜎 ≤ 𝜔

and 𝜎 > (1 + 𝜀)𝜔, and focus on the difference of probability 𝑝 of recording yes on Step 8

between the two, in any fixed of the 𝑘 iterations. In both cases, note 𝑝 is exactly (1− 1/𝜎)𝜔.

∙ If 𝜎 ≤ 𝜔, then we have 𝑝 ≤
(︀
1− 1

𝜎

)︀𝜎
= 𝛼.

∙ If 𝜎 > (1 + 𝜀)𝜔, then 𝑝 >
(︀
1− 1

𝜎

)︀𝜎/(1+𝜀)
>
(︀
1− 1

𝜎

)︀𝜎(1−𝜀/2)
= 𝛼1−𝜀/2.

As 𝛼 ∈ [1
4
, 𝑒−1], the difference between the two is 𝜏 = 𝛼(𝛼−𝜀/2 − 1) = Θ (𝜀). Thus, repeating

the atomic test of Step 4 𝑂 (1/𝜏 2) times before thresholding at Step 10 yields the right

answer with constant probability, then brought to 1− 𝛿 by the outer repeating and majority

vote.
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Query complexity. Each call to Compare at Step 7 costs 𝑂 (log 𝑘) queries, and is in

total repeated 𝑂 (𝑘 log(1/𝛿)) times. By the setting of 𝑘 and 𝜏 , the overall query complexity

is therefore 𝑂
(︀

1
𝜀2

log 1
𝜀

log 1
𝛿

)︀
.

6.5 Non-Adaptive Upper Bounds

In this section, we prove upper bounds for several distribution testing and property estima-

tion problems in the non-adaptive model. At their core, all of our algorithms depend on

our algorithm Anaconda, which is presented in Section 6.5.2 as Algorithm 18. We then

describe results for uniformity testing (Section 6.5.3), equivalence testing (Section 6.5.4),

identity testing (Section 6.5.5), and support-size estimation (Section 6.5.6).

6.5.1 Additional Preliminaries

We will frequently use 𝑧 = (𝑝 − 𝑞)/𝜀 to denote the “noise vector” between 𝑝 and 𝑞, and

𝑝 = (𝑝 + 𝑞)/2. While the two cases in distribution testing that one considers are usually

𝑝 = 𝑞 and 𝑑TV(𝑝, 𝑞) ≥ 𝜀, for convenience of notation, we will generally assume the latter case

to be 𝑑TV(𝑝, 𝑞) = 𝜀 – it is not hard to see that our analysis carries through whenever the

algorithm is given a parameter 𝜀 which is less than the true total variation distance between

𝑝 and 𝑞. With this in mind, when 𝑝 = 𝑞, we have that 𝑧 = 0⃗, and when 𝑑TV(𝑝, 𝑞) = 𝜀, we have

that ‖𝑧‖1 = 2 and
∑︀

𝑖∈[𝑛] 𝑧(𝑖) = 0. Let 𝑧+ denote the “rectified” version of 𝑧, where 𝑧+(𝑖) =

max(0, 𝑧(𝑖)) – here, in the latter case, ‖𝑧+‖1 =
∑︀

𝑖∈[𝑛] 𝑧
+(𝑖) = 1. 𝑧−(𝑖) = max(0,−𝑧(𝑖)) is

defined similarly.

For our analysis, we will group indices into bins:

Definition 25. The 𝑗-th bin for a vector 𝑥, denoted by Bin𝑗(𝑥), contains all indices whose

values are in the range [2−𝑗, 2−𝑗+1), i.e. Bin𝑗(𝑥) , {𝑖 : 1
2𝑗
≤ 𝑥(𝑖) < 1

2𝑗−1}.
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6.5.2 Anaconda: A Non-Adaptive Algorithm for Distribution Test-

ing

Our algorithm, Anaconda, is presented in Algorithm 18. While it is phrased in terms

of equivalence testing, it still works when a distribution 𝑞 is explicitly given (i.e., identity

testing), as one can simply simulate NACOND queries to 𝑞. It takes three parameters, 𝑇 , 𝜏 ,

and 𝜀′, which we will instantiate differently (as required by our analysis) for uniformity and

equivalence testing.

The algorithm’s behavior can roughly be summarized as follows. The algorithm first

chooses a random size for a query set. It then chooses a random subset of the domain of this

size. Next, it draws several conditional samples from this set, from both 𝑝 and 𝑞. Finally, if

it detects that a single element from the query set has a significantly discrepant probability

mass under 𝑝 and 𝑞, it outputs that the two distributions are far. It repeats this process

several times, eventually outputting that the distributions are equal if it never discovers a

discrepant element.

Algorithm 18 Anaconda: An algorithm for testing equivalence given NACOND oracle
access to 𝑝, 𝑞
1: function Anaconda(𝜀, NACOND𝑝 oracle, NACOND𝑞 oracle, parameters 𝑇, 𝜏, 𝜀′)
2: for 𝑡 = 1 to 𝑇 do
3: Choose an integer 𝑗 ∈ {1, . . . , 2 log 𝑛} uniformly at random, and define 𝑟 , 2𝑗.
4: Choose a random set 𝑆 ⊆ [𝑛], independently selecting each 𝑖 to be in 𝑆 with

probability 1/𝑟.
5: Perform 𝜏 queries to NACOND𝑝 and NACOND𝑞 on the set 𝑆.
6: Using these queries, form the empirical distribution 𝑝𝑆 and 𝑞𝑆.
7: if ∃𝑖 ∈ 𝑆 such that |𝑝𝑆(𝑖)− 𝑞𝑆(𝑖)| ≥ 𝜀′ then
8: return 𝑑TV(𝑝, 𝑞) ≥ 𝜀
9: end if

10: end for
11: return 𝑝 = 𝑞
12: end function

6.5.3 Analysis of Anaconda for Uniformity Testing

In this section, we will prove Theorem 53, by instantiating Anaconda with parameters

𝑇 = Θ(log 𝑛), 𝜏 = Θ(log log 𝑛/𝜀2), and 𝜀′ = Θ(𝜀).
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Theorem 53 (Non-Adaptive Uniformity Testing). There exists an algorithm which, given

NACOND access to an unknown distribution 𝑝 on [𝑛], makes 𝑂̃
(︀
log𝑛
𝜀2

)︀
queries to the oracle

on 𝑝 and distinguishes between the cases 𝑝 = 𝒰𝑛 and 𝑑TV(𝑝,𝒰𝑛) ≥ 𝜀 with probability at least

2/3, where 𝒰𝑛 is the uniform distribution on [𝑛].

Our strategy will be as follows. We will argue that, with probability Ω(1/ log 𝑛), Ana-

conda will select a set 𝑆 with a single element that has significantly different mass under the

uniform distribution and the distribution 𝑝𝑆. In this way, we will reduce the problem from

ℓ1-testing to ℓ∞-testing, the latter of which is solvable with very few samples, by Lemma 1.

More precisely, we compare the probability assigned to a particular symbol 𝑖 when per-

forming a conditional sample on 𝑆, in the two cases where 𝑝 = 𝒰𝑛, and when 𝑑TV(𝑝,𝒰𝑛) = 𝜀.

In the former case, the probability is 𝒰𝑛(𝑖)
𝒰𝑛(𝑆)

, while in the latter, it is 𝒰𝑛(𝑖)+𝜀𝑧(𝑖)
𝒰𝑛(𝑆)+𝜀𝑧(𝑆)

. Therefore,

the difference in probability assigned is⃒⃒⃒⃒
𝒰𝑛(𝑖) + 𝜀𝑧(𝑖)

𝒰𝑛(𝑆) + 𝜀𝑧(𝑆)
− 𝒰𝑛(𝑖)

𝒰𝑛(𝑆)

⃒⃒⃒⃒
. (6.5)

In the following two subsections, we will show that the following lemma:

Lemma 60. If 𝑑TV(𝑝,𝒰𝑛) = 𝜀, then for each 𝑡, Anaconda will select a set 𝑆 which causes

(6.5) to be ≥ Ω(𝜀) with probability ≥ Ω(1/ log 𝑛).

Assuming this to be true for the moment, we will show how to complete the proof.

Repeating this process 𝑇 = Θ(log 𝑛) times will guarantee that at least one iteration will

choose an 𝑆 containing a sufficiently discrepant element with probability ≥ 9/10. We focus

on the iteration where such an 𝑆 is selected.

Now if we draw Θ(log log 𝑛/𝜀2) samples from 𝑝𝑆, Lemma 1 implies the empirical distribu-

tion 𝑝𝑆 will approximate 𝑝𝑆 in Kolmogorov distance up to an additive 𝜀′, with probability at

least 1−𝑂
(︁

1
log𝑛

)︁
, and thus Line 7 will correctly identify that 𝑑TV(𝑝,𝒰𝑛) = 𝜀. Therefore, with

probability at least 4/5, the algorithm will correctly detect in this case that 𝑑TV(𝑝,𝒰𝑛) = 𝜀.

We now examine what happens when 𝑝 = 𝒰𝑛. For each iteration 𝑡, the uniform distri-

bution on 𝑆 and 𝑝𝑆 will be equal. We again invoke Lemma 1 with Θ(log log 𝑛/𝜀2) samples,

and use a union bound over all 𝑇 = Θ(log 𝑛) iterations. This implies that, with probability
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at least 9/10, Line 7 will never identify an element which has ≥ 𝜀′ discrepancy, and thus the

algorithm will output that 𝑝 = 𝒰𝑛 in Line 11.

It remains to prove Lemma 60. We break the analysis into two cases, which we address

in the following two subsections. In Section 6.5.3.1, we handle the case where, for all 𝑥 ∈

{𝑧−, 𝑧+},
∑︀log 5𝑛

𝑗=log𝑛/32+1

∑︀
𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥ 1/5. This corresponds to the case where there are

many symbols with small discrepancy from the uniform distribution, in both the positive and

negative direction. In Section 6.5.3.2, we handle the complement of this case, where there

exists an 𝑥 ∈ {𝑧−, 𝑧+} for which
∑︀log𝑛/32

𝑗=1

∑︀
𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥ 3/5. Roughly, this happens when

there are not too many symbols which capture the discrepancy between the distributions.

6.5.3.1 Case I: Many Small Discrepancies

In this section, we prove Lemma 60 in the case where for all 𝑥 ∈ {𝑧−, 𝑧+},
∑︀log 5𝑛

𝑗=log𝑛/32+1

∑︀
𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥

1/5. In short, the analysis can be summarized as follows: if the algorithm chooses a set 𝑆

of size 2, it is likely to contain two elements with non-trivial discrepancy, and in both the

positive and negative direction – this will suffice to make (6.5) be ≥ Ω(𝜀).

We have the following proposition relating the size of a bin to the mass it contains, which

is immediate from Definition 25.

Proposition 22. 2𝑗−1
∑︀

𝑖∈Bin𝑗
𝑥(𝑖) ≤ |Bin𝑗(𝑥)| ≤ 2𝑗

∑︀
𝑖∈Bin𝑗

𝑥(𝑖).

This gives us the following lower bound on the number of symbols which are in bins

log 𝑛/32 + 1 through log 5𝑛:

log 5𝑛∑︁
𝑗=log𝑛/32+1

|Bin𝑗(𝑥)| ≥
log 5𝑛∑︁

𝑗=log𝑛/32+1

2𝑗−1
∑︁

𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥ 𝑛

32

log 5𝑛∑︁
𝑗=log𝑛/32+1

∑︁
𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥ 𝑛

160
(6.6)

In other words, for either 𝑥 ∈ {𝑧−, 𝑧+}, there are Ω(𝑛) symbols with 𝑥(𝑖) ≥ 1/5𝑛.

We complete the proof of Lemma 60 as follows. With probability 1
2 log𝑛

, Anaconda

will select 𝑟 = log 𝑛 in Line 3. Conditioning on this, with constant probability, the set 𝑆

selected in Line 4 will be of size exactly 2. Further conditioning on this, due to (6.6), with

constant probability 𝑆 will consist of two symbols 𝑖1 ∈ Bin𝑗′(𝑧
+) and 𝑖2 ∈ Bin𝑗′′(𝑧

−) for

log 𝑛/32 + 1 ≤ 𝑗′, 𝑗′′ ≤ log 5𝑛.
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Without loss of generality, suppose that 𝑧(𝑖1) ≥ 0 and 𝑧(𝑖2) ≤ 0. Then (6.5) is the

following:⃒⃒⃒⃒
𝒰𝑛(𝑖) + 𝜀𝑧(𝑖)

𝒰𝑛(𝑆) + 𝜀𝑧(𝑆)
− 𝒰𝑛(𝑖)

𝒰𝑛(𝑆)

⃒⃒⃒⃒
=

𝜀𝑛(𝑧(𝑖𝑖)− 𝑧(𝑖2))

2(2 + 𝜀𝑛(𝑧(𝑖1) + 𝑧(𝑖2)))
≥

𝜀𝑛 · 2
5𝑛

2(2 + 𝜀𝑛 · 32
𝑛

)
≥ 𝜀

68
. (6.7)

This expression is ≥ Ω(𝜀), and this event happens with probability ≥ Ω(1/ log 𝑛), thus

proving Lemma 60 in this case.

6.5.3.2 Case II: Not So Many Small Discrepancies

In this section, we prove Lemma 60 in the case where there exists an 𝑥 ∈ {𝑧−, 𝑧+} for which∑︀log𝑛/32
𝑗=1

∑︀
𝑖∈Bin𝑗(𝑥)

𝑥(𝑖) ≥ 3/5. Without loss of generality, assume that this holds for 𝑧+.

Furthermore, we focus our analysis on the case where Anaconda picks an 𝑟 ≤ log 𝑛/32.

For the remainder of this proof, condition on this event, which happens with probability at

least 1/4.

We will need the following key lemma:

Lemma 61. Suppose 𝑑TV(𝑝,𝒰𝑛) = 𝜀. For each iteration 𝑡, with probability ≥ 3
20 log𝑛/32

, the

algorithm will choose an 𝑟 and a set 𝑆 such that there exists 𝑖 ∈ 𝑆 with 𝑧+(𝑖) ≥ 1/𝑟.

Proof. For some fixed 𝑗, the probability of choosing 𝑗 is 1
log𝑛/32

, and, conditioning on this 𝑗,

the probability of picking any element from Bin𝑗(𝑧
+) to be in 𝑆 is 1−

(︀
1− 1

2𝑗

)︀|Bin𝑗(𝑧
+)|. By

the law of total probability, we sum this over all bins to get the probability that the event

of interest happens:

1

log 𝑛/32

∑︁
𝑗∈[log𝑛/32]

1−
(︂

1− 1

2𝑗

)︂|Bin𝑗(𝑧
+)|

≥ 1

log 𝑛/32

∑︁
𝑗∈[log𝑛/32]

1− exp

(︂
−|Bin𝑗(𝑧

+)|
2𝑗

)︂
(6.8)

≥ 1

log 𝑛/32

∑︁
𝑗∈[log𝑛/32]

1− exp

⎛⎝−1

2

∑︁
𝑖∈Bin𝑗(𝑧+)

𝑧+(𝑖)

⎞⎠
(6.9)

≥ 1

log 𝑛/32

∑︁
𝑗∈[log𝑛/32]

1

4

∑︁
𝑖∈Bin𝑗(𝑧+)

𝑧+(𝑖) (6.10)

≥ 3

20 log 𝑛/32
. (6.11)
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(6.8) follows from the inequality 1 − 𝑥 ≤ exp(−𝑥), (6.9) is due to Proposition 22, (6.10)

is by the inequality 1 − exp(−𝑥) ≥ 𝑥/2 (which holds for all 𝑥 ∈ [0, 1]), and (6.11) is by

assumption

We will require the following lemmata to complete the proof:

Lemma 62. For any 𝑖 and 𝑗,

Pr

[︂
1

2 · 2𝑗
≤ 𝒰𝑛 (𝑆 ∖ 𝑖) ≤ 3

2 · 2𝑗

]︂
≥ 1− 2/𝑒2.

Proof. Observe that the size of 𝑆 ∖ 𝑖 is a sum of 𝑛− 1 i.i.d. Bernoulli random variables with

parameter 1/2𝑗, and thus has expectation 𝜇 = 𝑛−1
2𝑗

. Then, by Chernoff bound, we have

Pr

[︂
9

16

(𝑛− 1)

2𝑗
≤ |𝑆 ∖ 𝑖| ≤ 23

16

(𝑛− 1)

2𝑗

]︂
≥ 1− 2 exp

(︂
−49𝜇

768

)︂
≥ 1− 2/𝑒2.

The last inequality follows since 𝑗 ≤ log 𝑛/32 for 𝑛 larger than some absolute constant.

Similarly, the lemma follows for 𝑛 larger than some absolute constant by rescaling the size

of the set by a factor of 𝑛.

Lemma 63. If 𝑑TV(𝑝,𝒰𝑛) = 𝜀, then for any 𝑖 and 𝑗,

Pr

[︂
𝑧 (𝑆 ∖ 𝑖) ≥ 4

2𝑗

]︂
≤ 1/4.

Proof. Note that 𝑧+(𝑆 ∖ 𝑖) is a non-negative random variable. Its expectation E[𝑧+(𝑆 ∖ 𝑖)] ≤

E[𝑧+(𝑆)] ≤ 1/2𝑗. The lemma follows by Markov’s inequality, and by observing that the

addition of any negative elements of 𝑧 will only decrease 𝑧(𝑆 ∖ 𝑖).

Note that, by Lemmas 61, 62, 63, if 𝑑TV(𝑝,𝒰𝑛) = 𝜀, with probability at least 1
4
· 1
log𝑛/32

·(︀
1− 1

4
− 2/𝑒2

)︀
≥ Ω(1/ log 𝑛), the following events happen simultaneously:

∙ 𝑟 ≤ 𝑛/32;

∙ 𝑧(𝑖) ≥ 1/𝑟;

∙ 𝒰𝑛(𝑖) = 1/𝑛;

299



∙ 𝑧(𝑆 ∖ 𝑖) ≤ 4/𝑟;

∙ 1
2𝑟
≤ 𝒰𝑛(𝑆 ∖ 𝑖) ≤ 3

2𝑟
;

We now show that a set 𝑆 with all these properties will result in (6.5) being ≥ Ω(𝜀):⃒⃒⃒⃒
𝒰𝑛(𝑖) + 𝜀𝑧(𝑖)

𝒰𝑛(𝑆) + 𝜀𝑧(𝑆)
− 𝒰𝑛(𝑖)

𝒰𝑛(𝑆)

⃒⃒⃒⃒
= 𝜀

⃒⃒⃒⃒
𝑧(𝑖)𝒰𝑛(𝑆 ∖ 𝑖)− 𝑧(𝑆 ∖ 𝑖)𝒰𝑛(𝑖)

𝒰𝑛(𝑆)(𝒰𝑛(𝑆) + 𝜀𝑧(𝑆))

⃒⃒⃒⃒
≥ 𝜀 · 1

𝒰𝑛(𝑆)(𝒰𝑛(𝑆) + 𝜀𝑧(𝑆))

(︂
𝑧(𝑖)

2𝑟
− 4

𝑟𝑛

)︂
≥ 𝜀 · 𝑟

2

1
2
𝑟

+ 𝜀
(︀
4
𝑟

+ 𝑧(𝑖)
)︀ (︂𝑧(𝑖)

2𝑟
− 4

𝑟𝑛

)︂
≥ 𝜀 · 1

2
𝑟

+ 𝜀
(︀
4
𝑟

+ 𝑧(𝑖)
)︀ (︂𝑧(𝑖)

4
− 2

𝑛

)︂

The analysis concludes by considering two cases. If 𝜀𝑧(𝑖) ≥ 2
𝑟

+ 𝜀 · 4
𝑟
, then we have the lower

bound 𝜀 · 1
2𝜀𝑧(𝑖)

(︁
𝑧(𝑖)
4
− 2

𝑛

)︁
= Ω(1) ≥ Ω(𝜀), as desired. Otherwise, we have the lower bound

𝜀 · 𝑟
12

(︁
𝑧(𝑖)
4
− 2

𝑛

)︁
≥ 𝜀 · 𝑟

12

(︀
1
4𝑟
− 2

𝑛

)︀
≥ 𝜀

96
, which completes the proof.

6.5.4 Analysis of Anaconda for Equivalence Testing

In this section, we will prove Theorem 52 by instantiating Anaconda with parameters

𝑇 = Θ(log6 𝑛), 𝜏 = Θ̃(log6 𝑛/𝜀2), and 𝜀′ = 𝜀
Θ̃(log3 𝑛)

.

Theorem 52 (Non-Adaptive Equivalence Testing). There exists an algorithm which, given

NACOND access to unknown distributions 𝑝, 𝑞 on [𝑛], makes 𝑂̃
(︁

log12 𝑛
𝜀2

)︁
queries to the oracle

on each distribution and distinguishes between the cases 𝑝 = 𝑞 and 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with

probability at least 2/3.

We will require the following proposition, says if 𝑑TV(𝑝, 𝑞) = 𝜀 and Anaconda selects

an appropriate set 𝑆, then it will detect the discrepancy.

Proposition 23. Suppose that 𝑑TV(𝑝, 𝑞) = 𝜀 and that within the first 𝑇 iterations a set 𝑆

is identified such that for some 𝑖 ∈ 𝑆 and some 𝑐 > 0,

min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 𝑝(𝑆) + 𝑞(𝑆)

𝑂̃(log𝑐 𝑛)
.
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Then, for 𝜀′ = 𝜀
𝑂̃(log𝑐 𝑛)

and 𝜏 = Ω̃
(︁

log2𝑐 𝑛
𝜀2

)︁
, the algorithm outputs that 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with

probability at least 1− 1
poly log𝑛

.

Proof. We first argue that |𝑝𝑆(𝑖)− 𝑞𝑆(𝑖)| ≥ 𝜀min{𝑧(𝑖),𝑧(𝑖)−𝑧(𝑆)}
𝑝(𝑆)+𝑞(𝑆)

.

We set 𝑝 = 𝑝+𝑞
2

. We have that 𝑝 = 𝑝+ 𝑧 𝜀
2
, 𝑞 = 𝑝− 𝑧 𝜀

2
and

⃒⃒⃒⃒
𝑝(𝑖)

𝑝(𝑆)
− 𝑞(𝑖)

𝑞(𝑆)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑝(𝑖) + 𝑧(𝑖) 𝜀

2

𝑝(𝑆) + 𝑧(𝑆) 𝜀
2

−
𝑝(𝑖)− 𝑧(𝑖) 𝜀

2

𝑝(𝑆)− 𝑧(𝑆) 𝜀
2

⃒⃒⃒⃒
=
𝜀

2

⃒⃒⃒⃒
𝑧(𝑖)𝑝(𝑆)− 𝑝(𝑖)𝑧(𝑆)

𝑝2(𝑆)− (𝑧(𝑆) 𝜀
2
)2

⃒⃒⃒⃒
≥ 𝜀

2

⃒⃒⃒⃒
𝑧(𝑖)𝑝(𝑆)− 𝑝(𝑖)𝑧(𝑆)

𝑝2(𝑆)

⃒⃒⃒⃒
.

As 𝑧(𝑖)𝑝(𝑆)− 𝑝(𝑖)𝑧(𝑆) ≥ 𝑝(𝑆) min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)}, it follows that

|𝑝𝑆(𝑖)− 𝑞𝑆(𝑖)| ≥ 𝜀

2

min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)}
(𝑝(𝑆) + 𝑞(𝑆))/2

To complete the proof, we note that the condition implies that |𝑝𝑆(𝑖)− 𝑞𝑆(𝑖)| ≥ 𝜀
𝑂̃(log𝑐 𝑛)

and thus by Lemma 1, 𝜏 = Ω̃
(︁

log2𝑐 𝑛
𝜀2

)︁
suffices to detect (with failure probability 1/ poly log 𝑛)

that ‖𝑝𝑆 − 𝑞𝑆‖∞ > 𝜀′ = 𝜀
𝑂̃(log𝑐 𝑛)

.

To complete the proof, we will show that after 𝑇 = poly log 𝑛 iterations, Algorithm 18

will choose a set 𝑆 that satisfies the conditions of Proposition 23.

We define 𝑧 to be the vector with 𝑧(𝑖) = 𝑧(𝑖) if |𝑧(𝑖)| > 𝑝(𝑖)+𝑞(𝑖)
400 log𝑛

and 𝑧(𝑖) = 0 other-

wise. Roughly, this “zeroes out” the noise for any 𝑖 where the noise vector 𝑧 is too large

in comparison to the signal vector 𝑝 + 𝑞. Let 𝑏+ be the measure on {1, . . . , 2 log 𝑛} with

mass 𝑧+(Bin𝑗(𝑧
+)) and equivalently define 𝑏−. Notice that |𝑏+|, |𝑏−| ∈ [1 − 1

200 log𝑛
, 1]. This

is because
∑︀

𝑖:𝑧+(𝑖)=0 𝑧
+(𝑖) ≤

∑︀
𝑖
𝑝(𝑖)+𝑞(𝑖)
400 log𝑛

≤ 1
200 log𝑛

.

The next lemma shows that, if there are two bins (with respect to the positive and

negative 𝑧 vectors) which are both “heavy” and are close in index, then we will obtain an

appropriate set 𝑆 (for Proposition 23).

Lemma 64. If 𝑏+(𝑗) > 1
𝑂̃(log𝛼 𝑛)

and 𝑏−(𝑗′) > 1
𝑂̃(log𝛽 𝑛)

, for some 𝑗 and 𝑗′ with 2|𝑗−𝑗′| =

𝑂̃(log𝛾 𝑛), then a single iteration of Algorithm 18 finds set 𝑆 and 𝑖 ∈ 𝑆 with min{𝑧(𝑖), 𝑧(𝑖)−

𝑧(𝑆)} ≥ 𝑝(𝑆)+𝑞(𝑆)

𝑂̃(log𝛾+1 𝑛)
with probability 1

𝑂̃(log𝛼+𝛽+𝛾+1 𝑛)
.

Proof. With probability 1
𝑂̃(log𝑛)

, an iteration of Algorithm 18 will choose 𝑟 = 2−max{𝑗,𝑗′}−3.

Given this value of 𝑟, a unique 𝑖 with 𝑧+(𝑖) ∈ [2−𝑗, 2−𝑗+1) and a unique 𝑖′ with 𝑧−(𝑖′) ∈
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[2−𝑗′ , 2−𝑗′+1) are selected with probability 1
𝑂̃(log𝛼+𝛽+𝛾 𝑛)

. It holds that 𝑧−(𝑖′), 𝑧+(𝑖) ∈ [8, 𝑂̃(log𝛾 𝑛)]·

𝑟 and their corresponding 𝑝(𝑖) + 𝑞(𝑖) ≤ 𝑂(log 𝑛) · 𝑧(𝑖) ≤ 𝑂̃(log1+𝛾 𝑛)𝑟 and 𝑝(𝑖′) + 𝑞(𝑖′) ≤

𝑂̃(log1+𝛾 𝑛)𝑟.

By Markov’s inequality, with probability at least 3/4, 𝑧(𝑆 ∖ {𝑖, 𝑖′}) ≤ 𝑧+(𝑆 ∖ {𝑖, 𝑖′}) ≤ 4𝑟.

Similarly, with probability at least 3/4, 𝑝(𝑆 ∖ {𝑖, 𝑖′}) + 𝑞(𝑆 ∖ {𝑖, 𝑖′}) ≤ 8𝑟. By a union bound

with probability 1/2 both hold simultaneously.

When all of these events occur, which happens with probability at least 1
𝑂̃(log𝛼+𝛽+𝛾+1 𝑛)

we

get that:

min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 4𝑟 since 𝑧(𝑖)− 𝑧(𝑆) ≥ 𝑧−(𝑖′)− 𝑧(𝑆 ∖ {𝑖, 𝑖′}) ≥ 4𝑟

The lemma follows by noting that 𝑝(𝑆) + 𝑞(𝑆) ≤ 𝑂̃(log𝛾+1 𝑛)𝑟.

Finally, we have our main lemma required for the analysis. It leverages Lemma 64 to

show that we can obtain an appropriate set 𝑆 with reasonable probability.

Lemma 65. If 𝑑TV(𝑝, 𝑞) = 𝜀, then a single iteration of Algorithm 18 finds set 𝑆 and 𝑖 ∈ 𝑆

with min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 𝑝(𝑆)+𝑞(𝑆)

𝑂̃(log3 𝑛)
with probability 1

𝑂̃(log6 𝑛)
.

Proof. Before we begin, we require the following two simple concentration lemmas:

Lemma 66. Let 0 < 𝑎 < 𝑏, 𝑋𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(2−𝑎) and let 1 >
∑︀

𝑖:𝑥𝑖<2−𝑏 𝑥𝑖 ≥ 𝑐. Then,∑︀
𝑖:𝑝𝑥𝑖<2−𝑏 𝑋𝑖𝑥𝑖 > 2−𝑎(𝑐− 𝑡2−(𝑏−𝑎)/2), with probability 1− 𝑒−𝑡.

Proof. We apply the Chernoff bound on the variables 𝑍𝑖 = 𝑋𝑖2
𝑏𝑥𝑖. We get that with

probability 1 − 𝑒−𝑡, 2𝑏
∑︀

𝑖:𝑥𝑖<2−𝑏 𝑋𝑖𝑥𝑖 > 2𝑏−𝑎𝑐 − 𝑡2(𝑏−𝑎)/2. Thus, 2𝑎
∑︀

𝑖:𝑥𝑖<2−𝑏 𝑋𝑖𝑥𝑖 > 𝑐 −

𝑡2−(𝑏−𝑎)/2

Lemma 67. Let 𝑎 ≥ 1, 𝑋𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(2−𝑎) and let 1 >
∑︀

𝑖:𝑥𝑖>2−𝑎 𝑥𝑖. Then,
∑︀

𝑖:𝑥𝑖>2−𝑎 𝑋𝑖𝑥𝑖 =

0, with probability 1
4
.

Proof. There are at most 2𝑎 elements 𝑥𝑖 and every element is selected independently with

probability 2−𝑎. The probability that no element is chosen is (1− 2−𝑎)2
𝑎 ≥ 1

4
.
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We continue with the main proof. Consider two cases:

1. 𝑑K(𝑏+, 𝑏−) ≤ 1
8 log𝑛

.

In this case, as
∑︀
𝑏+(𝑗) > 2/3, there will be a bin 𝑗 with 𝑏+(𝑗) ≥ 2/3

2 log𝑛
. As the

𝑑K(𝑏+, 𝑏−) ≤ 1
8 log𝑛

, the corresponding 𝑏−(𝑗) ≥ 1
3 log𝑛

− 2
8 log𝑛

≥ 1
12 log𝑛

. Then, Lemma 64

implies that a good set will be identified with high probability.

2. 𝑑K(𝑏+, 𝑏−) > 1
8 log𝑛

.

In this case, there will be a bin 𝑗𝑟 with |
∑︀

𝑗≥𝑗𝑟
𝑏−(𝑗)−

∑︀
𝑗≥𝑗𝑟

𝑏+(𝑗)| ≥ 1
8 log𝑛

. Without

loss of generality,
∑︀

𝑗≥𝑗𝑟
𝑏+(𝑗) <

∑︀
𝑗≥𝑗𝑟

𝑏−(𝑗).

Let 𝑗𝑙 be the largest index such that 1
8 log𝑛

<
∑︀𝑗𝑟

𝑗=𝑗𝑙
𝑏+(𝑗). Then there must exist a

𝑗* ∈ [𝑗𝑙, 𝑗𝑟] such that 𝑏+(𝑗*) > 1
16 log2 𝑛

as |[𝑗𝑙, 𝑗𝑟]| ≤ 2 log 𝑛.

If there is a 𝑗 ∈ [𝑗*, 𝑗* +2 log log 𝑛], with 𝑏−(𝑗) > 1
100 log𝑛 log log𝑛

, Lemma 64 implies that

with probability 1
𝑂(log6 𝑛)

, min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 𝑝(𝑆)+𝑞(𝑆)

𝑂̃(log3 𝑛)
.

Otherwise, we have that
∑︀

𝑗≥𝑗*+2 log log𝑛 𝑏
−(𝑗) > 1

20 log𝑛
+
∑︀

𝑗≥𝑗* 𝑏
+(𝑗). We will show

that in this case, when the algorithm selects 𝑟 = 2−𝑗* , a good set is identified with

non-trivial probability.

With probability Ω(𝑏+(𝑗*)) = 1
𝑂(log2 𝑛)

, a unique 𝑖 with 𝑧+(𝑖) ∈ [2−𝑗* , 2−𝑗*+1) is selected.

It holds that 𝑧+(𝑖) ∈ [1, 2] · 𝑟 and the corresponding 𝑝(𝑖) + 𝑞(𝑖) ≤ 𝑂(log 𝑛) · 𝑧(𝑖) ≤

𝑂̃(log 𝑛)𝑟.

To complete the proof, we now provide bounds for 𝑧(𝑆 ∖{𝑖}) and 𝑝(𝑆 ∖{𝑖})+𝑞(𝑆 ∖{𝑖}).

We decompose 𝑧(𝑆 ∖ {𝑖}) into contributions from different sets of elements:

(a) 𝑧+((𝑆 ∖ {𝑖}) ∩ (
⋃︀

𝑗≥𝑗* Bin𝑗(𝑧
+))}) ≤ 𝑟

∑︀
𝑗≥𝑗* 𝑏

+(𝑗) + 𝑟
200 log𝑛

with probability at

least 1
100 log𝑛

. This holds by Markov’s inequality.

(b) 𝑧+((𝑆∖{𝑖})∩(
⋃︀

𝑗<𝑗* Bin𝑗(𝑧
+))}) = 0 with probability 1/4. This holds by Lemma 67.

(c) 𝑧+(𝑆 ∖{𝑖})− 𝑧+(𝑆 ∖{𝑖}) ≤ 3 𝑟
200 log𝑛

with probability 2/3. This holds by Markov’s

inequality.

(d) 𝑧−(𝑆 ∖ {𝑖}) ≥ 𝑟
∑︀

𝑗≥𝑗*+2 log log𝑛 𝑏
−(𝑗)− 𝑟

200 log𝑛
with probability 15/16. This holds

by a concentration bound presented in Lemma 66.
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Applying a union bound on cases (b)-(d), we get that they hold simultaneously with

probability 1/8. Noting that

Thus, overall −𝑧(𝑆 ∖ {𝑖}) ≥ 𝑟
∑︀

𝑗≥𝑗*+2 log log𝑛 𝑏
−(𝑗)− 𝑟

∑︀
𝑗≥𝑗* 𝑏

+(𝑗)− 5𝑟
200 log𝑛

≥ 𝑟
20 log𝑛

.

In addition, 𝑧(𝑖) ≥ 𝑟 and thus min{𝑧(𝑖), 𝑧(𝑖) − 𝑧(𝑆)} ≥ 𝑟
20 log𝑛

. With constant proba-

bility, we also have that 𝑝(𝑆) + 𝑞(𝑆) ≤ 𝑂(log 𝑛) · 𝑟.

Thus, with probability 1
𝑂(log4 𝑛)

, min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 𝑝(𝑆)+𝑞(𝑆)

𝑂̃(log2 𝑛)
.

Finally, with Lemma 65 in hand, we combine it with Proposition 23 to complete the

proof of Theorem 52.

Proof of Theorem 52: Set 𝑇 = Θ(log6(𝑛)). Then Lemma 65 implies that, with constant

probability, after 𝑇 iterations, a set 𝑆 will be identified such that for some 𝑖 ∈ 𝑆,

min{𝑧(𝑖), 𝑧(𝑖)− 𝑧(𝑆)} ≥ 𝑝(𝑆) + 𝑞(𝑆)

𝑂̃(log3 𝑛)
.

Proposition 23 then implies that for 𝜀′ = 𝜀
𝑂̃(log3 𝑛)

and 𝜏 = Ω̃
(︁

log6 𝑛
𝜀2

)︁
, the algorithm

correctly outputs that 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with probability at least 1− 1
poly log𝑛

.

In contrast, when 𝑑TV(𝑝, 𝑞) = 0, the algorithm incorrectly correctly outputs that 𝑑TV(𝑝, 𝑞) ≥

𝜀 with probability at most 1
poly log𝑛

.

6.5.5 Analysis of Anaconda for Identity Testing

In this section, we discuss how our results for uniformity testing imply Theorem 54 for

identity testing.

Theorem 54 (Non-Adaptive Identity Testing). There exists an algorithm which, given NA-

COND access to an unknown distribution 𝑝 on [𝑛] and a description of a distribution 𝑞 over

[𝑛], makes 𝑂̃
(︁

log2 𝑛
𝜀2

)︁
queries to the oracle on 𝑝 and distinguishes between the cases 𝑝 = 𝑞

and 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with probability at least 2/3.

We adapt the reduction of [CFGM16], from non-adaptive identity testing to non-adaptive

near-uniform identity testing. In particular, we use their Algorithm 4.2.2, with a few crucial
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differences – to describe these differences, we assume familiarity with the terminology of

their paper.

In Line 1, they partition the domain using 𝐵𝑢𝑐𝑘𝑒𝑡(𝑞, [𝑛], 𝜀
30

). We perform a less fine-

grained partitioning, using 𝐵𝑢𝑐𝑘𝑒𝑡(𝑞, [𝑛], 1
100

). Their bucketing defines 𝑀0 as all 𝑖 such that

𝑞(𝑖) < 1
𝑛
. We define it as all 𝑖 such that 𝑞(𝑖) < 𝜀

100𝑛
.10 The first modification will require a

stronger near-uniform identity tester than the one in their paper, which can handle identity

testing to any distribution 𝑞 such that ‖𝑞 − 𝒰𝑛‖∞ ≤ 1
100𝑛

. The second change implies that

we do not have to do a near-uniform identity test on 𝑀0 – either ‖𝑧(𝑀0)‖1 > 𝜀/50 and

the discrepancy will be discovered in Line 3, or ‖𝑧(𝑀0)‖1 ≤ 𝜀/50, and this bucket can be

ignored, as ‖𝑧([𝑛]∖𝑀0)‖1 ≥ 49𝜀/50. As a result of these changes, there are only Θ(log(𝑛/𝜀))

buckets in the partition, and we perform the tests in Line 2 with error bound 𝛿 log(1+1/100)
2 log(100𝑛/𝜀)

.

With these changes, mimicking the analysis of Theorem 4.2.1 of [CFGM16] gives the

following theorem:

Theorem 57. Suppose there exists a 𝑘(𝑛, 𝜀, 𝛿)-query algorithm, which, given NACOND ac-

cess to an unknown distribution 𝑝 over [𝑛] and a description of a distribution 𝑞 over [𝑛]

such that ‖𝑞 − 𝒰𝑛‖∞ ≤ 1
100𝑛

, distinguishes between the cases 𝑝 = 𝑞 versus 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with

probability 1− 𝛿.

Then there exists an algorithm which, given NACOND access to an unknown distribution 𝑝

on [𝑛] and a description of a distribution 𝑞, makes 𝑂̃
(︂

log(𝑛/𝜀) · 𝑘
(︁
𝑛, 𝜀/2, log(1+1/100)

6 log(100𝑛/𝜀)

)︁
+

√
log(𝑛/𝜀)

𝜀2

)︂
queries to the oracle on 𝑝 and distinguishes between the cases 𝑝 = 𝑞 and 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with

probability at least 2/3.

In the rest of this section, we will sketch how the analysis of Theorem 53 can be extended

to apply to any distribution 𝑞 such that ‖𝑞 − 𝒰𝑛‖∞ ≤ 1
100𝑛

, while maintaining the same

sample complexity:

Theorem 58 (Non-Adaptive Near-Uniform Identity Testing). There exists an algorithm

which, given NACOND access to an unknown distribution 𝑝 over [𝑛] and a description of a

distribution 𝑞 over [𝑛] such that ‖𝑞−𝒰𝑛‖∞ ≤ 1
100𝑛

, makes 𝑂̃
(︀
log𝑛
𝜀2

)︀
queries to the oracle on 𝑝

and distinguishes between the cases 𝑝 = 𝑞 versus 𝑑TV(𝑝, 𝑞) ≥ 𝜀 with probability at least 2/3.
10We note that the original definition of 𝑀0 used in [CFGM13, CFGM16] appears to be an erratum, and

a similar modification is required for the reduction to go through in their setting as well.
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With this in hand, instantiating Theorem 57 with 𝑘(𝑛, 𝜀, 𝛿) = 𝑂̃
(︀
log𝑛
𝜀2
· log(1/𝛿)

)︀
11 gives

Theorem 54.

Most of the analysis in Section 6.5.3 involves reasoning about the noise vector 𝑧, none of

which changes for this setting. The exceptions are at the end of Sections 6.5.3.1 and 6.5.3.2,

where we argue that (6.5) is large. We deal with the former case first – here, (6.5) can be

written as

𝜀 ·
⃒⃒⃒⃒
𝑧(𝑖1)𝑞(𝑖2)− 𝑧(𝑖2)𝑞(𝑖1)

𝑞(𝑆)(𝑞(𝑆) + 𝜀𝑧(𝑆))

⃒⃒⃒⃒
≥ 𝜀

2 · 1
5𝑛
· 99
100𝑛

202
100𝑛

(︀
202
100𝑛

+ 𝜀 · 32
𝑛

)︀ ≥ Ω(𝜀),

as desired. In the latter case, the proof follows with two minimal changes in the events that

happen simultaneously (mentioned towards the end of the section). Instead of 𝒰𝑛(𝑖) = 1/𝑛,

we have that 𝑞(𝑖) ≤ 101/100𝑛. Also, instead of 1
2𝑟
≤ 𝒰𝑛(𝑆 ∖ 𝑖) ≤ 3

2𝑟
, we have that 1

2𝑟
≤

𝑞(𝑆 ∖ 𝑖) ≤ 3
2𝑟

. This can be proved by essentially the same argument as Lemma 62, but

rescaling at the end by a factor of 100𝑛/99 or 100𝑛/101. With these changes, the argument

is identical, and thus we have Theorem 58, implying Theorem 54.

6.5.6 An Algorithm for Support Size Estimation

In this section, we sketch how similar – yet less involved – ideas as our algorithm for support

size estimation (in Section 6.4) can be used to derive a non-adaptive upper bound for support-

size estimation. For simplicity, we describe the algorithm for 2-approximation: adapting it

to general (1 + 𝜀)-approximation is straightforward.

The high-level idea is to perform a simple binary search (instead of the double exponential

search from the preceding section) to identify the greatest lower bound on the support size

of the form 𝑘 = 2𝑗. For each guess 𝑘 ∈ {2, 4, 8 . . . , 𝑛}, we pick uniformly at random a set

𝑆 ⊆ [𝑛] of cardinality 𝑘, and check whether 𝑝𝑆 is uniform using the non-adaptive tester of

Theorem 53. If 𝑝𝑆 is found to be uniform for all values of 𝑘, we return 𝑛 as our estimate (as

the distribution is close to uniform on [𝑛]); otherwise, we return 𝑛/𝑘, for the smallest 𝑘 on

which 𝑝𝑆 was found to be far from uniform. Indeed, 𝑝𝑆 can only be far from uniform if 𝑆

contains points from the support of 𝑝, which intuitively only happens if 𝑛/𝑘 = Ω (1).

11Note that a standard boosting applied to Theorem 58 gives a 1−𝛿 probability of success at a multiplicative
cost of log(1/𝛿).
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To be more precise, the algorithm proceeds as follows, where 𝜏 > 0 is an absolute constant:

for all 𝑘 ∈ {2, 4, . . . , 𝑛} do

Set a counter 𝑐𝑘 ← 0.

for 𝑚 = 𝑂 (log log 𝑛) times do

Pick uniformly at random a set 𝑆 ⊆ [𝑛] of 𝑘 elements.

Test (non-adaptively) uniformity of 𝑝𝑆 on 𝑆, with the tester of Theorem 53.

if the tester rejects then increment 𝑐𝑘.

end if

end for

if 𝑐𝑘 > 𝜏 ·𝑚 then return 𝜔̃ ← 𝑛
𝑘
.

end if

end for

return 𝜔̃ ← 𝑛.

The query complexity is easily seen to be poly log 𝑛, from the 𝑂̃ (log 𝑛) calls to the 𝑂̃(log 𝑛)

tester of Theorem 53. As for correctness, it follows from the fact that for any set 𝑆 with

mass 𝑝(𝑆) > 0 which contains at least an 𝜂 fraction of points outside the support, it holds

that 𝑝𝑆 is 𝜂-far from the uniform distribution on 𝑆.

6.6 Non-Adaptive Lower Bounds

In this section, we prove our lower bounds for non-adaptive support-size estimation and

uniformity testing, Theorems 55 and 56.

Theorem 55 (Non-Adaptive Support-Size Estimation Lower Bound). Any algorithm which,

given NACOND access to an unknown distribution 𝑝 on [𝑛], estimates the size of the support

up to a factor of 𝛾 ≥
√

2 must make at least Ω
(︁

log𝑛
log2 𝛾

)︁
queries.

Theorem 56 (Non-Adaptive Uniformity Testing Lower Bound). Any algorithm which, given

NACOND access to an unknown distribution 𝑝 on [𝑛], distinguishes between the cases 𝑝 = 𝒰𝑛
and 𝑑TV(𝑝,𝒰𝑛) ≥ 𝜀 with probability at least 2/3 must make at least Ω (log 𝑛/𝜀) queries.

These two theorems follow from the same argument, which we outline below before
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turning to the proof itself. Note that we will, in this section, establish Theorem 56 for

constant 𝜀, i.e. 𝜀 = 1/4; before explaining how to derive the general statement as a corollary

at the end.

Structure of the proof. By Yao’s Minimax Principle, we consider deterministic tests

and study their performance over random distributions, chosen to be uniform over a random

subset of carefully picked size. The proof of Theorem 55 then proceeds in three steps: in

Lemma 68, we first argue that all queries made by the deterministic tester will (with high

probability over the choice of the support size 𝑠) behave very “nicely” with regard to 𝑠, i.e.

not be concentrated around it. Then, we condition on this to bound the total variation

distance between the sequence of samples obtained in the two cases we “oppose,” a random

distribution from a family 𝒫 and the corresponding one from a family 𝒬. In Lemma 69

we show that the part of total variation distance due to samples from the small queries is

zero, except with probability 𝑜(1) over the choice of 𝑠. Similarly, Lemma 69 allows us to say

(comparing both cases to a third “reference” case, a honest-to-goodness uniform distribution

over the whole domain, and applying a triangle inequality) that the remaining part of the

total variation distance due to samples from the big queries is zero as well, except again

with probability 𝑜(1). Combining these three lets us conclude by properties of the total

variation distance, as (since the queries are non-adaptive) the distribution over the sequence

of samples is a product distribution. (Moreover, applying Lemma 69 as a stand-alone enables

us, with little additional work, to obtain Theorem 56, as our argument in particular implies

distributions from 𝒫 are hard to distinguish from uniform.)

The families 𝒫 and 𝒬. Fix 𝛾 ≥
√

2 as in Theorem 55; writing 𝛽 , 𝛾2, we define the set

𝒮 ,

{︂
𝛽𝑘𝑛1/4 : 0 ≤ 𝑘 ≤ log 𝑛

2 log 𝛽

}︂
= {𝑛1/4, 𝛽𝑛1/4, 𝛽2𝑛1/4, . . . , , 𝑛3/4} (6.12)

A no-instance (𝑝, 𝑞) ∈ 𝒫 ×𝒬 is then obtained by the following process:

∙ Draw 𝑠 uniformly at random from 𝒮.

∙ Pick a uniformly random set 𝑆1 ⊆ [𝑛] of size 𝑠, and set 𝑝 to be uniform on 𝑆1.
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∙ Pick a uniformly random set 𝑆2 ⊆ [𝑛] of size 𝛽𝑠, and set 𝑞 to be uniform on 𝑆2.

(Similarly, a yes-instance is obtained by first drawing a no-instance (𝑝, 𝑞), and discarding 𝑞

to keep only (𝑝, 𝑝) ∈ 𝒫 ×𝒬.)

We will argue that no algorithm can distinguish with high probability between the cases

(𝑝, 𝑞) ∼ 𝒫 × 𝒬 and (𝑝, 𝑞) ∼ 𝒫 × 𝒫 , by showing that in both cases 𝑝 and 𝑞 generate

transcripts indistinguishable from those the uniform distribution 𝒰𝑛 would yield. This will

imply Theorem 55, as any algorithm to estimate the support within a multiplicative 𝛾 would

imply a distinguisher between instances of the form (𝑝, 𝑝) and (𝑝, 𝑞) (indeed, the support

sizes of 𝑝 and 𝑞 differ by a factor 𝛽 = 𝛾2). (As for Theorem 56, observe that any distribution

𝑝 ∈ 𝒫 has constant distance from the uniform distribution on [𝑛], so that a uniformity tester

must be able to tell 𝑝 apart from 𝒰𝑛.)

Small and big query sets. Let 𝒯 be any deterministic non-adaptive algorithm making

𝑚𝒯 ≤ 𝑚 = 1
80000

log𝑛
log2 𝛽

queries. Without loss of generality, we can assume 𝒯 makes exactly

𝑚 queries, and denote them by 𝐴1, . . . , 𝐴𝑚 ⊆ [𝑛]. Moreover, we let 𝑎𝑖 = |𝐴𝑖|, and (again

without loss of generality) write 𝑎1 ≥ · · · ≥ 𝑎𝑚.

As a preliminary observation, note that for any 𝐴 ⊂ [𝑛] and 0 ≤ 𝑠 ≤ 𝑛 we have

E𝑆 [|𝑆 ∩ 𝐴|] =
|𝐴|𝑠
𝑛

where the expectation is over a uniform choice of 𝑆 among all
(︀
𝑛
𝑠

)︀
subsets of size 𝑠. This

observation will lead us to divide the query sets 𝐴𝑖 in two groups, depending on the expected

size of their intersection with the (random) support.

With this in mind, the following definition will be crucial to our proof. Intuitively, it

captures the distribution of sizes of intersection of various query sets with the randomly

chosen set 𝑆.

Definition 26. Let 𝑠 ≥ 1, and 𝒜 = {𝑎1, . . . , 𝑎𝑚} be any set of 𝑞 integers. For a real number

𝑡 > 0, define

𝐶𝑡(𝑠) ,
⃒⃒⃒{︁
𝑖 ∈ [𝑚] :

𝑎𝑖𝑠

𝑛
∈
(︀
𝛽−𝑡, 𝛽𝑡

)︀}︁⃒⃒⃒
(6.13)

to be the number of 𝑡-hit points of 𝒜 (for 𝑠).
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The next result will be crucial to prove our lower bounds: it roughly states that if we

consider the set of 𝑎𝑖’s and scale them by the random quantity 𝑠/𝑛, then the distribution of

the random variable generated has an exponential tail with respect to 𝑡.

Lemma 68 (Hitting Lemma). Fix 𝒜 as in the previous definition. If 𝑠 is drawn uniformly

at random from 𝒮, then with probability at least 99/100.

sup
𝑡>0

𝐶𝑡(𝑠)

𝑡
<

2

100
. (6.14)

Proof. Without loss of generality, assume that the 𝑎𝑖’s are in decreasing order. We will

work in the logarithmic domain: a number 𝑎𝑖 contributes to 𝐶𝑡(𝑠) if and only if log 𝑠 ∈

[log(𝑛/𝑎𝑖) − 𝑡 log 𝛽, log(𝑛/𝑎𝑖) + 𝑡 log 𝛽]. Indeed, we can restate the lemma in an additive

form. Let 𝒜 = {𝛼1, . . . , 𝛼𝑚} be any set of numbers in [0, log 𝑛]. These are defined as

transformations of 𝑎𝑖’s: 𝛼𝑖 , log(𝑛/𝑎𝑖). In the additive restating, 𝑥 will play the role of

log 𝑠, or equivalently, 𝑠 = 2𝑥. For a point 𝑥 ∈ [0, log 𝑛], let ℓ𝑥𝑗 (𝑟𝑥𝑗 respectively) denote the

distance of 𝑥 from the 𝑗th point to its left (right respectively) from the set 𝒜. More precisely,

if 𝛼𝛾 ≤ 𝑥 ≤ 𝛼𝛾+1, ℓ𝑥𝑗 , 𝑥 − 𝛼𝛾+1−𝑗. If we consider only points to the left of 𝑥, ℓ𝑥𝑗 / log 𝛽 is

the least value of 𝑡 such that 𝐶𝑡(2
𝑥) = 𝑗. Therefore, if 𝑡𝑥𝑗 , 1

log 𝛽
min

{︀
ℓ𝑥𝑗 , 𝑟

𝑥
𝑗

}︀
, then we are

guaranteed that 𝑗 ≤ 𝐶𝑡𝑥𝑗
(2𝑥) ≤ 2𝑗.

Observe that 𝐶𝑡(2
𝑥) is a piecewise-constant function which is monotone non-decreasing

in 𝑡. Therefore, the supremum of 𝐶𝑡(2𝑥)
𝑡

is attained at one of these discontinuities:

sup
𝑡>0

𝐶𝑡(2
𝑥)

𝑡
= max

{𝑡 : ∀𝛿>0,𝐶𝑡−𝛿(2𝑥)<𝐶𝑡(2𝑥)}

𝐶𝑡(2
𝑥)

𝑡
.

We can in turn upper bound this by looking at the set of all 𝑡𝑥𝑗 . Note that this may ignore

some discontinuous points: for instance, suppose that ℓ𝑥𝑗 < 𝑟𝑥𝑗 , then 𝑟𝑥𝑗 / log 𝛽 will not be

considered. However, we note that in this case, 𝐶𝑟𝑥𝑗 / log 𝛽
(2𝑥) ≤ 2𝐶ℓ𝑥𝑗 / log 𝛽

(2𝑥) = 2𝐶𝑡𝑥𝑗
(2𝑥):

𝐶𝑟𝑥𝑗 / log 𝛽
(2𝑥)

𝑟𝑥𝑗 / log 𝛽
≤
𝐶𝑟𝑥𝑗 / log 𝛽

(2𝑥)

ℓ𝑥𝑗 / log 𝛽
≤

2𝐶ℓ𝑥𝑗 / log 𝛽
(2𝑥)

ℓ𝑥𝑗 / log 𝛽
=

2𝐶𝑡𝑥𝑗
(2𝑥)

𝑡𝑥𝑗
.
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Therefore,

sup
𝑡>0

𝐶𝑡(2
𝑥)

𝑡
≤ max

{𝑡𝑥𝑗 : 𝑗∈[𝑚]}

2𝐶𝑡𝑥𝑗
(2𝑥)

𝑡𝑥𝑗
≤ max

{𝑡𝑥𝑗 : 𝑗∈[𝑚]}

4𝑗

𝑡𝑥𝑗
= max

{𝑡𝑥𝑗 : 𝑗∈[𝑚]}

4𝑗 log 𝛽

min{ℓ𝑥𝑗 , 𝑟𝑥𝑗 }

We would like to upper bound this term by 2/100. Equivalently, we satisfy the lemma

conditions if

min
𝑗

{︂
𝑡𝑥𝑗
𝑗

}︂
≥ 200 log 𝛽.

For a constant 𝑐 > 0, let 𝑆𝑐 be the set of all points 𝑥 (where recall 𝑠 = 2𝑥 is selected

according to the distribution 𝒮) such that violate this inequality for 𝑐:

min
𝑗

{︂
𝑡𝑥𝑗
𝑗

}︂
≤ 𝑐.

We would like to upper bound the probability that a randomly selected 𝑥 violates this inequal-

ity for 𝑐 = 200 log 𝛽 by 1/100. Equivalently, since 𝑥 is selected uniformly at random from
log𝑛
2 log 𝛽

different values, we would like to upper bound the size of 𝑆200 log 𝛽 by log 𝑛/200 log 𝛽.

We do this with the following claim:

Claim 12. |𝑆𝑐| ≤ 2𝑐𝑚.

Substituting in 𝑐 = 200 log 𝛽 and 𝑚 = log 𝑛/80000 log2 𝛽 will give the desired result.

Proof of Claim 12. We consider the set of points in 𝑆𝑐,ℓ ⊂ 𝑆𝑐 that satisfy ℓ𝑥𝑗 /𝑗 < 𝑐 for some

𝑗, and show that their measure is at most 𝑐𝑚. An identical bound holds for the set of points

of 𝑆𝑐 for which 𝑟𝑥𝑗 /𝑗 < 𝑐. Let 𝑆𝑖
𝑐,ℓ ⊂ 𝑆𝑐,ℓ be the set of points in 𝑆𝑐,ℓ that satisfy min𝑗

{︁
𝑡𝑥𝑗
𝑗

}︁
< 𝑐

with respect to the set 𝛼1, . . . , 𝛼𝑖. We will show by induction that |𝑆𝑖
𝑐,ℓ| < 𝑐𝑖.

For the first point 𝛼1, the set 𝑆1
𝑐,ℓ = [𝛼1, 𝛼1 + 𝑐]. Suppose by induction that |𝑆𝑖

𝑐,ℓ| < 𝑐𝑖.

Let 𝑥𝑖 be the right-most point in the set 𝑆𝑖
𝑐,ℓ. Then it is clear that 𝑥𝑖 > 𝛼𝑖, in fact 𝑥𝑖 ≥

𝛼𝑖 + 𝑐. Furthermore, either 𝑥𝑖 = log 𝑛, or ℓ𝑥𝑖
𝑗 /𝑗 = 𝑐 for some 𝑗. Moreover, we claim that

[𝛼𝑖, 𝑥𝑖] ∈ 𝑆𝑖
𝑐,ℓ. Indeed, for the same 𝑗 that ℓ𝑥𝑖

𝑗 /𝑗 < 𝑐, all points in [𝛼𝑖, 𝑥𝑖] satisfy the condition.

If 𝑥𝑖 = log 𝑛, then the result holds trivially. We therefore consider the point 𝛼𝑖+1 and prove

the inductive step for 𝑥𝑖 < log 𝑛. There are two cases:
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If 𝛼𝑖+1 ≥ 𝑥𝑖: In this case, 𝑆𝑖+1
𝑐,ℓ = 𝑆𝑖

𝑐,ℓ ∪ [𝛼𝑖+1, 𝑥𝑖+1]. We have to show that 𝑥𝑖+1 ≤ 𝛼𝑖+1 + 𝑐.

Suppose to the contrary that 𝑥𝑖+1 > 𝛼𝑖+1 + 𝑐 ≥ 𝑥𝑖 + 𝑐. Then there is a point 𝛼ℎ for

ℎ ≤ 𝑖, such that 𝑥𝑖+1−𝛼ℎ

𝑖+2−ℎ
< 𝑐, and then 𝛼𝑖+1+𝑐−𝛼ℎ

𝑖+2−ℎ
< 𝑐, so that

𝛼𝑖+1 − 𝛼ℎ

𝑖+ 1− ℎ
< 𝑐,

however, this implies that 𝛼𝑖+1 ∈ 𝑆𝑖
𝑐,ℓ, contradicting the assumption of this case.

If 𝛼𝑖+1 < 𝑥𝑖: In this case, 𝑆𝑖+1
𝑐,ℓ = 𝑆𝑖

𝑐,ℓ ∪ [𝑥𝑖, 𝑥𝑖+1]. We have to show that 𝑥𝑖+1 ≤ 𝑥𝑖 + 𝑐.

Suppose on the contrary that 𝑥𝑖+1 > 𝑥𝑖 + 𝑐 > 𝛼𝑖+1 + 𝑐. Suppose ℎ be the index such

that 𝑥𝑖+1−𝛼ℎ

𝑖+2−ℎ
< 𝑐, and therefore, 𝑥𝑖+𝑐−𝛼ℎ

𝑖+2−ℎ
< 𝑐, implying that

𝑥𝑖 − 𝛼ℎ

𝑖+ 1− ℎ
< 𝑐,

contradicting that 𝑥𝑖 is the rightmost point of 𝑆𝑖
𝑐,ℓ.

This concludes the proof of the hitting lemma.

We proceed to show how to use this lemma to bound the contribution of various types

of queries to the distinguishability of 𝑝 and 𝑞. In particular, we will apply Lemma 68 to the

set of query sizes {𝑎1, . . . , 𝑎𝑚}.

Recall that the 𝑎𝑖’s are non-increasing. If 𝑎𝑚′𝑠/𝑛 ≤ 1 let 𝑚′ , 𝑚 + 1, otherwise define 𝑚′

as the largest integer such that 𝑎𝑚′𝑠/𝑛 > 1. We partition the queries made by 𝒯 in two:

𝐴1, . . . , 𝐴𝑚′ are said to be big, while 𝐴𝑚′+1, . . . , 𝐴𝑚 are small queries.

Lemma 69. With probability at least 1 − 2−10, a random distribution from 𝒫 or from 𝒬

does not intersect with any small query.

Proof. Let 𝑠 be the random size drawn for the definition of the instances. We first claim

that E[|𝐴𝑚′+𝑗 ∩ 𝑆|] ≤ 𝛽−50𝑗 for all 𝑗 ≥ 1, where the expectation is over the uniform choice

of set 𝑆1 for 𝑝. Indeed, by contradiction suppose there is a 𝑗 ≥ 1 such that E[|𝐴𝑚′+𝑗 ∩ 𝑆|] =
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𝑎𝑚′+𝑗𝑠

𝑛
> 𝛽−50𝑗. By definition of 𝑚′, for 1 ≤ 𝑖 ≤ 𝑗,

1 ≥ 𝑎𝑚′+𝑖𝑠

𝑛
> 𝛽−50𝑗.

Therefore, the queries 𝐴𝑚′ , 𝐴𝑚′+1, . . . , 𝐴𝑚′+𝑗 contribute to 𝐶50𝑗, and we obtain 𝐶50𝑗

50𝑗
≥ 𝑗

50𝑗
=

2
100
, contradicting Lemma 68. Thus, the expected intersection can be bounded as follows:

E[|(𝐴𝑚′+1 ∪ 𝐴𝑚′+2 · · · ∪ 𝐴𝑚) ∩ 𝑆|] ≤ E[|𝐴𝑚′+1 ∩ 𝑆|] + E[|𝐴𝑚′+2 ∩ 𝑆|] + · · ·+ E[|𝐴𝑚 ∩ 𝑆|]

≤ 𝛽−50 + 𝛽−100 + . . .

≤ 2−12,

since 𝛽 ≥ 2. From this, we obtain the result holds for 𝒫 by Markov’s inequality. The same

applies to 𝒬 with probability of intersection at most 2−10, proving the lemma.

We now turn our attention to the sets with large intersections. We will show that under 𝒫

and 𝒬, the output of querying the sets 𝐴1, . . . 𝐴𝑚′ are indistinguishable from simply picking

elements uniformly from the sets 𝐴1, . . . , 𝐴𝑚′ . More precisely, we establish the following.

Lemma 70. Let 𝜂* = 2−10 and 𝜂𝑠 = 1/100; and fix ℓ ∈ {1, 2}. At least an 1− 𝜂𝑠 fraction of

elements 𝑠1, . . . , 𝑠𝑚′ ∈ 𝐴1 × 𝐴2, . . . , 𝐴𝑚′ satisfy

Pr
ℓ

[ (𝑠1, . . . , 𝑠𝑚′) ] ∈ [1− 5𝜂*, 1 + 5𝜂*] · 1

|𝐴1| . . . |𝐴𝑚′|
, (6.15)

for ℓ ∈ {𝑝, 𝑞}.

As this holds for most distributions in both 𝒫 and 𝒬, this implies the queries are indis-

tinguishable from the product distribution over 𝐴1 ×𝐴2, . . . , 𝐴𝑚′ (which is the one induced

by the same queries on the uniform distribution over [𝑛]) in either case, with probability at

least 1− 𝜂𝑠 − 5𝜂*.

Proof of Lemma 70. From standard Chernoff-like concentration bounds for hypergeometric

random variables (Lemma 3), we obtain the claim below.
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Claim 13. Suppose 𝐴 is a set of size 𝑎, and 𝑆 is a uniformly chosen random set of size 𝑠.

Then, for all 𝜂 ∈ (0, 1], we have Pr
[︀
|𝐴 ∩ 𝑆| > (1 + 𝜂)𝑎𝑠

𝑛

]︀
< 𝑒−𝜂2· 𝑎𝑠

3𝑛 and Pr
[︀
|𝐴 ∩ 𝑆| < (1− 𝜂)𝑎𝑠

𝑛

]︀
<

𝑒−𝜂2· 𝑎𝑠
3𝑛 .

We use this to show that indeed all the |𝐴𝑖∩𝑆| concentrate around their expected values

for 1 ≤ 𝑗 ≤ 𝑚′. First note that, as a consequence of Lemma 68, it is the case that these

expected values satisfy 𝑎𝑚′−𝑗𝑠/𝑛 ≥ 𝛽50(𝑗+1) for every 0 ≤ 𝑗 ≤ 𝑚′ − 1 (with probability at

least 99/100). Conditioning on this, we first invoke Lemma 13 on 𝐴𝑗 with 𝜂 = 3 · 𝛽20(𝑗+1),

and then apply a union bound to obtain

Pr
[︁
∃𝑗 ∈ [𝑚′] s.t. |𝐴𝑗 ∩ 𝑆| /∈

[︁
1− 4 · 𝛽−20(𝑗+1), 1 + 4 · 𝛽−20(𝑗+1)

]︁
· 𝑎𝑗𝑠
𝑛

]︁
< 𝑒−𝛽10

(6.16)

i.e., with high probability all intersections simultaneously concentrate around their expected

values.

Note that since 𝑠 is at most 𝑛3/4, each 𝐴𝑖 under consideration has size at least 𝑛𝛽50/𝑛3/4 >

𝑛1/4. Therefore, the probability that a random selection of elements from𝐴1, . . . , 𝐴𝑚′ exhibits

no collision is at least

𝑚′∏︁
𝑖=1

|𝐴𝑖| −𝑚′

|𝐴𝑖|
≥
(︂

1− 𝑚′

𝑛1/4

)︂𝑚′

≥ 1− (𝑚′)2

𝑛1/4
> 1− log2 𝑛

𝑛1/4
.

We henceforth condition on this event.

Let 𝑁 =
(︀
𝑛
𝑠

)︀
be the number of outcomes for the set 𝑆. We write 𝑁0 ≥ 𝑁(1 − 𝑒−𝛽10

)

for the number of such sets for which (6.16) holds. Let 𝑠𝑚′
1 denote 𝑠1 . . . 𝑠𝑚′ . For a set of

distinct (𝑠1, . . . , 𝑠𝑚′) ∈ 𝐴1 × · · · × 𝐴𝑚′ , let 𝑁(𝑠𝑚
′

1 ) =
(︀
𝑛−𝑚′

𝑠−𝑚′

)︀
be the number of sets of size 𝑠

that contain 𝑠𝑚′
1 , and let 𝑁0(𝑠

𝑚′
1 ) of them satisfy (6.16).

By Markov’s inequality, with probability at least 1− 𝑒−𝛽9 , for a randomly chosen 𝑠𝑚′
1 we

have 𝑁0(𝑠
𝑚′
1 )/𝑁(𝑠𝑚

′
1 ) > 1− 𝑒2−𝛽9 . For any such 𝑠𝑚′

1 ,

Pr
[︁
𝑠𝑚

′

1

]︁
≥ 𝑁0(𝑠

𝑚′
1 )

𝑁
·

𝑚′∏︁
𝑖=1

1

|𝐴𝑖 ∩ 𝑆|
≥ (1− 𝑒2−𝛽9

)
𝑠(𝑠− 1) . . . (𝑠−𝑚′ + 1)

𝑛(𝑛− 1) . . . (𝑛−𝑚′ + 1)
· (1− 4 · 𝛽−19)

𝑚′∏︁
𝑖=1

𝑛

𝑎𝑖𝑠

≥ (1− 6 · 𝛽−19)
𝑚′∏︁
𝑖=1

1

𝑎𝑖
,
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for large 𝑛 and as |𝑆| > 𝑛1/4. Since the sum of probabilities of elements is at most 1, the

other side of the inequality in Lemma 70 follows.

Proof of Theorem 55 and Theorem 56 : Let 𝑇1 (resp. 𝑇2, 𝑇𝑈) be the distribution

over transcripts generated by the queries 𝐴1, . . . , 𝐴𝑚 when given conditional access to the

distribution 𝑝 from a no-instance (resp. 𝑞, resp. uniform 𝒰𝑛); that is, a distribution over 𝑚-

tuples in 𝐴1×· · ·×𝐴𝑚. Since the queries were non-adaptive, we can break 𝑇1 (and similarly

for 𝑇2, 𝑇𝑈) in 𝑇 big
1 × 𝑇 small

1 according to 𝑚′, and use Lemma 70 and Lemma 69 separately

to obtain 𝑑TV(𝑇1, 𝑇𝑈) ≤ 𝜂𝑠 + 𝜂* + 2−10 < 1/50 and 𝑑TV(𝑇1, 𝑇𝑈) ≤ 𝜂𝑠 + 𝜂* + 2−10 < 1/50 (for

the latter, recalling that queries that do not intersect the support receive samples exactly

uniformly distributed in the query set) – thus establishing both theorems.

On the dependence on 𝜀 in Theorem 56. We remark that Theorem 56, by establishing

a lower bound of Ω (log 𝑛) queries for non-adaptive testing of uniformity with constant dis-

tance parameter 1/4, immediately implies, by a standard argument, an Ω ((log 𝑛)/𝜀) lower

bound for distance parameter 𝜀 ∈ (0, 1/4). In more detail, this is a consequence of the

following reduction: any 𝑚(𝑛, 𝜀)-query non-adaptive tester for uniformity 𝒯 can be used,

given conditional access to some distribution 𝑝 on [𝑛], on the mixture distribution

𝑝𝜀 , 4𝜀𝑝+ (1− 4𝜀)𝒰𝑛 , (6.17)

for which a conditional oracle can be easily simulated given a conditional oracle for 𝑝. More-

over, answering 𝑚(𝑛, 𝜀) to 𝑝𝜀 can be done with an expected 4𝜀𝑚(𝑛, 𝜀) conditional queries

to 𝑝. As it is immediate to see that 𝑑TV(𝑝𝜀,𝒰𝑛) = 4𝜀𝑑TV(𝑝,𝒰𝑛), we get that 𝒯 can be used

to obtain a tester for non-adaptive testing of uniformity with constant distance parameter

1/4, with query complexity 𝑂(𝜀𝑚(𝑛, 𝜀)) for every 𝜀 < 1/4 (converting the expected query

complexity to a worst-case one is straightforward via Markov’s inequality followed by success

probability amplification by a constant number of repetitions). Therefore, the lower bound

of Theorem 56 implies that 𝑚(𝑛, 𝜀) = Ω ((log 𝑛)/𝜀), as claimed.

It is also worth noting that the above argument does not yield an analogue statement for

support-size estimation via Theorem 55. Indeed, mixing the distribution 𝑝 with the uniform
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distribution does not preserve the support size in that case (nor the guarantee that every

point of the support has probability mass at least 𝜏/𝑛).
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Chapter 7

Other Directions in Distribution Testing

This thesis focused on several recent directions in distribution testing which the author has

worked on – it does not attempt to be a comprehensive resource for all problems worth

studying. Below, we highlight a few additional directions which may be of interest. We hope

that some of these suggestions inspire additional work in this field.

Communication Constrained Testing. Often, data may be collected on a number of

different devices simultaneously, and we wish to perform some statistical procedure on the

dataset as a whole. Some examples include data collected via a sensor network, or user data

generated on a number of remote devices like cellphones. One approach is to send all the

data to a central authority who then performs the statistical procedure, but this involves

communicating a significant amount of data over the network. The pertinent question is

whether one can reduce the amount of communication required. This appears to be an

emerging area of interest within distribution testing [ACT18, FMO18], and there are likely

to be connections with the field of sketching [SS02].

Memory Constrained Testing. In a similar vein to the previous direction, we may wish

to perform some statistical task on a computing device with restricted memory. For instance,

a cellphone may need to run some background processes with limited memory, in order to

avoid slowing the phone significantly and ruining the user experience. This type of memory-

restricted statistical inference has been studied recently in the learning community [Raz16,
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KRT17a, Raz17, MM17, GRT18, MM18], but has not yet seen significant study in the

distribution testing and property estimation community. [GMV06] is one classic result which

studies the estimation of entropy and various distribution divergences in this setting. There

are likely to be significant connections with the streaming literature [AMS99, Mut05].

Sampling Correctors. The work of Canonne, Gouleakis, and Rubinfeld [CGR18] initiates

the study of sampling correctors. A sampling corrector is an algorithm which receives samples

from a distribution which is close to having some property 𝒞, and outputs samples from

a nearby distribution which has the property 𝒞. Observe that this can be viewed as a

generalization of the agnostic learning problem. The authors investigate various connections

between sampling correctors, agnostic learning, and distribution testing. While this paper

sets the stage for study, there is much room for investigating sampling correctors for a number

of classes of interest.

Quantum Tomography, Certification, and Estimation. As quantum devices become

more prevalent, methods to estimate and test properties of quantum states will become

increasingly important. There has recently been significant interest in studying the copy

complexity required to estimate various properties of mixed quantum states. Quantum to-

mography is the quantum equivalent of distribution learning, and is studied in [FGLE12,

Wri16, OW16a, OW17, OW16b, HHJ+17, KRT17b, Aar18, ACHN18]. There are also quan-

tum equivalents of distribution testing (quantum state certification), support size testing

(rank testing) and entropy estimation (entropy estimation). See [MdW16] for a survey of

this field, and [HM13a, OW15, HLM17, GNW17, BOW17, AISW17, PLM18] for some recent

works in this area. The above works focus on quantum algorithms for testing of quantum

states. A slightly different direction is to use quantum algorithms for classical distribution

testing problems, as considered in [BHH11, LW17]

Tolerant Testing. In Chapter 2, we investigated tolerant distribution testing with re-

spect to a number of different distances. While we obtained a tight understanding for all

the problems we considered, there are still a number of fundamental questions which one

can ask when in search of strongly-sublinear tolerant testers. First, we only considered a
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limited number of distribution distances, and additional distance measures might give rise

to testing problems with new sample complexities. For instance, we conjecture that there

exists a hierarchy of distances between 𝜒2-distance and KL divergence, and that testing with

tolerance to these intermediate distances might allow one to interpolate between the Θ(𝑛1/2)

and Θ(𝑛/ log 𝑛) sample complexities at either end. Second, our focus in Chapter 2 was on

testing problems with a constant factor gap between the soundness and completeness cases.

It is likely that one can reduce the sample complexity of these problems by increasing this

gap, thereby reducing the amount of tolerance provided by the testing algorithm.

High-Dimensional Testing. As covered in Chapter 4, one can efficiently test distribu-

tions over a multivariate domain if the underlying density is from an Ising model. Similar

results exist for testing Bayesian networks [DP17, CDKS17, ABDK18]. This is far from a

comprehensive list of all multivariate distributions, and there are many natural structures

which may permit distribution testing with complexity which is polynomial in the dimen-

sion. One clear open problem is to understand the complexity of testing Markov Random

Fields (MRFs), the broad class of distributions for which the Ising model is the prototypical

example.
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