
On Learning and Covering Structured Distributions

by

Gautam Kamath

B.S., Cornell University (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c○ Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 29, 2014

Certified by. .
Constantinos Daskalakis

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

On Learning and Covering Structured Distributions

by

Gautam Kamath

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We explore a number of problems related to learning and covering structured distri-
butions.

Hypothesis Selection: We provide an improved and generalized algorithm for
selecting a good candidate distribution from among competing hypotheses. Namely,
given a collection of 𝑁 hypotheses containing at least one candidate that is 𝜀-close
to an unknown distribution, our algorithm outputs a candidate which is 𝑂(𝜀)-close
to the distribution. The algorithm requires 𝑂(log𝑁/𝜀2) samples from the unknown
distribution and 𝑂(𝑁 log𝑁/𝜀2) time, which improves previous such results (such
as the Scheffé estimator) from a quadratic dependence of the running time on 𝑁 to
quasilinear. Given the wide use of such results for the purpose of hypothesis selection,
our improved algorithm implies immediate improvements to any such use.

Proper Learning Gaussian Mixture Models: We describe an algorithm for
properly learning mixtures of two single-dimensional Gaussians without any separa-
bility assumptions. Given �̃�(1/𝜀2) samples from an unknown mixture, our algorithm
outputs a mixture that is 𝜀-close in total variation distance, in time �̃�(1/𝜀5). Our
sample complexity is optimal up to logarithmic factors, and significantly improves
upon both Kalai et al. [40], whose algorithm has a prohibitive dependence on 1/𝜀,
and Feldman et al. [33], whose algorithm requires bounds on the mixture parameters
and depends pseudo-polynomially in these parameters.

Covering Poisson Multinomial Distributions: We provide a sparse 𝜀-cover
for the set of Poisson Multinomial Distributions. Specifically, we describe a set of
𝑛𝑂(𝑘3)(𝑘/𝜀)poly(𝑘/𝜀) distributions such that any Poisson Multinomial Distribution of
size 𝑛 and dimension 𝑘 is 𝜀-close to a distribution in the set. This is a significant
sparsification over the previous best-known 𝜀-cover due to Daskalakis and Papadim-
itriou [24], which is of size 𝑛𝑓(𝑘,1/𝜀), where 𝑓 is polynomial in 1/𝜀 and exponential in 𝑘.
This cover also implies an algorithm for learning Poisson Multinomial Distributions
with a sample complexity which is polynomial in 𝑘, 1/𝜀 and log 𝑛.

3

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor of Electrical Engineering and Computer Science

4

Acknowledgments

First off, thank you to my advisor, Costis Daskalakis, for introducing me to this

amazing field of study. Your support and advice has guided me through times both

easy and hard. I look forward to the road ahead.

Thank you to all my collaborators on research projects past and present, includ-

ing Jayadev Acharya, Christina Brandt, Clément Canonne, Costis Daskalakis, Ilias

Diakonikolas, Bobby Kleinberg, Jerry Li, Nicole Immorlica, Christos Tzamos. I’m

incredibly fortunate to consistently find myself surrounded by such a talented and

tireless group of researchers.

Extra special thanks to Bobby Kleinberg, my undergraduate research advisor.

From nominating me as a sophomore for the Experience Theory Project at University

of Washington, to adding to your immense list of responsibilities by taking me on as

a research advisee, to trusting me to present our result at STOC when I was just

a wet-behind-the-ears undergraduate, you’ve always believed in me, even at times I

found it hard to believe in myself.

Thank you to all the members of the MIT Theory group for helping make the 5th

and 6th floors of Stata feel like home. In particular, thanks to Pablo Azar, Arturs

Backurs, Adam Bouland, Aloni Cohen, Michael Forbes, Themis Gouleakis, Daniel

Grier, Jerry Li, Ludwig Schmidt, Adrian Vladu and Henry Yuen. Special thanks to

Aaron Sidford for your efforts in bolstering the sense of community within the group,

which include bringing us together for some Not So Great Ideas. Extra special thanks

to Ilya Razenshteyn for being a true Russian friend, in every sense of the phrase.

Thank you to all my non-Theory MIT friends for the occasional diversions from

work and excellent company. I’ll single out Sara Achour, Ariel Anders, Pavel Chvykov,

Eva Golos, Michal Grzadkowski, Twan Koolen, Albert Kwon and Andrew Sabisch,

with whom I’ve shared many fond memories. With adventures like karaoke in K-

Town, boating in Boston Harbor, nightlife in New York, and chilling in Cambridge,

you’ve helped make my life a little bit more interesting.

Special thanks Clément Canonne, who isn’t in either of the two aforementioned

5

groups, yet blends perfectly with both. Whether it’s discussing property testing via

instant messages, hosting get-togethers at your place, or providing unconventional

refuge for weary travellers in New York, you’ve consistently been there. Thanks for

making both my summers in Cambridge much more fun.

Thank you to my other non-MIT friends, for helping me keep in touch with the

real world and occasionally get away from MIT, whether that means Montreal, the

Berkshires, Walden Pond, or the world of Dota 2. To name a few of you, thanks

to Laura Castrale, Luke Chan, Dominick Grochowina, Taylor Helsel, Rocky Li and

Michael Wu.

Thanks to the all the administrative assistants in the Theory group for helping

make things happen, in particular, Be Blackburn, Joanne Hanley, and Nina Olff.

Without your help, we would never have great traditions like the Theory Retreat and

Theory Lunch.

Finally, thank you to my parents Markad and Padma, my brother Anand, and

my sister-in-law Archana. I can’t fathom where I would be without your unwavering

love and support.

6

Contents

1 Introduction 9

1.1 Structure of the Thesis . 10

1.2 Preliminaries . 11

1.2.1 Gridding . 12

2 Hypothesis Selection 15

2.1 Introduction . 15

2.2 Choosing Between Two Hypotheses 17

2.3 The Slow Tournament . 20

2.4 The Fast Tournament . 22

2.5 Faster Slow and Fast Tournaments 28

3 Proper Learning Gaussian Mixture Models 31

3.1 Introduction . 31

3.2 Preliminaries . 36

3.2.1 Bounds on Total Variation Distance for GMMs 37

3.2.2 Kolmogorov Distance . 38

3.2.3 Representing and Manipulating CDFs 39

3.2.4 Robust Statistics . 42

3.2.5 Outline of the Algorithm . 43

3.3 Generating Candidate Distributions 45

3.3.1 Generating Mixing Weight Candidates 46

3.3.2 Generating Mean Candidates 46

7

3.3.3 Generating Candidates for a Single Variance 47

3.3.4 Learning the Last Component Using Robust Statistics 49

3.3.5 Putting It Together . 51

3.4 Proof of Theorem 2 . 52

3.5 Open Problems . 53

4 Covering Poisson Multinomial Distributions 55

4.1 Introduction . 55

4.2 Preliminaries . 58

4.2.1 Covariance Matrices of Truncated Categorical Random Variables 60

4.2.2 Sums of Discretized Gaussians 60

4.3 Bounding the Parameters Away from Zero 62

4.4 From PMDs to GMDs to Gaussians via Valiants’ CLT 73

4.4.1 Overview . 73

4.4.2 Getting Our Hands Dirty . 73

4.5 A Sparse Cover for PMDs . 80

4.6 Open Problems . 82

A Robust Estimation of Scale from a Mixture of Gaussians 85

8

Chapter 1

Introduction

Distribution learning is one of the oldest problems in statistics. Given sample access

to a probability distribution, the goal is to output a hypothesis which is close to the

original distribution. Over the years, a number of methods have been proposed for

this problem, including histograms [47], kernel methods [52], maximum likelihood [35],

and metric entropy [42, 43]. These classical methods generally focus solely on sample

efficiency: minimizing our hypothesis’ error given a particular number of samples. As

computer scientists, we care about optimizing both sample and time complexity.

There is good news and bad news. The good news is that we can learn an arbi-

trary discrete distribution over [𝑁] to 𝜀-accuracy at the cost of 𝑂
(︀
𝑁
𝜀2

)︀
samples and

time steps. The bad news is that sometimes we need something more efficient. Often,

𝑁 is prohibitively large, and we require algorithms which are sublinear in the support

size. The even worse news: this problem is impossible for arbitrary continuous distri-

butions – no finite-sample algorithm can even determine if a distribution is discrete

or continuous.

Another classic statistical problem is covering. Given a class of probability dis-

tributions 𝒞, we wish to output a finite set of distributions 𝒳 such that for every

distribution in 𝒞, there exists a distribution in 𝒳 which is close to it. Naturally,

we would like to minimize the size of this set. This time, the size of an 𝜀-cover for

discrete distributions over [𝑁] is
(︀
𝑁
4𝜀

)︀𝑁 . The cover size is exponential in 𝑁 , and thus

it quickly becomes enormous.

9

These results are clearly insufficient – we have to make some additional assump-

tions. One approach is to give more power to the algorithm by changing its access to

the probability distribution. Some models which have been studied include allowing

the algorithm to draw samples conditioned on a subset of the domain [11, 12], or

being able to query the PDF or CDF of the distribution [13].

Another approach is to make assumptions on the structure of the distribution. We

could assume the distribution is of a particular shape. For example, Birgé’s classic

result [8] shows that a monotone distribution over [𝑁] can be learned to 𝜀-accuracy

at the cost of 𝑂
(︀
log𝑁
𝜀3

)︀
samples and time steps – an exponential improvement in

the complexity! Other sublinear results have been shown for distributions which are

𝑘-modal [19, 21], 𝑘-flat [14], or piecewise polynomial [15]. We could also assume

the distribution is a mixture of simple distributions, such as a mixture of Gaussians

[46, 16, 5, 54, 3, 10, 40, 45, 7, 38, 22] or mixtures of product distributions [41, 34].

Finally, we could assume that the distribution is a sum of simple distributions, such

as Bernoulli [20, 25], categorical [24], or integer-valued [18] random variables. For

instance, consider a sum of 𝑁 independent (but not necessarily identical) Bernoulli

random variables. Although the support is [𝑁], we can 𝜀-learn it with only �̃�(1/𝜀3)

samples and 𝜀-cover it with a set of size 𝑁2 + 𝑁 · (1/𝜀)𝑂(log2(1/𝜀)).

It is clear from these cases that we gain immense statistical and computational

power by exploiting the structure of a distribution. We present some new results on

learning and covering structured distributions. In particular, we present a learning

result for mixtures of Gaussians, a covering result for Poisson Multinomial distribu-

tions, and a tool for hypothesis selection. Not only do these results improve on the

prior state of the art, we also believe that the tools and techniques may be applied

to a variety of other problems.

1.1 Structure of the Thesis

Chapter 2 introduces a tool for selecting a hypothesis from a collection of candidate

hypotheses. It provides the guarantee that, if at least one candidate hypothesis is

10

𝑂(𝜀)-close to an unknown target distribution, it will return a hypothesis which is 𝑂(𝜀)-

close to the target distribution. The running time of this algorithm is quasilinear in

the number of hypotheses. This provides a generic tool for converting from a covering

result to a learning result.

Chapter 3 leverages this tool to give an algorithm for properly learning mixtures

of two single-dimensional Gaussians. The sample complexity is optimal up to loga-

rithmic factors, and the time complexity improves significantly upon prior work on

this problem.

These two chapters appeared as “Faster and Sample Near-Optimal Algorithms

for Proper Learning Mixtures of Gaussians” in the Proceedings of The 27th Confer-

ence on Learning Theory (COLT 2014) [22] and are based on joint work with Costis

Daskalakis.

Chapter 4 applies a recent central limit theorem by Valiant and Valiant to provide

a sparse cover for the class of Poisson Multinomial distributions. In particular, our

result shows that every Poisson Multinomial distribution is 𝜀-close to the sum of

several discretized Gaussians and a sparse Poisson Multinomial distribution. The size

of our cover is significantly smaller than the prior best-known cover, and combined

with our hypothesis selection tool, implies a sample-efficient learning algorithm for

Poisson Multinomial distributions.

This chapter is based on joint work with Costis Daskalakis and Christos Tzamos.

1.2 Preliminaries

We start with some preliminaries which will be relevant to multiple chapters of this

thesis.

Let 𝒩 (𝜇, 𝜎2) represent the univariate Gaussian distribution with mean 𝜇 ∈ R,

variance 𝜎2 ∈ R, and probability density function

𝒩 (𝜇, 𝜎2, 𝑥) =
1

𝜎
√

2𝜋
𝑒−

(𝑥−𝜇)2

2𝜎2 .

11

Let 𝒩 (𝜇,Σ) represent the 𝑘-variate Gaussian distribution with mean 𝜇 ∈ R𝑘,

variance Σ ∈ R𝑘×𝑘, and probability density function

𝒩 (𝜇,Σ, 𝑥) =
1

(2𝜋)𝑘|Σ|
exp

(︂
−1

2
(𝑥− 𝜇)𝑇Σ−1(𝑥− 𝜇)

)︂
.

The total variation distance between two probability measures 𝑃 and 𝑄 on a

𝜎-algebra 𝐹 is defined by

𝑑T𝑉 (𝑃,𝑄) = sup
𝐴∈𝐹

|𝑃 (𝐴) −𝑄(𝐴)| =
1

2
‖𝑃 −𝑄‖1.

Definition 1. Two probability measures 𝑃 and 𝑄 are 𝜀-close if 𝑑T𝑉 (𝑃,𝑄) ≤ 𝜀.

Definition 2. A set of distributions 𝒬 is an 𝜀-cover for a set of distributions 𝒫 if

for each 𝑃 ∈ 𝒫, there exists a 𝑄 ∈ 𝒬 such that 𝑃 and 𝑄 are 𝜀-close.

We will use the Data Processing Inequality for Total Variation Distance (see part

(iv) of Lemma 2 of [48] for the proof). Our statement of the inequality is taken from

[18].

Lemma 1 (Data Processing Inequality for Total Variation Distance). Let 𝑋,𝑋 ′ be

two random variables over a domain Ω. Fix any (possibly randomized) function 𝐹

on Ω (which may be viewed as a distribution over deterministic functions on Ω) and

let 𝐹 (𝑋) be the random variable such that a draw from 𝐹 (𝑋) is obtained by drawing

independently 𝑥 from 𝑋 and 𝑓 from 𝐹 and then outputting 𝑓(𝑥) (likewise for 𝐹 (𝑋 ′)).

Then we have

𝑑T𝑉 (𝐹 (𝑋), 𝐹 (𝑋 ′)) ≤ 𝑑T𝑉 (𝑋,𝑋 ′) .

1.2.1 Gridding

We will encounter settings where we have bounds 𝐿 and 𝑅 on an unknown value 𝑋

such that 𝐿 ≤ 𝑋 ≤ 𝑅, and wish to obtain an estimate �̂� such that (1 − 𝜀)𝑋 ≤ �̂� ≤

(1 + 𝜀)𝑋. Gridding is a common technique to generate a list of candidates that is

guaranteed to contain such an estimate.

12

Fact 2. Candidates of the form 𝐿+𝑘𝜀𝐿 define an additive grid with at most 1
𝜀

(︀
𝑅−𝐿
𝐿

)︀
candidates.

Fact 3. Candidates of the form 𝐿(1 + 𝜀)𝑘 define a multiplicative grid with at most
1

log (1+𝜀)
log
(︀
𝑅
𝐿

)︀
candidates.

We also encounter scenarios where we require an additive estimate 𝑋 − 𝜀 ≤ �̂� ≤

𝑋 + 𝜀.

Fact 4. Candidates of the form 𝐿+𝑘𝜀 define an absolute additive grid with 1
𝜀

(𝑅− 𝐿)

candidates.

13

14

Chapter 2

Hypothesis Selection

2.1 Introduction

The goal of this chapter is to present a hypothesis selection algorithm, FastTournament,

which is given sample access to a target distribution 𝑋 and several hypotheses distri-

butions 𝐻1, . . . , 𝐻𝑁 , together with an accuracy parameter 𝜀 > 0, and is supposed to

select a hypothesis distribution from {𝐻1, . . . , 𝐻𝑁}. The desired behavior is this: if

at least one distribution in {𝐻1, . . . , 𝐻𝑁} is 𝜀-close to 𝑋 in total variation distance,

we want that the hypothesis distribution selected by the algorithm is 𝑂(𝜀)-close to

𝑋. We provide such an algorithm whose sample complexity is 𝑂(1
𝜀2

log𝑁) and whose

running time 𝑂(1
𝜀2
𝑁 log𝑁), i.e. quasi-linear in the number of hypotheses, improving

the running time of the state of the art (predominantly the Scheffé-estimate based

algorithm in [31]) quadratically.

We develop our algorithm in full generality, assuming that we have sample ac-

cess to the distributions of interest, and without making any assumptions about

whether they are continuous or discrete, and whether their support is single- or multi-

dimensional. All our algorithm needs is sample access to the distributions at hand,

together with a way to compare the probability density/mass functions of the dis-

tributions, encapsulated in the following definition. In our definition, 𝐻𝑖(𝑥) is the

probability mass at 𝑥 if 𝐻𝑖 is a discrete distribution, and the probability density at 𝑥

if 𝐻𝑖 is a continuous distribution. We assume that 𝐻1 and 𝐻2 are either both discrete

15

or both continuous, and that, if they are continuous, they have a density function.

Definition 3. Let 𝐻1 and 𝐻2 be probability distributions over some set 𝒟. A PDF

comparator for 𝐻1, 𝐻2 is an oracle that takes as input some 𝑥 ∈ 𝒟 and outputs 1 if

𝐻1(𝑥) > 𝐻2(𝑥), and 0 otherwise.

Our hypothesis selection algorithm is summarized in the following statement:

Theorem 1. There is an algorithm FastTournament(𝑋,ℋ, 𝜀, 𝛿), which is given sam-

ple access to some distribution 𝑋 and a collection of distributions ℋ = {𝐻1, . . . , 𝐻𝑁}

over some set 𝒟, access to a PDF comparator for every pair of distributions 𝐻𝑖, 𝐻𝑗 ∈

ℋ, an accuracy parameter 𝜀 > 0, and a confidence parameter 𝛿 > 0. The algo-

rithm makes 𝑂
(︁

log 1/𝛿
𝜀2

· log𝑁
)︁

draws from each of 𝑋,𝐻1, . . . , 𝐻𝑁 and returns some

𝐻 ∈ ℋ or declares “failure.” If there is some 𝐻* ∈ ℋ such that 𝑑T𝑉 (𝐻*, 𝑋) ≤ 𝜀

then with probability at least 1 − 𝛿 the distribution 𝐻 that FastTournament returns

satisfies 𝑑T𝑉 (𝐻,𝑋) ≤ 512𝜀. The total number of operations of the algorithm is

𝑂
(︁

log 1/𝛿
𝜀2

(︀
𝑁 log𝑁 + log2 1

𝛿

)︀)︁
. Furthermore, the expected number of operations of the

algorithm is 𝑂
(︁

𝑁 log𝑁/𝛿
𝜀2

)︁
.

The proof of Theorem 1 is given in Section 2.4, while the preceding sections build

the required machinery for the construction.

Remark 5. A slight modification of our algorithm provided in Section 2.5 admits a

worst-case running time of 𝑂
(︁

log 1/𝛿
𝜀2

(︀
𝑁 log𝑁 + log1+𝛾 1

𝛿

)︀)︁
, for any desired constant

𝛾 > 0, though the approximation guarantee is weakened based on the value of 𝛾. See

Corollary 14 and its proof in Section 2.5.

Comparison to Other Hypothesis Selection Methods: The skeleton of the hy-

pothesis selection algorithm of Theorem 1 as well as the improved one of Corollary 14,

is having candidate distributions compete against each other in a tournament-like

fashion. This approach is quite natural and has been commonly used in the litera-

ture; see e.g. Devroye and Lugosi ([29, 30] and Chapter 6 of [31]), Yatracos [55], as

well as the recent papers of Daskalakis et al. [20] and Chan et al. [14]. The hypoth-

esis selection algorithms in these works are significantly slower than ours, as their

16

running times have quadratic dependence on the number 𝑁 of hypotheses, while our

dependence is quasi-linear. Furthermore, our setting is more general than prior work,

in that we only require sample access to the hypotheses and a PDF comparator.

Previous algorithms required knowledge of (or ability to compute) the probability

assigned by every pair of hypotheses to their Scheffé set—this is the subset of the

support where one hypothesis has larger PMF/PDF than the other, which is difficult

to compute in general, even given explicit descriptions of the hypotheses.

Recent independent work by Acharya et al. [1, 2] provides a hypothesis selection

algorithm, based on the Scheffé estimate in Chapter 6 of [31]. Their algorithm per-

forms a number of operations that is comparable to ours. In particular, the expected

running time of their algorithm is also 𝑂
(︁

𝑁 log𝑁/𝛿
𝜀2

)︁
, but our worst-case running time

has better dependence on 𝛿. Our algorithm is not based on the Scheffé estimate, using

instead a specialized estimator provided in Lemma 6. Their algorithm, described in

terms of the Scheffé estimate, is not immediately applicable to sample-only access to

the hypotheses, or to settings where the probabilities on Scheffé sets are difficult to

compute.

2.2 Choosing Between Two Hypotheses

We start with an algorithm for choosing between two hypothesis distributions. This

is an adaptation of a similar algorithm from [20] to continuous distributions and

sample-only access.

Lemma 6. There is an algorithm ChooseHypothesis(𝑋,𝐻1, 𝐻2, 𝜀, 𝛿), which is given

sample access to distributions 𝑋,𝐻1, 𝐻2 over some set 𝒟, access to a PDF comparator

for 𝐻1, 𝐻2, an accuracy parameter 𝜀 > 0, and a confidence parameter 𝛿 > 0. The

algorithm draws 𝑚 = 𝑂(log(1/𝛿)/𝜀2) samples from each of 𝑋,𝐻1 and 𝐻2, and either

returns some 𝐻 ∈ {𝐻1, 𝐻2} as the winner or declares a “draw.” The total number of

operations of the algorithm is 𝑂(log(1/𝛿)/𝜀2). Additionally, the output satisfies the

following properties:

17

1. If 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 but 𝑑T𝑉 (𝑋,𝐻2) > 8𝜀, the probability that 𝐻1 is not declared

winner is ≤ 𝛿;

2. If 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 but 𝑑T𝑉 (𝑋,𝐻2) > 4𝜀, the probability that 𝐻2 is declared

winner is ≤ 𝛿;

3. The analogous conclusions hold if we interchange 𝐻1 and 𝐻2 in Properties 1

and 2 above;

4. If 𝑑T𝑉 (𝐻1, 𝐻2) ≤ 5𝜀, the algorithm declares a “draw” with probability at least

1 − 𝛿.

Proof. We set up a competition between 𝐻1 and 𝐻2, in terms of the following subset

of 𝒟:

𝒲1 ≡ 𝒲1(𝐻1, 𝐻2) := {𝑤 ∈ 𝒟 𝐻1(𝑤) > 𝐻2(𝑤)} .

In terms of 𝒲1 we define 𝑝1 = 𝐻1(𝒲1) and 𝑝2 = 𝐻2(𝒲1). Clearly, 𝑝1 > 𝑝2 and

𝑑T𝑉 (𝐻1, 𝐻2) = 𝑝1−𝑝2. The competition between 𝐻1 and 𝐻2 is carried out as follows:

1a. Draw 𝑚 = 𝑂
(︁

log(1/𝛿)
𝜀2

)︁
samples 𝑠1, . . . , 𝑠𝑚 from 𝑋, and let

𝜏 = 1
𝑚
|{𝑖 | 𝑠𝑖 ∈ 𝒲1}| be the fraction of them that fall inside 𝒲1.

1b. Similarly, draw 𝑚 samples from 𝐻1, and let 𝑝1 be the fraction of them

that fall inside 𝒲1.

1c. Finally, draw 𝑚 samples from 𝐻2, and let 𝑝2 be the fraction of them

that fall inside 𝒲1.

2. If 𝑝1 − 𝑝2 ≤ 6𝜀, declare a draw. Otherwise:

3. If 𝜏 > 𝑝1 − 2𝜀, declare 𝐻1 as winner and return 𝐻1; otherwise,

4. if 𝜏 < 𝑝2 + 2𝜀, declare 𝐻2 as winner and return 𝐻2; otherwise,

5. Declare a draw.

18

Notice that, in Steps 1a, 1b and 1c, the algorithm utilizes the PDF comparator

for distributions 𝐻1 and 𝐻2. The correctness of the algorithm is a consequence of the

following claim.

Claim 7. Suppose that 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀. Then:

1. If 𝑑T𝑉 (𝑋,𝐻2) > 8𝜀, then the probability that the competition between 𝐻1 and

𝐻2 does not declare 𝐻1 as the winner is at most 6𝑒−𝑚𝜀2/2;

2. If 𝑑T𝑉 (𝑋,𝐻2) > 4𝜀, then the probability that the competition between 𝐻1 and

𝐻2 returns 𝐻2 as the winner is at most 6𝑒−𝑚𝜀2/2.

The analogous conclusions hold if we interchange 𝐻1 and 𝐻2 in the above claims.

Finally, if 𝑑T𝑉 (𝐻1, 𝐻2) ≤ 5𝜀, the algorithm will declare a draw with probability at

least 1 − 6𝑒−𝑚𝜀2/2.

Proof of Claim 7: Let 𝜏 = 𝑋(𝒲1). The Chernoff bound (together with a union bound)

imply that, with probability at least 1 − 6𝑒−𝑚𝜀2/2, the following are simultaneously

true: |𝑝1 − 𝑝1| < 𝜀/2, |𝑝2 − 𝑝2| < 𝜀/2, and |𝜏 − 𝜏 | < 𝜀/2. Conditioning on these:

∙ If 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 and 𝑑T𝑉 (𝑋,𝐻2) > 8𝜀, then from the triangle inequality we

get that 𝑝1 − 𝑝2 = 𝑑T𝑉 (𝐻1, 𝐻2) > 7𝜀, hence 𝑝1 − 𝑝2 > 𝑝1 − 𝑝2 − 𝜀 > 6𝜀. Hence,

the algorithm will go beyond Step 2. Moreover, 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 implies that

|𝜏 − 𝑝1| ≤ 𝜀, hence |𝜏 − 𝑝1| < 2𝜀. So the algorithm will stop at Step 3, declaring

𝐻1 as the winner of the competition between 𝐻1 and 𝐻2.

∙ If 𝑑T𝑉 (𝑋,𝐻2) ≤ 𝜀 and 𝑑T𝑉 (𝑋,𝐻1) > 8𝜀, then as in the previous case we get

from the triangle inequality that 𝑝1 − 𝑝2 = 𝑑T𝑉 (𝐻1, 𝐻2) > 7𝜀, hence 𝑝1 − 𝑝2 >

𝑝1 − 𝑝2 − 𝜀 > 6𝜀. Hence, the algorithm will go beyond Step 2. Moreover,

𝑑T𝑉 (𝑋,𝐻2) ≤ 𝜀 implies that |𝜏 − 𝑝2| ≤ 𝜀, hence |𝜏 − 𝑝2| < 2𝜀. So 𝑝1 > 𝜏 + 4𝜀.

Hence, the algorithm will not stop at Step 3, and it will stop at Step 4 declaring

𝐻2 as the winner of the competition between 𝐻1 and 𝐻2.

∙ If 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 and 𝑑T𝑉 (𝑋,𝐻2) > 4𝜀, we distinguish two subcases. If 𝑝1 −

𝑝2 ≤ 6𝜀, then the algorithm will stop at Step 2 declaring a draw. If 𝑝1−𝑝2 > 6𝜀,

19

the algorithm proceeds to Step 3. Notice that 𝑑T𝑉 (𝑋,𝐻1) ≤ 𝜀 implies that

|𝜏 − 𝑝1| ≤ 𝜀, hence |𝜏 − 𝑝1| < 2𝜀. So the algorithm will stop at Step 3, declaring

𝐻1 as the winner of the competition between 𝐻1 and 𝐻2.

∙ If 𝑑T𝑉 (𝑋,𝐻2) ≤ 𝜀 and 𝑑T𝑉 (𝑋,𝐻1) > 4𝜀, we distinguish two subcases. If 𝑝1 −

𝑝2 ≤ 6𝜀, then the algorithm will stop at Step 2 declaring a draw. If 𝑝1−𝑝2 > 6𝜀,

the algorithm proceeds to Step 3. Notice that 𝑑T𝑉 (𝑋,𝐻2) ≤ 𝜀 implies that

|𝜏 −𝑝2| ≤ 𝜀, hence |𝜏 −𝑝2| < 2𝜀. Hence, 𝑝1 > 𝑝2 + 6𝜀 ≥ 𝜏 + 4𝜀, so the algorithm

will not stop at Step 3 and will proceed to Step 4. Given that |𝜏 − 𝑝2| < 2𝜀,

the algorithm will stop at Step 4, declaring 𝐻2 as the winner of the competition

between 𝐻1 and 𝐻2.

∙ If 𝑑T𝑉 (𝐻1, 𝐻2) ≤ 5𝜀, then 𝑝1 − 𝑝2 ≤ 5𝜀, hence 𝑝1 − 𝑝2 ≤ 6𝜀. So the algorithm

will stop at Step 2 declaring a draw.

2.3 The Slow Tournament

We proceed with a hypothesis selection algorithm, SlowTournament, which has the

correct behavior, but whose running time is suboptimal. Again we proceed similarly

to [20] making the approach robust to continuous distributions and sample-only ac-

cess. SlowTournament performs pairwise comparisons between all hypotheses in ℋ,

using the subroutine ChooseHypothesis of Lemma 6, and outputs a hypothesis that

never lost to (but potentially tied with) other hypotheses. The running time of the al-

gorithm is quadratic in |ℋ|, as all pairs of hypotheses are compared. FastTournament,

described in Section 2.4, organizes the tournament in a more efficient manner, im-

proving the running time to quasilinear.

Lemma 8. There is an algorithm SlowTournament(𝑋,ℋ, 𝜀, 𝛿), which is given sample

access to some distribution 𝑋 and a collection of distributions ℋ = {𝐻1, . . . , 𝐻𝑁} over

20

some set 𝒟, access to a PDF comparator for every pair of distributions 𝐻𝑖, 𝐻𝑗 ∈ ℋ,

an accuracy parameter 𝜀 > 0, and a confidence parameter 𝛿 > 0. The algorithm

makes 𝑚 = 𝑂(log(𝑁/𝛿)/𝜀2) draws from each of 𝑋,𝐻1, . . . , 𝐻𝑁 and returns some

𝐻 ∈ ℋ or declares “failure.” If there is some 𝐻* ∈ ℋ such that 𝑑T𝑉 (𝐻*, 𝑋) ≤

𝜀 then with probability at least 1 − 𝛿 the distribution 𝐻 that SlowTournament re-

turns satisfies 𝑑T𝑉 (𝐻,𝑋) ≤ 8𝜀. The total number of operations of the algorithm is

𝑂 (𝑁2 log(𝑁/𝛿)/𝜀2).

Proof. Draw 𝑚 = 𝑂(log(2𝑁/𝛿)/𝜀2) samples from each of 𝑋,𝐻1, . . . , 𝐻𝑁 and, using

the same samples, run

ChooseHypothesis
(︂
𝑋,𝐻𝑖, 𝐻𝑗, 𝜀,

𝛿

2𝑁

)︂
,

for every pair of distributions 𝐻𝑖, 𝐻𝑗 ∈ ℋ. If there is a distribution 𝐻 ∈ ℋ that

was never a loser (but potentially tied with some distributions), output any such

distribution. Otherwise, output “failure.”

We analyze the correctness of our proposed algorithm in two steps. First, suppose

there exists 𝐻* ∈ ℋ such that 𝑑T𝑉 (𝐻*, 𝑋) ≤ 𝜀. We argue that, with probability at

least 1− 𝛿
2
, 𝐻* never loses a competition against any other 𝐻 ′ ∈ ℋ (so the tournament

does not output “failure”). Consider any 𝐻 ′ ∈ ℋ. If 𝑑T𝑉 (𝑋,𝐻 ′) > 4𝜀, by Lemma 6 the

probability that 𝐻* is not declared a winner or tie against 𝐻 ′ is at most 𝛿
2𝑁

. On the

other hand, if 𝑑T𝑉 (𝑋,𝐻 ′) ≤ 4𝜀, the triangle inequality gives that 𝑑T𝑉 (𝐻*, 𝐻 ′) ≤ 5𝜀

and, by Lemma 6, the probability that 𝐻* does not draw against 𝐻 ′ is at most 𝛿
2𝑁

. A

union bound over all 𝑁 distributions in ℋ shows that with probability at least 1− 𝛿
2
,

the distribution 𝐻* never loses a competition.

We next argue that with probability at least 1− 𝛿
2
, every distribution 𝐻 ∈ ℋ that

never loses must be 8𝜀-close to 𝑋. Fix a distribution 𝐻 such that 𝑑T𝑉 (𝑋,𝐻) > 8𝜀.

Lemma 6 implies that 𝐻 loses to 𝐻* with probability at least 1 − 𝛿/2𝑁 . A union

bound gives that with probability at least 1 − 𝛿
2
, every distribution 𝐻 such that

𝑑T𝑉 (𝑋,𝐻) > 8𝜀 loses some competition.

Thus, with overall probability at least 1 − 𝛿, the tournament does not output

21

“failure” and outputs some distribution 𝐻 such that 𝑑T𝑉 (𝐻,𝑋) ≤ 8𝜀.

2.4 The Fast Tournament

We prove our main result of this chapter, providing a quasi-linear time algorithm for

selecting from a collection of hypothesis distributions ℋ one that is close to a tar-

get distribution 𝑋, improving the running time of SlowTournament from Lemma 8.

Intuitively, there are two cases to consider. Collection ℋ is either dense or sparse

in distributions that are close to 𝑋. In the former case, we show that we can sub-

sample ℋ before running SlowTournament. In the latter case, we show how to set-up

a two-phase tournament, whose first phase eliminates all but a sub linear number

of hypotheses, and whose second phase runs SlowTournament on the surviving hy-

potheses. Depending on the density of ℋ in distributions that are close to the target

distribution 𝑋, we show that one of the aforementioned strategies is guaranteed to

output a distribution that is close to 𝑋. As we do not know a priori the density of

ℋ in distributions that are close to 𝑋, and hence which of our two strategies will

succeed in finding a distribution that is close to 𝑋, we use both strategies and run a

tournament among their outputs, using SlowTournament again.

Proof of Theorem 1: Let 𝑝 be the fraction of the elements of ℋ that are 8𝜀-close to 𝑋.

The value of 𝑝 is unknown to our algorithm. Regardless, we propose two strategies

for selecting a distribution from ℋ, one of which is guaranteed to succeed whatever

the value of 𝑝 is. We assume throughout this proof that 𝑁 is larger than a sufficiently

large constant, otherwise our claim follows directly from Lemma 8.

S1: Pick a random subset ℋ′ ⊆ ℋ of size ⌈3
√
𝑁⌉, and run

SlowTournament(𝑋,ℋ′, 8𝜀, 𝑒−3) to select some distribution �̃� ∈ ℋ′.

Claim 9. The number of samples drawn by S1 from each of the distributions in ℋ∪

{𝑋} is 𝑂(1
𝜀2

log𝑁), and the total number of operations is 𝑂(1
𝜀2
𝑁 log𝑁). Moreover,

if 𝑝 ∈ [1√
𝑁
, 1] and there is some distribution in ℋ that is 𝜀-close to 𝑋, then the

distribution �̃� output by S1 is 64𝜀-close to 𝑋, with probability at least 9/10.

22

Proof of Claim 9: The probability that ℋ′ contains no distribution that is 8𝜀-close to

𝑋 is at most

(1 − 𝑝)⌈3
√
𝑁⌉ ≤ 𝑒−3.

If ℋ′ contains at least one distribution that is 8𝜀-close to 𝑋, then by Lemma 8

the distribution output by SlowTournament(𝑋,ℋ′, 8𝜀, 𝑒−3) is 64𝜀-close to 𝑋 with

probability at least 1 − 𝑒−3. From a union bound, it follows that the distribution

output by S1 is 64𝜀-close to 𝑋, with probability at least 1 − 2𝑒−3 ≥ 9/10. The

bounds on the number of samples and operations follow from Lemma 8.

S2: There are two phases in this strategy:

∙ Phase 1: This phase proceeds in 𝑇 = ⌊log2

√
𝑁
2
⌋ iterations, 𝑖1, . . . , 𝑖𝑇 . Iter-

ation 𝑖ℓ takes as input a subset ℋ𝑖ℓ−1
⊆ ℋ (where ℋ𝑖0 ≡ ℋ), and produces

some ℋ𝑖ℓ ⊂ ℋ𝑖ℓ−1
, such that |ℋ𝑖ℓ | =

⌈︁ |ℋ𝑖ℓ−1
|

2

⌉︁
, as follows: randomly pair up

the elements of ℋ𝑖ℓ−1
(possibly one element is left unpaired), and for every

pair (𝐻𝑖, 𝐻𝑗) run ChooseHypothesis(𝑋,𝐻𝑖, 𝐻𝑗, 𝜀, 1/3𝑁). We do this with a

small caveat: instead of drawing 𝑂(log(3𝑁)/𝜀2) fresh samples (as required by

Lemma 6) in every execution of ChooseHypothesis (from whichever distribu-

tions are involved in that execution), we draw 𝑂(log(3𝑁)/𝜀2) samples from each

of 𝑋,𝐻1, . . . , 𝐻𝑁 once and for all, and reuse the same samples in all executions

of ChooseHypothesis.

∙ Phase 2: Given the collection ℋ𝑖𝑇 output by Phase 1, we run

SlowTournament(𝑋,ℋ𝑖𝑇 , 𝜀, 1/4) to select some distribution �̂� ∈ ℋ𝑖𝑇 . (We use

fresh samples for the execution of SlowTournament.)

Claim 10. The number of samples drawn by S2 from each of the distributions in ℋ∪

{𝑋} is 𝑂(1
𝜀2

log𝑁), and the total number of operations is 𝑂(1
𝜀2
𝑁 log𝑁). Moreover,

if 𝑝 ∈ (0, 1√
𝑁

] and there is some distribution in ℋ that is 𝜀-close to 𝑋, then the

distribution �̂� output by S2 is 8𝜀-close to 𝑋, with probability at least 1/4.

Proof of Claim 10: Suppose that there is some distribution 𝐻* ∈ ℋ that is 𝜀-close to

𝑋. We first argue that with probability at least 1
3
, 𝐻* ∈ ℋ𝑖𝑇 . We show this in two

23

steps:

(a) Recall that we draw samples from 𝑋,𝐻1, . . . , 𝐻𝑁 before Phase 1 begins, and

reuse the same samples whenever required by some execution of ChooseHypothesis

during Phase 1. Fix a realization of these samples. We can ask the question

of what would happen if we executed ChooseHypothesis(𝑋,𝐻*, 𝐻𝑗, 𝜀, 1/3𝑁),

for some 𝐻𝑗 ∈ ℋ ∖ {𝐻*} using these samples. From Lemma 6, it follows that,

if 𝐻𝑗 is farther than 8𝜀-away from 𝑋, then 𝐻* would be declared the winner

by ChooseHypothesis(𝑋,𝐻*, 𝐻𝑗, 𝜀, 1/3𝑁), with probability at least 1− 1/3𝑁 .

By a union bound, our samples satisfy this property simultaneously for all

𝐻𝑗 ∈ ℋ ∖ {𝐻*} that are farther than 8𝜀-away from 𝑋, with probability at least

1 − 1/3. Henceforth, we condition that our samples have this property.

(b) Conditioning on our samples having the property discussed in (a), we argue

that 𝐻* ∈ ℋ𝑖𝑇 with probability at least 1/2 (so that, with overall probability

at least 1/3, it holds that 𝐻* ∈ ℋ𝑖𝑇). It suffices to argue that, with probability

at least 1/2, in all iterations of Phase 1, 𝐻* is not matched with a distribution

that is 8𝜀-close to 𝑋. This happens with probability at least:

(1 − 𝑝)(1 − 2𝑝) · · · (1 − 2𝑇−1𝑝) ≥ 2−2𝑝
∑︀𝑇−1

𝑖=0 2𝑖 = 2−2𝑝(2𝑇−1) ≥ 1/2.

Indeed, given the definition of 𝑝, the probability that 𝐻* is not matched to

a distribution that is 8𝜀-close to 𝑋 is at least 1 − 𝑝 in the first iteration. If

this happens, then (because of our conditioning from (a)), 𝐻* will survive this

iteration. In the next iteration, the fraction of surviving distributions that

are 8𝜀-close to 𝑋 and are different than 𝐻* itself is at most 2𝑝. Hence, the

probability that 𝐻* is not matched to a distribution that is 8𝜀-close to 𝑋 is at

least 1 − 2𝑝 in the second iteration, etc.

Now, conditioning on 𝐻* ∈ ℋ𝑖𝑇 , it follows from Lemma 8 that the distribution �̂�

output by SlowTournament(𝑋,ℋ𝑖𝑇 , 𝜀, 1/4) is 8𝜀-close to 𝑋 with probability at least

3/4.

24

Hence, with overall probability at least 1/4, the distribution output by S2 is 8𝜀-

close to 𝑋.

The number of samples drawn from each distribution in ℋ ∪ {𝑋} is clearly

𝑂(1
𝜀2

log𝑁), as Phase 1 draws 𝑂(1
𝜀2

log𝑁) samples from each distribution and, by

Lemma 8, Phase 2 also draws 𝑂(1
𝜀2

log𝑁) samples from each distribution.

The total number of operations is bounded by 𝑂(1
𝜀2
𝑁 log𝑁). Indeed, Phase 1

runs ChooseHypothesis 𝑂(𝑁) times, and by Lemma 6 and our choice of 1/3𝑁 for the

confidence parameter of each execution, each execution takes 𝑂(log𝑁/𝜀2) operations.

So the total number of operations of Phase 1 is 𝑂(1
𝜀2
𝑁 log𝑁). On the other hand,

the size of ℋ𝑖𝑇 is at most 2⌈log2 𝑁⌉

2𝑇
= 2⌈log2 𝑁⌉

2⌊log2
√
𝑁
2 ⌋

≤ 8
√
𝑁 . So by Lemma 8, Phase 2 takes

𝑂(1
𝜀2
𝑁 log𝑁) operations.

Given strategies S1 and S2, we first design an algorithm which has the stated

worst-case number of operations. The algorithm FastTournament𝐴 works as follows:

1. Execute strategy S1 𝑘1 = log2
2
𝛿

times, with fresh samples each time. Let

�̃�1, . . . , �̃�𝑘1 be the distributions output by these executions.

2. Execute strategy S2 𝑘2 = log4
2
𝛿

times, with fresh samples each time. Let

�̂�1, . . . , �̂�𝑘2 be the distributions output by these executions.

3. Set 𝒢 ≡ {�̃�1, . . . , �̃�𝑘1 , �̂�1, . . . , �̂�𝑘2}. Execute SlowTournament(𝑋,𝒢, 64𝜀, 𝛿/2).

Claim 11. FastTournament𝐴 satisfies the properties described in the statement of

Theorem 1, except for the bound on the expected number of operations.

Proof of Claim 11: The bounds on the number of samples and operations follow

immediately from our choice of 𝑘1, 𝑘2, Claims 9 and 10, and Lemma 8. Let us justify

the correctness of the algorithm. Suppose that there is some distribution in ℋ that is

𝜀-close to 𝑋. We distinguish two cases, depending on the fraction 𝑝 of distributions

in ℋ that are 𝜀-close to 𝑋:

∙ 𝑝 ∈ [1√
𝑁
, 1]: In this case, each execution of S1 has probability at least 9/10 of

outputting a distribution that is 64𝜀-close to 𝑋. So the probability that none of

25

�̃�1, . . . , �̃�𝑘1 is 64𝜀-close to 𝑋 is at most (1
10

)𝑘1 ≤ 𝛿/2. Hence, with probability

at least 1 − 𝛿/2, 𝒢 contains a distribution that is 64𝜀-close to 𝑋. Conditioning

on this, SlowTournament(𝑋,𝒢, 64𝜀, 𝛿/2) will output a distribution that is 512𝜀-

close to 𝑋 with probability at least 1 − 𝛿/2, by Lemma 8. Hence, with overall

probability at least 1 − 𝛿, the distribution output by FastTournament is 512𝜀-

close to 𝑋.

∙ 𝑝 ∈ (0, 1√
𝑁

]: This case is analyzed analogously. With probability at least 1−𝛿/2,

at least one of �̂�1, . . . , �̂�𝑘2 is 8𝜀-close to 𝑋 (by Claim 10). Conditioning on this,

SlowTournament(𝑋,𝒢, 64𝜀, 𝛿/2) outputs a distribution that is 512𝜀-close to 𝑋,

with probability at least 1 − 𝛿/2 (by Lemma 8). So, with overall probability at

least 1 − 𝛿, the distribution output by FastTournament is 512𝜀-close to 𝑋.

We now describe an algorithm which has the stated expected number of operations.

The algorithm FastTournament𝐵 works as follows:

1. Execute strategy S1, let �̃�1 be the distribution output by this execution.

2. Execute strategy S2, let �̃�2 be the distribution output by this execution.

3. Execute ChooseHypothesis(𝑋, �̃�𝑖, 𝐻, 64𝜀, 𝛿/𝑁3) for 𝑖 ∈ {1, 2} and all 𝐻 ∈ ℋ.

If either �̃�1 or �̃�2 never loses, output that hypothesis. Otherwise, remove �̃�1

and �̃�2 from ℋ, and repeat the algorithm starting from step 1, unless ℋ is

empty.

Claim 12. FastTournament𝐵 satisfies the properties described in the statement of

Theorem 1, except for the worst-case bound on the number of operations.

Proof of Claim 12: We note that we will first draw 𝑂(log(𝑁3/𝛿)/𝜀2) from each of

𝑋,𝐻1, . . . , 𝐻𝑁 and use the same samples for every execution of ChooseHypothesis

to avoid blowing up the sample complexity. Using this fact, the sample complexity is

as claimed.

26

We now justify the correctness of the algorithm. Since we run ChooseHypothesis

on a given pair of hypotheses at most once, there are at most 𝑁2 executions of this

algorithm. Because each fails with probability at most 𝛿
𝑁3 , by the union bound, the

probability that any execution of ChooseHypothesis ever fails is at most 𝛿, so all

executions succeed with probability at least 1 − 𝛿
𝑁

. Condition on this happening for

the remainder of the proof of correctness. In Step 3 of our algorithm, we compare

some �̃� with every other hypothesis. We analyze two cases:

∙ Suppose that 𝑑T𝑉 (𝑋, �̃�) ≤ 64𝜀. By Lemma 6, �̃� will never lose, and will be

output by FastTournament𝐵.

∙ Suppose that 𝑑T𝑉 (𝑋, �̃�) > 512𝜀. Then by Lemma 6, �̃� will lose to any candi-

date 𝐻 ′ with 𝑑T𝑉 (𝑋,𝐻 ′) ≤ 64𝜀. We assumed there exists at least one hypothesis

with this property in the beginning of the algorithm. Furthermore, by the pre-

vious case, if this hypothesis were selected by S1 or S2 at some prior step, the

algorithm would have terminated; so in particular, if the algorithm is still run-

ning, this hypothesis could not have been removed from ℋ. Therefore, �̃� will

lose at least once and will not be output by FastTournament𝐵.

The correctness of our algorithm follows from the second case above. Indeed, if the

algorithm outputs a distribution �̃�, it must be the case that 𝑑T𝑉 (𝑋, �̃�) ≤ 512𝜀.

Moreover, we will not run out of hypotheses before we output a distribution. Indeed,

we only discard a hypothesis if it was selected by S1 or S2 and then lost at least once

in Step 3. Furthermore, in the beginning of our algorithm there exists a distribution

𝐻 such that 𝑑T𝑉 (𝑋,𝐻) ≤ 64𝜀. If ever selected by S1 or S2, 𝐻 will not lose to

any distribution in Step 3, and the algorithm will output a distribution. If it is not

selected by S1 or S2, 𝐻 won’t be removed from ℋ.

We now reason about the expected running time of our algorithm. First, consider

the case when all executions of ChooseHypothesis are successful, which happens with

probability ≥ 1− 𝛿
𝑁

. If either S1 or S2 outputs a distribution such that 𝑑T𝑉 (𝑋, �̃�) ≤

64𝜀, then by the first case above it will be output by FastTournament𝐵. If this

happened with probability at least 𝑝 independently in every iteration of our algorithm,

27

then the number of iterations would be stochastically dominated by a geometric

random variable with parameter 𝑝, so the expected number of rounds would be upper

bounded by 1
𝑝
. By Claims 9 and 10, 𝑝 ≥ 1

4
, so, when ChooseHypothesis never

fails, the expected number of rounds is at most 4. Next, consider when at least one

execution of ChooseHypothesis fails, which happens with probability ≤ 𝛿
𝑁

. Since

FastTournament𝐵 removes at least one hypothesis in every round, there are at most

𝑁 rounds. Combining these two cases, the expected number of rounds is at most

(1 − 𝛿
𝑁

)4 + 𝛿
𝑁
𝑁 ≤ 5.

By Claims 9 and 10 and Lemma 6, each round requires 𝑂(𝑁 log𝑁 + 𝑁 log𝑁/𝛿)

operations. Since the expected number of rounds is 𝑂(1), we obtain the desired bound

on the expected number of operations.

In order to obtain all the guarantees of the theorem simultaneously, our algorithm

FastTournament will alternate between steps of FastTournament𝐴 and FastTournament𝐵,

where both algorithms are given an error parameter equal to 𝛿
2
. If either algorithm

outputs a hypothesis, FastTournament outputs it. By union bound and Claims 11

and 12, both FastTournament𝐴 and FastTournament𝐵 will be correct with probabil-

ity at least 1 − 𝛿. The worst-case running time is as desired by Claim 11 and since

interleaving between steps of the two tournaments will multiply the number of steps

by a factor of at most 2. We have the expected running time similarly, by Claim 12.

2.5 Faster Slow and Fast Tournaments

In this section, we describe another hypothesis selection algorithm. This algorithm

is faster than SlowTournament, though at the cost of a larger constant in the ap-

proximation factor. In most reasonable parameter regimes, this algorithm is slower

than FastTournament, and still has a larger constant in the approximation factor.

Regardless, we go on to show how it can be used to improve upon the worst-case

running time of FastTournament.

28

Lemma 13. For every constant 𝛾 > 0, there exists an algorithm

RecursiveSlowTournament𝛾(𝑋,ℋ, 𝜀, 𝛿), which is given sample access to some dis-

tribution 𝑋 and a collection of distributions ℋ = {𝐻1, . . . , 𝐻𝑁} over some set 𝒟,

access to a PDF comparator for every pair of distributions 𝐻𝑖, 𝐻𝑗 ∈ ℋ, an accu-

racy parameter 𝜀 > 0, and a confidence parameter 𝛿 > 0. The algorithm makes

𝑚 = 𝑂(log(𝑁/𝛿)/𝜀2) draws from each of 𝑋,𝐻1, . . . , 𝐻𝑁 and returns some 𝐻 ∈ ℋ

or declares “failure.” If there is some 𝐻* ∈ ℋ such that 𝑑T𝑉 (𝐻*, 𝑋) ≤ 𝜀 then

with probability at least 1 − 𝛿 the distribution 𝐻 that RecursiveSlowTournament

returns satisfies 𝑑T𝑉 (𝐻,𝑋) ≤ 𝑂(𝜀). The total number of operations of the algorithm

is 𝑂 (𝑁1+𝛾 log(𝑁/𝛿)/𝜀2).

Proof. For simplicity, assume that
√
𝑁 is an integer. (If not, introduce into ℋ multiple

copies of an arbritrary 𝐻 ∈ ℋ so that
√
𝑁 becomes an integer.) Partition ℋ into

√
𝑁 subsets, ℋ = ℋ1 ⊔ℋ2 ⊔ . . . ⊔ℋ√

𝑁 and do the following:

1. Set 𝛿′ = 𝛿/2, draw 𝑂(log(
√
𝑁/𝛿′)/𝜀2) samples from 𝑋 and, using the same

samples, run SlowTournament(𝑋,ℋ𝑖, 𝜀, 𝛿
′) from Lemma 8 for each 𝑖;

2. Run SlowTournament(𝑋,𝒲 , 8𝜀, 𝛿′), where 𝒲 are the distributions output by

SlowTournament in the previous step. If 𝒲 = ∅ output “failure”.

Let us call the above algorithm SlowTournament
⨂︀

1(𝑋,ℋ, 𝜀, 𝛿), before proceeding to

analyze its correctness, sample and time complexity. Suppose there exists a distri-

bution 𝐻 ∈ ℋ such that 𝑑T𝑉 (𝐻,𝑋) ≤ 𝜀. Without loss of generality, assume that 𝐻 ∈

ℋ1. Then, from Lemma 8, with probability at least 1−𝛿′, SlowTournament(𝑋,ℋ1, 𝜀, 𝛿
′)

will output a distribution 𝐻 ′ such that 𝑑T𝑉 (𝐻 ′, 𝑋) ≤ 8𝜀. Conditioning on this and

applying Lemma 8 again, with conditional probability at least 1 − 𝛿′

SlowTournament(𝑋,𝒲 , 8𝜀, 𝛿′) will output a distribution 𝐻 ′′ such that 𝑑T𝑉 (𝐻 ′′, 𝑋) ≤

64𝜀. So with overall probability at least 1−𝛿, SlowTournament
⨂︀

1(𝑋,ℋ, 𝜀, 𝛿) will out-

put a distribution that is 64𝜀-close to 𝑋. The number of samples that the algorithm

draws from 𝑋 is 𝑂(log(𝑁/𝛿)/𝜀2), and the running time is

√
𝑁 ×𝑂

(︀
𝑁 log(𝑁/𝛿′)/𝜀2

)︀
+ 𝑂

(︀
𝑁 log(𝑁/𝛿′)/(8𝜀)2

)︀
= 𝑂

(︀
𝑁3/2 log(𝑁/𝛿)/𝜀2

)︀
.

29

So, compared to SlowTournament, SlowTournament
⨂︀

1 has the same sample com-

plexity asymptotics and the same asymptotic guarantee for the distance from 𝑋 of

the output distribution, but the exponent of 𝑁 in the running time improved from 2

to 3/2.

For 𝑡 = 2, 3, . . ., define SlowTournament
⨂︀

𝑡 by replacing SlowTournament by

SlowTournament
⨂︀

𝑡−1 in the code of SlowTournament
⨂︀

1. It follows from the same

analysis as above that as 𝑡 increases the exponent of 𝑁 in the running time gets arbi-

trarily close to 1. In particular, in one step an exponent of 1+𝛼 becomes an exponent

of 1 + 𝛼/2. So for some constant 𝑡, SlowTournament
⨂︀

𝑡 will satisfy the requirements

of the theorem.

As a corollary, we can immediately improve the running time of FastTournament

at the cost of the constant in the approximation factor. The construction and analysis

is nearly identical to that of FastTournament. The sole difference is in step 3 of

FastTournament𝐴 - we replace SlowTournament with RecursiveSlowTournament𝛾.

Corollary 14. For any constant 𝛾 > 0, there is an algorithm FastTournament𝛾(𝑋,ℋ, 𝜀, 𝛿),

which is given sample access to some distribution 𝑋 and a collection of distributions

ℋ = {𝐻1, . . . , 𝐻𝑁} over some set 𝒟, access to a PDF comparator for every pair of

distributions 𝐻𝑖, 𝐻𝑗 ∈ ℋ, an accuracy parameter 𝜀 > 0, and a confidence parameter

𝛿 > 0. The algorithm makes 𝑂
(︁

log 1/𝛿
𝜀2

· log𝑁
)︁

draws from each of 𝑋,𝐻1, . . . , 𝐻𝑁

and returns some 𝐻 ∈ ℋ or declares “failure.” If there is some 𝐻* ∈ ℋ such

that 𝑑T𝑉 (𝐻*, 𝑋) ≤ 𝜀 then with probability at least 1 − 𝛿 the distribution 𝐻 that

SlowTournament returns satisfies 𝑑T𝑉 (𝐻,𝑋) ≤ 𝑂(𝜀). The total number of operations

of the algorithm is 𝑂
(︁

log 1/𝛿
𝜀2

(𝑁 log𝑁 + log1+𝛾 1
𝛿
)
)︁
. Furthermore, the expected number

of operations of the algorithm is 𝑂
(︁

𝑁 log𝑁/𝛿
𝜀2

)︁
.

30

Chapter 3

Proper Learning Gaussian Mixture

Models

3.1 Introduction

Learning mixtures of Gaussian distributions is one of the most fundamental problems

in Statistics, with a multitude of applications in the natural and social sciences, which

has recently received considerable attention in Computer Science literature. Given

independent samples from an unknown mixture of Gaussians, the task is to ‘learn’

the underlying mixture.

In one version of the problem, ‘learning’ means estimating the parameters of the

mixture, that is the mixing probabilities as well as the parameters of each constituent

Gaussian. The most popular heuristic for doing so is running the EM algorithm

on samples from the mixture [28], albeit no rigorous guarantees are known for it in

general.

A line of research initiated by Dasgupta [16, 5, 54, 3, 10] provides rigorous guar-

antees under separability conditions: roughly speaking, it is assumed that the con-

stituent Gaussians have variation distance bounded away from 0 (indeed, in some

cases, distance exponentially close to 1). This line of work was recently settled by

a triplet of breakthrough results [40, 45, 7], establishing the polynomial solvability

31

of the problem under minimal separability conditions for the parameters to be re-

coverable in the first place: for any 𝜀 > 0, polynomial in 𝑛 and 1/𝜀 samples from a

mixture of 𝑛-dimensional Gaussians suffice to recover the parameters of the mixture

in poly(𝑛, 1/𝜀) time.

While these results settle the polynomial solvability of the problem, they serve

more as a proof of concept in that their dependence on 1/𝜀 is quite expensive.1

Very recently, [38] presented a new algorithm (and a matching lower bound) for

estimating the parameters of a mixture of 2 Gaussians. This algorithm has a much

milder dependence on 1/𝜀, though their definition of parameter estimation is slightly

different from the usual one.

A weaker goal for the learner of Gaussian mixtures is this: given samples from an

unknown mixture, find any mixture that is close to the unknown one, for some notion

of closeness. This PAC-style version of the problem [41] was pursued by Feldman

et al. [33] who obtained efficient learning algorithms for mixtures of 𝑛-dimensional,

axis-aligned Gaussians. Given poly(𝑛, 1/𝜀, 𝐿) samples from such mixture, their algo-

rithm constructs a mixture whose KL divergence to the sampled one is at most 𝜀.

Unfortunately, the sample and time complexity of their algorithm depends polynomi-

ally on a (priorly known) bound 𝐿, determining the range of the means and variances

of the constituent Gaussians in every dimension.2 In particular, the algorithm has

pseudo-polynomial dependence on 𝐿 where there should not be any dependence on 𝐿

at all [40, 45, 7].

Finally, yet a weaker goal for the learner would be to construct any distribution

that is close to the unknown mixture. In this non-proper version of the problem the

learner is not restricted to output a Gaussian mixture, but can output any (repre-

sentation of a) distribution that is close to the unknown mixture. For this problem,

recent results of Chan et al. [15] provide algorithms for single-dimensional mixtures,

whose sample complexity has near-optimal dependence on 1/𝜀. Namely, given �̃�(1/𝜀2)

1For example, the single-dimensional algorithm in the heart of [40] has sample and time com-
plexity of Θ(1/𝜀300) and Ω(1/𝜀1377) respectively (even though the authors most certainly did not
intend to optimize their constants).

2In particular, it is assumed that every constituent Gaussian in every dimension has mean 𝜇 ∈
[−𝜇max, 𝜇max] and variance 𝜎2 ∈ [𝜎2

min, 𝜎
2
max] where 𝜇max𝜎max/𝜎min ≤ 𝐿.

32

samples from a single-dimensional mixture, they construct a piecewise polynomial dis-

tribution that is 𝜀-close in total variation distance.

Inspired by this recent progress on non-properly learning single-dimensional mix-

tures, our goal in this paper is to provide sample-optimal algorithms that properly

learn. We obtain such algorithms for mixtures of two single-dimensional Gaussians.

Namely,

Theorem 2. For all 𝜀, 𝛿 > 0, given �̃�(log(1/𝛿)/𝜀2) independent samples from an arbi-

trary mixture 𝐹 of two univariate Gaussians we can compute in time �̃�(log3(1/𝛿)/𝜀5)

a mixture 𝐹 ′ such that 𝑑T𝑉 (𝐹, 𝐹 ′) ≤ 𝜀 with probability at least 1 − 𝛿. The expected

running time of this algorithm is �̃�(log2(1/𝛿)/𝜀5).

We note that learning a univariate mixture often lies at the heart of learning

multivariate mixtures [40, 45], so it is important to understand this fundamental

case.

Discussion. Note that our algorithm makes no separability assumptions about the

constituent Gaussians of the unknown mixture, nor does it require or depend on a

bound on the mixture’s parameters. Also, because the mixture is single-dimensional

it is not amenable to the techniques of [39]. Moreover, it is easy to see that our

sample complexity is optimal up to logarithmic factors. Indeed, a Gaussian mixture

can trivially simulate a Bernoulli distribution as follows. Let 𝑍 be a Bernoulli random

variable that is 0 with probability 1 − 𝑝 and 1 with probability 𝑝. Clearly, 𝑍 can be

viewed as a mixture of two Gaussian random variables of 0 variance, which have

means 0 and 1 and are mixed with probabilities 1− 𝑝 and 𝑝 respectively. It is known

that 1/𝜀2 samples are needed to properly learn a Bernoulli distribution, hence this

lower bound immediately carries over to Gaussian mixtures.

Approach. Our algorithm is intuitively quite simple, although some care is required

to make the ideas work. First, we can guess the mixing weight up to additive error

𝑂(𝜀), and proceed with our algorithm pretending that our guess is correct. Every

guess will result in a collection of candidate distributions, and the final step of our

33

algorithm is a tournament that will select, from among all candidate distributions

produced in the course of our algorithm, a distribution that is 𝜀-close to the unknown

mixture, if such a distribution exists. To do this we will make use of the hypothesis

selection algorithm described in the previous chapter. It is also worth noting that

the tournament based approach of [33] cannot be used for our purposes in this paper

as it would require a priorly known bound on the mixture’s parameters and would

depend pseudopolynomially on this bound.

Tuning the number of samples according to the guessed mixing weight, we proceed

to draw samples from the unknown mixture, expecting that some of these samples will

fall sufficiently close to the means of the constituent Gaussians, where the closeness

will depend on the number of samples drawn as well as the unknown variances. We

guess which sample falls close to the mean of the constituent Gaussian that has the

smaller value of 𝜎/𝑤 (standard deviation to mixing weight ratio), which gives us

the second parameter of the mixture. To pin down the variance of this Gaussian,

we implement a natural idea. Intuitively, if we draw samples from the mixture,

we expect that the constituent Gaussian with the smallest 𝜎/𝑤 will determine the

smallest distance among the samples. Pursuing this idea we produce a collection of

variance candidates, one of which truly corresponds to the variance of this Gaussian,

giving us a third parameter.

At this point, we have a complete description of one of the component Gaussians.

If we could remove this component from the mixture, we would be left with the

remaining unknown Gaussian. Our approach is to generate an empirical distribution

of the mixture and “subtract out” the component that we already know, giving us

an approximation to the unknown Gaussian. For the purposes of estimating the two

parameters of this unknown Gaussian, we observe that the most traditional estimates

of location and scale are unreliable, since the error in our approximation may cause

probability mass to be shifted to arbitrary locations. Instead, we use robust statistics

to obtain approximations to these two parameters.

The empirical distribution of the mixture is generated using the Dvoretzky-Kiefer-

Wolfowitz (DKW) inequality [32]. With 𝑂(1/𝜀2) samples from an arbitrary distribu-

34

tion, this algorithm generates an 𝜀-approximation to the distribution (with respect

to the Kolmogorov metric). Since this result applies to arbitrary distributions, it

generates a hypothesis that is weak, in some senses, including the choice of distance

metric. In particular, the hypothesis distribution output by the DKW inequality is

discrete, resulting in a total variation distance of 1 from a mixture of Gaussians (or

any other continuous distribution), regardless of the accuracy parameter 𝜀. Thus,

we consider it to be interesting that such a weak hypothesis can be used as a tool

to generate a stronger, proper hypothesis. We note that the Kolmogorov distance

metric is not special here - an approximation with respect to other reasonable dis-

tance metrics may be substituted in, as long as the description of the hypothesis is

efficiently manipulable in the appropriate ways.

We show that, for any target total variation distance 𝜀, the number of samples

required to execute the steps outlined above in order to produce a collection of can-

didate hypotheses one of which is 𝜀-close to the unknown mixture, as well as to run

the tournament to select from among the candidate distributions are �̃�(1/𝜀2). The

running time is �̃�(1/𝜀5).

Comparison to Prior Work on Learning Gaussian Mixtures. In comparison

to the recent breakthrough results [40, 45, 7], our algorithm has near-optimal sample

complexity and much milder running time, where these results have quite expensive

dependence of both their sample and time complexity on the accuracy 𝜀, even for

single-dimensional mixtures.3 On the other hand, our algorithm has weaker guaran-

tees in that we properly learn but do not do parameter estimation. In some sense,

our result is incomparable to [38]. Their algorithm performs parameter learning on

mixtures of two Gaussians at the cost of a higher time and sample complexity than

our algorithm. Unlike the results mentioned before, the exponents in their algorithm’s

complexity are reasonably small constants. However, while in most settings parameter

learning implies proper learning, [38] uses a slightly different definition of parameter

learning which does not. In comparison to [33], our algorithm requires no bounds
3For example, compared to [40] we improve by a factor of at least 150 the exponent of both the

sample and time complexity.

35

on the parameters of the constituent Gaussians and exhibits no pseudo-polynomial

dependence of the sample and time complexity on such bounds. On the other hand,

we learn with respect to the total variation distance rather than the KL divergence.

Finally, compared to [14, 15], we properly learn while they non-properly learn and

we both have near-optimal sample complexity.

Recently and independently, Acharya et al. [1] have also provided algorithms for

properly learning spherical Gaussian mixtures. Their primary focus is on the high

dimensional case, aiming at a near-linear sample dependence on the dimension. Our

focus is instead on optimizing the dependence of the sample and time complexity on

𝜀 in the one-dimensional case.

In fact, [1] also study mixtures of 𝑘 Gaussians in one dimension, providing a

proper learning algorithm with near-optimal sample complexity of �̃� (𝑘/𝜀2) and run-

ning time �̃�𝑘

(︀
1/𝜀3𝑘+1

)︀
. Specializing to two single-dimensional Gaussians (𝑘 = 2),

their algorithm has near-optimal sample complexity, like ours, but is slower by a fac-

tor of 𝑂(1/𝜀2) than ours. We also remark that, through a combination of techniques

from our paper and theirs, a proper learning algorithm for mixtures of 𝑘 Gaussians

can be obtained, with near-optimal sample complexity of �̃� (𝑘/𝜀2) and running time

�̃�𝑘

(︀
1/𝜀3𝑘−1

)︀
, improving by a factor of 𝑂(1/𝜀2) the running time of their 𝑘-Gaussian

algorithm. Roughly, this algorithm creates candidate distributions in which the pa-

rameters of the first 𝑘− 1 components are generated using methods from [1], and the

parameters of the final component are determined using our robust statistical tech-

niques, in which we “subtract out” the first 𝑘 − 1 components and robustly estimate

the mean and variance of the remainder.

3.2 Preliminaries

The univariate half-normal distribution with parameter 𝜎2 is the distribution of |𝑌 |

where 𝑌 is distributed according to 𝒩 (0, 𝜎2). The CDF of the half-normal distribu-

tion is

𝐹 (𝜎, 𝑥) = erf
(︂

𝑥

𝜎
√

2

)︂
,

36

where erf(𝑥) is the error function, defined as

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡2 d𝑡.

We also make use of the complement of the error function, erfc(𝑥), defined as erfc(𝑥) =

1 − erf(𝑥).

A Gaussian mixture model (GMM) of distributions 𝒩1(𝜇1, 𝜎
2
1), . . . ,𝒩𝑛(𝜇𝑛, 𝜎

2
𝑛) has

PDF

𝑓(𝑥) =
𝑛∑︁

𝑖=1

𝑤𝑖𝒩 (𝜇𝑖, 𝜎
2
𝑖 , 𝑥),

where
∑︀

𝑖 𝑤𝑖 = 1. These 𝑤𝑖 are referred to as the mixing weights. Drawing a sample

from a GMM can be visualized as the following process: select a single Gaussian,

where the probability of selecting a Gaussian is equal to its mixing weight, and draw

a sample from that Gaussian. In this paper, we consider mixtures of two Gaussians,

so 𝑤2 = 1 − 𝑤1. We will interchangeably use 𝑤 and 1 − 𝑤 in place of 𝑤1 and 𝑤2.

For simplicity in the exposition of our algorithm, we make the standard assumption

(see, e.g., [33, 40]) of infinite precision real arithmetic. In particular, the samples we

draw from a mixture of Gaussians are real numbers, and we can do exact computations

on real numbers, e.g., we can exactly evaluate the PDF of a Gaussian distribution on

a real number.

3.2.1 Bounds on Total Variation Distance for GMMs

We recall a result from [18]:

Proposition 15 (Proposition B.4 of [18]). Let 𝜇1, 𝜇2 ∈ R and 0 ≤ 𝜎1 ≤ 𝜎2. Then

𝑑T𝑉 (𝒩 (𝜇1, 𝜎
2
1),𝒩 (𝜇2, 𝜎

2
2)) ≤ 1

2

(︂
|𝜇1 − 𝜇2|

𝜎1

+
𝜎2
2 − 𝜎2

1

𝜎2
1

)︂
.

The following proposition provides a bound on the total variation distance between

two GMMs in terms of the distance between the constituent Gaussians.

Proposition 16. Suppose we have two GMMs 𝑋 and 𝑌 , with PDFs 𝑤𝒩1+(1−𝑤)𝒩2

37

and �̂��̂�1 + (1− �̂�)�̂�2 respectively. Then 𝑑T𝑉 (𝑋, 𝑌) ≤ |𝑤− �̂�|+𝑤𝑑T𝑉 (𝒩1, �̂�1) + (1−

𝑤)𝑑T𝑉 (𝒩2, �̂�2).

Proof. We use 𝑑T𝑉 (𝑃,𝑄) and 1
2
‖𝑃 −𝑄‖1 interchangeably in the cases where 𝑃 and 𝑄

are not necessarily probability distributions. Let 𝒩𝑖 = 𝒩 (𝜇𝑖, 𝜎
2
𝑖) and �̂�𝑖 = 𝒩 (�̂�𝑖, �̂�

2
𝑖).

By triangle inequality,

𝑑T𝑉 (�̂��̂�1+(1−�̂�)�̂�2, 𝑤𝒩1+(1−𝑤)𝒩2) ≤ 𝑑T𝑉 (�̂��̂�1, 𝑤𝒩1)+𝑑T𝑉 ((1−�̂�)�̂�2, (1−𝑤)𝒩2)

Inspecting the first term,

1

2

⃦⃦⃦
𝑤𝒩1 − �̂��̂�1

⃦⃦⃦
1

=
1

2

⃦⃦⃦
𝑤𝒩1 − 𝑤�̂�1 + 𝑤�̂�1 − �̂��̂�1

⃦⃦⃦
1
≤ 𝑤𝑑T𝑉 (𝒩1, �̂�1) +

1

2
|𝑤 − �̂�| ,

again using the triangle inequality. A symmetric statement holds for the other term,

giving us the desired result.

Combining these propositions, we obtain the following lemma:

Lemma 17. Let 𝑋 and 𝑌 by two GMMs with PDFs 𝑤1𝒩1 +𝑤2𝒩2 and �̂�1�̂�1 + �̂�2�̂�2

respectively, where |𝑤𝑖 − �̂�𝑖| ≤ 𝑂(𝜀), |𝜇𝑖 − �̂�𝑖| ≤ 𝑂(𝜀
𝑤𝑖

)𝜎𝑖 ≤ 𝑂(𝜀)𝜎𝑖, |𝜎𝑖 − �̂�𝑖| ≤

𝑂(𝜀
𝑤𝑖

)𝜎𝑖 ≤ 𝑂(𝜀)𝜎𝑖, for all 𝑖 such that 𝑤𝑖 ≥ 𝜀
25

. Then 𝑑T𝑉 (𝑋, 𝑌) ≤ 𝜀.

3.2.2 Kolmogorov Distance

In addition to total variation distance, we will also use the Kolmogorov distance

metric.

Definition 4. The Kolmogorov distance between two probability measures with CDFs

𝐹𝑋 and 𝐹𝑌 is 𝑑K(𝐹𝑋 , 𝐹𝑌) = sup𝑥∈R |𝐹𝑋(𝑥) − 𝐹𝑌 (𝑥)|.

We will also use this metric to compare general functions, which may not neces-

sarily be valid CDFs.

We have the following fact, stating that total variation distance upper bounds

Kolmogorov distance [37].

38

Fact 18. 𝑑K(𝐹𝑋 , 𝐹𝑌) ≤ 𝑑T𝑉 (𝑓𝑋 , 𝑓𝑌)

Fortunately, it is fairly easy to learn with respect to the Kolmogorov distance, due

to the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [32].

Theorem 3. ([32],[44]) Suppose we have 𝑛 IID samples 𝑋1, . . . 𝑋𝑛 from a proba-

bility distribution with CDF 𝐹 . Let 𝐹𝑛(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 1{𝑋𝑖≤𝑥} be the empirical CDF.

Then Pr[𝑑K(𝐹, 𝐹𝑛) ≥ 𝜀] ≤ 2𝑒−2𝑛𝜀2. In particular, if 𝑛 = Ω((1/𝜀2) · log(1/𝛿)), then

Pr[𝑑K(𝐹, 𝐹𝑛) ≥ 𝜀] ≤ 𝛿.

3.2.3 Representing and Manipulating CDFs

We will need to be able to efficiently represent and query the CDF of probability

distributions we construct. This will be done using a data structure we denote the

𝑛-interval partition representation of a distribution. This allows us to represent a

discrete random variable 𝑋 over a support of size ≤ 𝑛. Construction takes �̃�(𝑛)

time, and at the cost of 𝑂(log 𝑛) time per operation, we can compute 𝐹−1
𝑋 (𝑥) for

𝑥 ∈ [0, 1].

Using this data structure and Theorem 3, we can derive the following proposition:

Proposition 19. Suppose we have 𝑛 = Θ(1
𝜀2
· log 1

𝛿
) IID samples from a random vari-

able 𝑋. In �̃�
(︀

1
𝜀2
· log 1

𝛿

)︀
time, we can construct a data structure which will allow us to

convert independent samples from the uniform distribution over [0, 1] to independent

samples from a random variable �̂�, such that 𝑑K (𝐹𝑋 , 𝐹�̂�) ≤ 𝜀 with probability 1− 𝛿.

We provide more details on the construction of this data structure. An 𝑛-interval

partition is a set of disjoint intervals which form a partition of [0, 1], each associated

with an element of the support. A value 𝑥 ∈ [0, 1] is mapped to the support element

associated to the interval which contains 𝑥. This data structure is constructed by

mapping each support element to an interval of width equal to the probability of that

element. This data structure is queried in 𝑂(log 𝑛) time by performing binary search

on the left endpoints of the intervals. To avoid confusion with intervals that represent

elements of the 𝜎-algebra of the distribution, we refer to the intervals that are stored

in the data structure as probability intervals.

39

We note that, if we are only concerned with sampling, the order of the elements of

the support is irrelevant. However, we will sort the elements of the support in order

to perform efficient modifications later.

At one point in our learning algorithm, we will have a candidate which correctly

describes one of the two components in our mixture of Gaussians. If we could “subtract

out” this component from the mixture, we would be left with a single Gaussian –

in this setting, we can efficiently perform parameter estimation to learn the other

component. However, if we naively subtract the probability densities, we will obtain

negative probability densities, or equivalently, non-monotonically increasing CDFs.

To deal with this issue, we define a process we call monotonization. Intuitively, this

will shift negative probability density to locations with positive probability density.

We show that this preserves Kolmogorov distance and that it can be implemented

efficiently.

Definition 5. Given a bounded function 𝑓 : R → R, the monotonization of 𝑓 is 𝑓 ,

where 𝑓(𝑥) = sup𝑦≤𝑥 𝑓(𝑥).

We argue that if a function is close in Kolmogorov distance to a monotone function,

then so is its monotonization.

Proposition 20. Suppose we have two bounded functions 𝐹 and 𝐺 such that 𝑑K(𝐹,𝐺) ≤

𝜀, where 𝐹 is monotone non-decreasing. Then �̂�, the monotonization of 𝐺, is such

that 𝑑K(𝐹, �̂�) ≤ 𝜀.

Proof. We show that |𝐹 (𝑥)− �̂�(𝑥)| ≤ 𝜀 holds for an arbitrary point 𝑥, implying that

𝑑K(𝐹, �̂�) ≤ 𝜀. There are two cases: 𝐹 (𝑥) ≥ �̂�(𝑥) and 𝐹 (𝑥) < �̂�(𝑥).

If 𝐹 (𝑥) ≥ �̂�(𝑥), using the fact that �̂�(𝑥) ≥ 𝐺(𝑥) (due to monotonization), we can

deduce |𝐹 (𝑥) − �̂�(𝑥)| ≤ |𝐹 (𝑥) −𝐺(𝑥)| ≤ 𝜀.

If 𝐹 (𝑥) < �̂�(𝑥), consider an infinite sequence of points {𝑦𝑖} such that 𝐺(𝑦𝑖)

becomes arbitrarily close to sup𝑦≤𝑥 𝐺(𝑥). By monotonicity of 𝐹 , we have that |𝐹 (𝑥)−

�̂�(𝑥)| ≤ |𝐹 (𝑦𝑖)−𝐺(𝑦𝑖)|+ 𝛿𝑖 ≤ 𝜀+ 𝛿𝑖, where 𝛿𝑖 = |�̂�(𝑥)−𝐺(𝑦𝑖)|. Since 𝛿𝑖 can be taken

arbitrarily small, we have |𝐹 (𝑥) − �̂�(𝑥)| ≤ 𝜀.

40

We will need to efficiently compute the monotonization in certain settings, when

subtracting one monotone function from another.

Proposition 21. Suppose we have access to the 𝑛-interval partition representation

of a CDF 𝐹 . Given a monotone non-decreasing function 𝐺, we can compute the

𝑛-interval partition representation of the monotonization of 𝐹 −𝐺 in 𝑂(𝑛) time.

Proof. Consider the values in the 𝑛-interval partition of 𝐹 . Between any two con-

secutive values 𝑣1 and 𝑣2, 𝐹 will be flat, and since 𝐺 is monotone non-decreasing,

𝐹 −𝐺 will be monotone non-increasing. Therefore, the monotonization of 𝐹 −𝐺 at

𝑥 ∈ [𝑣1, 𝑣2) will be the maximum of 𝐹 − 𝐺 on (−∞, 𝑣1]. The resulting monotoniza-

tion will also be flat on the same intervals as 𝐹 , so we will only need to update the

probability intervals to reflect this monotonization.

We will iterate over probability intervals in increasing order of their values, and

describe how to update each interval. We will need to keep track of the maximum

value of 𝐹 −𝐺 seen so far. Let 𝑚 be the maximum of 𝐹 −𝐺 for all 𝑥 ≤ 𝑣, where 𝑣

is the value associated with the last probability interval we have processed. Initially,

we have the value 𝑚 = 0. Suppose we are inspecting a probability interval with

endpoints [𝑙, 𝑟] and value 𝑣. The left endpoint of this probability interval will become

�̂� = 𝑚, and the right endpoint will become 𝑟 = 𝑟 − 𝐺(𝑣). If 𝑟 ≤ �̂�, the interval is

degenerate, meaning that the monotonization will flatten out the discontinuity at 𝑣

- therefore, we simply delete the interval. Otherwise, we have a proper probability

interval, and we update 𝑚 = 𝑟.

This update takes constant time per interval, so the overall time required is 𝑂(𝑛).

We provide a lemma that we will apply to “subtract out” one of the components.

Lemma 22. Suppose we have access to the 𝑛-interval partition representation of a

CDF 𝐹 , and that there exists a weight 𝑤 and CDFs 𝐺 and 𝐻 such that 𝑑K
(︀
𝐻, 𝐹−𝑤𝐺

1−𝑤

)︀
≤

𝜀. Given 𝑤 and 𝐺, we can compute the 𝑛-interval partition representation of a dis-

tribution �̂� such that 𝑑K(𝐻, �̂�) ≤ 𝜀 in 𝑂(𝑛) time.

41

Proof. First, by assumption, we know that 1
1−𝑤

𝑑K((1 − 𝑤)𝐻,𝐹 − 𝑤𝐺) ≤ 𝜀. By

Proposition 21, we can efficiently compute the monotonization of 𝐹 − 𝑤𝐺 - name

this (1 − 𝑤)�̂�. By Proposition 20, we have that 1
1−𝑤

𝑑K((1 − 𝑤)𝐻, (1 − 𝑤)�̂�) ≤ 𝜀.

Renormalizing the distributions gives the desired approximation guarantee.

To justify the running time of this procedure, we must also argue that the nor-

malization can be done efficiently. To normalize the distribution (1 −𝑤)�̂�, we make

another 𝑂(𝑛) pass over the probability intervals and multiply all the endpoints by
1
𝑟*

, where 𝑟* is the right endpoint of the rightmost probability interval. We note that

𝑟* will be exactly 1 − 𝑤 because the value of 𝐹 − 𝑤𝐺 at ∞ is 1 − 𝑤, so this process

results in the distribution �̂�.

3.2.4 Robust Statistics

We use two well known robust statistics, the median and the interquartile range.

These are suited to our application for two purposes. First, they are easy to compute

with the 𝑛-interval partition representation of a distribution. Each requires a constant

number of queries of the CDF at particular values, and the cost of each query is

𝑂(log 𝑛). Second, they are robust to small modifications with respect to most metrics

on probability distributions. In particular, we will demonstrate their robustness on

Gaussians when considering distance with respect to the Kolmogorov metric.

Lemma 23. Let 𝐹 be a distribution such that 𝑑K(𝒩 (𝜇, 𝜎2), 𝐹) ≤ 𝜀, where 𝜀 < 1
8
.

Then 𝑚𝑒𝑑(𝐹) , 𝐹−1(1
2
) ∈ [𝜇− 2

√
2𝜀𝜎, 𝜇 + 2

√
2𝜀𝜎].

Proof. We will use 𝑥 to denote the median of our distribution, where 𝐹 (𝑥) = 1
2
. Since

𝑑K(𝐹, 𝐹) ≤ 𝜀, 𝐹 (𝑥) ≤ 1
2

+ 𝜀. Using the CDF of the normal distribution, we obtain
1
2

+ 1
2
erf
(︁

𝑥−𝜇√
2𝜎2

)︁
≤ 1

2
+ 𝜀. Rearranging, we get 𝑥 ≤ 𝜇 +

√
2erf−1(2𝜀)𝜎 ≤ 𝜇 + 2

√
2𝜀𝜎,

where the inequality uses the Taylor series of erf−1 around 0 and Taylor’s Theorem.

By symmetry of the Gaussian distribution, we can obtain the corresponding lower

bound for 𝑥.

Lemma 24. Let 𝐹 be a distribution such that 𝑑K(𝒩 (𝜇, 𝜎2), 𝐹) ≤ 𝜀, where 𝜀 < 1
8
.

Then 𝐼𝑄𝑅(𝐹)

2
√
2erf−1

(1
2
)
,

𝐹−1(3
4
)−𝐹−1(1

4
)

2
√
2erf−1

(1
2
)

∈
[︂
𝜎 − 5

2erf−1
(1
2
)
𝜀𝜎, 𝜎 + 7

2erf−1
(1
2
)
𝜀𝜎

]︂
.

42

Proof. First, we show that

𝐹−1

(︂
3

4

)︂
∈

[︃
𝜇 +

√
2erf−1

(︂
1

2

)︂
𝜎 − 5

√
2

2
𝜎𝜀, 𝜇 +

√
2erf−1

(︂
1

2

)︂
𝜎 +

7
√

2

2
𝜎𝜀

]︃
.

Let 𝑥 = 𝐹−1
(︀
3
4

)︀
. Since 𝑑K(𝐹, 𝐹) ≤ 𝜀, 𝐹 (𝑥) ≤ 3

4
+ 𝜀. Using the CDF of the

normal distribution, we obtain 1
2

+ 1
2
erf
(︁

𝑥−𝜇√
2𝜎2

)︁
≤ 3

4
+ 𝜀. Rearranging, we get 𝑥 ≤

𝜇 +
√

2erf−1
(︀
1
2

+ 2𝜀
)︀
𝜎 ≤ 𝜇 +

√
2erf−1

(︀
1
2

)︀
𝜎 + 7

√
2

2
𝜀𝜎, where the inequality uses the

Taylor series of erf−1 around 1
2

and Taylor’s Theorem. A similar approach gives the

desired lower bound.

By symmetry, we can obtain the bounds

𝐹−1

(︂
1

4

)︂
∈

[︃
𝜇−

√
2erf−1

(︂
1

2

)︂
𝜎 − 7

√
2

2
𝜎𝜀, 𝜇−

√
2erf−1

(︂
1

2

)︂
𝜎 +

5
√

2

2
𝜎𝜀

]︃
.

Combining this with the previous bounds and rescaling, we obtain the lemma state-

ment.

3.2.5 Outline of the Algorithm

We can decompose our algorithm into two components: generating a collection of

candidate distributions containing at least one candidate with low statistical distance

to the unknown distribution (Theorem 4), and identifying such a candidate from this

collection (Theorem 1).

Generation of Candidate Distributions: In Section 3.3, we deal with gen-

eration of candidate distributions. A candidate distribution is described by the pa-

rameter set (�̂�, �̂�1, �̂�1, �̂�2, �̂�2), which corresponds to the GMM with PDF 𝑓(𝑥) =

�̂�𝒩 (�̂�1, �̂�
2
1, 𝑥) + (1 − �̂�)𝒩 (�̂�2, �̂�

2
2, 𝑥). As suggested by Lemma 17, if we have a can-

didate distribution with sufficently accurate parameters, it will have low statistical

distance to the unknown distribution. Our first goal will be to generate a collection

of candidates that contains at least one such candidate. Since the time complexity of

our algorithm depends on the size of this collection, we wish to keep it to a minimum.

At a high level, we sequentially generate candidates for each parameter. In par-

43

ticular, we start by generating candidates for the mixing weight. While most of these

will be inaccurate, we will guarantee to produce at least one appropriately accurate

candidate �̂�*. Then, for each candidate mixing weight, we will generate candidates

for the mean of one of the Gaussians. We will guarantee that, out of the candidate

means we generated for �̂�*, it is likely that at least one candidate �̂�*
1 will be suffi-

ciently close to the true mean for this component. The candidate means that were

generated for other mixing weights have no such guarantee. We use a similar sequen-

tial approach to generate candidates for the variance of this component. Once we

have a description of the first component, we simulate the process of subtracting it

from the mixture, thus giving us a single Gaussian, whose parameters we can learn.

We can not immediately identify which candidates have inaccurate parameters, and

they serve only to inflate the size of our collection.

At a lower level, our algorithm starts by generating candidates for the mixing

weight followed by generating candidates for the mean of the component with the

smaller value of 𝜎𝑖

𝑤𝑖
. Note that we do not know which of the two Gaussians this is.

The solution is to branch our algorithm, where each branch assumes a correspondence

to a different Gaussian. One of the two branches is guaranteed to be correct, and

it will only double the number of candidate distributions. We observe that if we

take 𝑛 samples from a single Gaussian, it is likely that there will exist a sample at

distance 𝑂(𝜎
𝑛
) from its mean. Thus, if we take Θ(1

𝑤𝑖𝜀
) samples from the mixture,

one of them will be sufficiently close to the mean of the corresponding Gaussian.

Exploiting this observation we obtain candidates for the mixing weight and the first

mean as summarized by Lemma 27.

Next, we generate candidates for the variance of this Gaussian. Our specific

approach is based on the observation that given 𝑛 samples from a single Gaussian,

the minimum distance of a sample to the mean will likely be Θ(𝜎
𝑛
). In the mixture,

this property will still hold for the Gaussian with the smaller 𝜎𝑖

𝑤𝑖
, so we extract this

statistic and use a grid around it to generate sufficiently accurate candidates for 𝜎𝑖.

This is Lemma 29.

At this point, we have a complete description of one of the component Gaussians.

44

Also, we can generate an empirical distribution of the mixture, which gives an ad-

equate approximation to the true distribution. Given these two pieces, we update

the empirical distribution by removing probability mass contributed by the known

component. When done carefully, we end up with an approximate description of the

distribution of the unknown component. At this point, we extract the median and the

interquartile range (IQR) of the resulting distribution. These statistics are robust, so

they can tolerate error in our approximation. Finally, the median and IQR allow us

to derive the last mean and variance of our distribution. This is Lemma 31.

Putting everything together, we obtain the following result whose proof is in Sec-

tion 3.3.5.

Theorem 4. For all 𝜀, 𝛿 > 0, given log(1/𝛿) · 𝑂(1/𝜀2) independent samples from

an arbitrary mixture 𝐹 of two univariate Gaussians, we can generate a collection of

log(1/𝛿) · �̃�(1/𝜀3) candidate mixtures of two univariate Gaussians, containing at least

one candidate 𝐹 ′ such that 𝑑T𝑉 (𝐹, 𝐹 ′) < 𝜀 with probability at least 1 − 𝛿.

Candidate Selection: In view of Theorem 4, to prove our main result it suf-

fices to select from among the candidate mixtures some mixture that is close to the

unknown mixture. In Chapter 2, we described a tournament-based algorithm (Theo-

rem 1) for identifying a candidate which has low statistical distance to the unknown

mixture, which is used to conclude the proof of Theorem 2.

3.3 Generating Candidate Distributions

By Proposition 16, if one of the Gaussians of a mixture has a negligible mixing

weight, it has a negligible impact on the mixture’s statistical distance to the unknown

mixture. Hence, the candidate means and variances of this Gaussian are irrelevant.

This is fortunate, since if min (𝑤, 1 − 𝑤) << 𝜀 and we only draw �̃�(1/𝜀2) samples

from the unknown mixture, as we are planning to do, we have no hope of seeing

a sufficient number of samples from the low-weight Gaussian to perform accurate

statistical tests for it. So for this section we will assume that min (𝑤, 1 − 𝑤) ≥ Ω(𝜀)

and we will deal with the other case separately.

45

3.3.1 Generating Mixing Weight Candidates

The first step is to generate candidates for the mixing weight. We can obtain a

collection of 𝑂(1
𝜀
) candidates containing some �̂�* ∈ [𝑤 − 𝜀, 𝑤 + 𝜀] by simply taking

the set {𝑡𝜀 | 𝑡 ∈
[︀
1
𝜀

]︀
}.

3.3.2 Generating Mean Candidates

The next step is to generate candidates for the mean corresponding to the Gaussian

with the smaller value of 𝜎𝑖

𝑤𝑖
. Note that, a priori, we do not know whether 𝑖 = 1 or

𝑖 = 2. We try both cases, first generating candidates assuming they correspond to

𝜇1, and then repeating with 𝜇2. This will multiply our total number of candidate

distributions by a factor of 2. Without loss of essential generality, assume for this

section that 𝑖 = 1.

We want a collection of candidates containing �̂�*
1 such that 𝜇1 − 𝜀𝜎1 ≤ �̂�*

1 ≤

𝜇1 + 𝜀𝜎1.

Proposition 25. Fix 𝑖 ∈ {1, 2}. Given 20
√
2

3𝑤𝑖𝜀
samples from a GMM, there will exist

a sample �̂�*
𝑖 ∈ 𝜇𝑖 ± 𝜀𝜎𝑖 with probability ≥ 99

100
.

Proof. The probability that a sample is from 𝒩𝑖 is 𝑤𝑖. Using the CDF of the half-

normal distribution, given that a sample is from 𝒩𝑖, the probability that it is at a

distance ≤ 𝜀𝜎𝑖 from 𝜇𝑖 is erf
(︁

𝜀√
2

)︁
.

If we take a single sample from the mixture, it will satisfy the desired conditions

with probability at least 𝑤𝑖erf
(︁

𝜀√
2

)︁
. If we take 20

√
2

3𝑤𝑖𝜀
samples from the mixture, the

probability that some sample satisfies the conditions is at least

1 −
(︂

1 − 𝑤𝑖erf
(︂

𝜀√
2

)︂)︂ 20
√
2

3𝑤𝑖𝜀

≥ 1 −
(︂

1 − 𝑤𝑖 ·
3

4

𝜀√
2

)︂ 20
√
2

3𝑤𝑖𝜀

≥ 1 − 𝑒−5 ≥ 99

100

where the first inequality is by noting that erf(𝑥) ≥ 3
4
𝑥 for 𝑥 ∈ [0, 1].

Proposition 26. Fix 𝑖 ∈ {1, 2}. Suppose 𝑤𝑖 − 𝜀 ≤ �̂�𝑖 ≤ 𝑤𝑖 + 𝜀, and 𝑤𝑖 ≥ 𝜀. Then
2
�̂�𝑖

≥ 1
𝑤𝑖

.

46

Proof. 𝑤𝑖 ≥ 𝜀 implies 𝑤𝑖 ≥ 𝑤𝑖+𝜀
2

, and thus 2
�̂�𝑖

≥ 2
𝑤𝑖+𝜀

≥ 1
𝑤𝑖
.

We use these facts to design a simple algorithm: for each candidate �̂�1 (from

Section 3.3.1), take 40
√
2

3�̂�1𝜀
samples from the mixture and use each of them as a candidate

for 𝜇1.

We now examine how many candidate pairs (�̂�, �̂�1) we generated. Naively, since

�̂�𝑖 may be as small as 𝑂(𝜀), the candidates for the mean will multiply the size of our

collection by 𝑂
(︀

1
𝜀2

)︀
. However, we note that when �̂�𝑖 = Ω(1), then the number of

candidates for 𝜇𝑖 is actually 𝑂
(︀
1
𝜀

)︀
. We count the number of candidate triples (�̂�, �̂�1),

combining with previous results in the following:

Lemma 27. Suppose we have sample access to a GMM with (unknown) parameters

(𝑤, 𝜇1, 𝜇2, 𝜎1, 𝜎2). Then for any 𝜀 > 0 and constants 𝑐𝑤, 𝑐𝑚 > 0, using 𝑂(1
𝜀2

) samples

from the GMM, we can generate a collection of 𝑂
(︁

log 𝜀−1

𝜀2

)︁
candidate pairs for (𝑤, 𝜇1).

With probability ≥ 99
100

, this will contain a pair (�̂�*, �̂�*
1) such that �̂�* ∈ 𝑤 ± 𝑂(𝜀),

�̂�*
1 ∈ 𝜇1 ±𝑂(𝜀)𝜎1.

Proof. Aside from the size of the collection, the rest of the conclusions follow from

Propositions 25 and 26.

For a given �̂�, the number of candidates �̂�1 we consider is 40
√
2

3�̂�𝜀
. We sum this over

all candidates for �̂�, namely, 𝜀, 2𝜀, . . . , 1 − 𝜀, giving us

1
𝜀
−1∑︁

𝑡=1

40
√

2

3𝑘𝜀2
=

40
√

2

3𝜀2
𝐻 1

𝜀
−1 = 𝑂

(︂
log 𝜀−1

𝜀2

)︂

where 𝐻𝑛 is the 𝑛th harmonic number.

This implies that we can generate 𝑂
(︀

1
𝜀2

)︀
candidate triples, such that at least one pair

simultaneously describes 𝑤 and 𝜇1 to the desired accuracy.

3.3.3 Generating Candidates for a Single Variance

In this section, we generate candidates for the variance corresponding to the Gaussian

with the smaller value of 𝜎𝑖

𝑤𝑖
. We continue with our guess of whether 𝑖 = 1 or 𝑖 = 2

47

from the previous section.

Again, assume for this section that 𝑖 = 1. The basic idea is that we will find

the closest point to �̂�1. We use the following property (whose proof is deferred to

Appendix A) to establish a range for this distance, which we can then grid over.

We note that this lemma holds in scenarios more general than we consider here,

including 𝑘 > 2 and when samples are drawn from a distribution which is only close

to a GMM, rather than exactly a GMM.

Lemma 28. Let 𝑐1 and 𝑐2 be constants as defined in Proposition 51, and 𝑐3 = 𝑐1
9
√
2𝑐2

.

Consider a mixture of 𝑘 Gaussians 𝑓 , with components 𝒩 (𝜇1, 𝜎
2
1), . . . ,𝒩 (𝜇𝑘, 𝜎

2
𝑘) and

weights 𝑤1, . . . , 𝑤𝑘, and let 𝑗 = arg min𝑖
𝜎𝑖

𝑤𝑖
. Suppose we have estimates for the weights

and means for all 𝑖 ∈ [1, 𝑘]:

∙ �̂�𝑖, such that 1
2
�̂�𝑖 ≤ 𝑤𝑖 ≤ 2�̂�𝑖

∙ �̂�𝑖, such that |�̂�𝑖 − 𝜇𝑖| ≤ 𝑐3
2𝑘
𝜎𝑗

Now suppose we draw 𝑛 = 9
√
𝜋𝑐2

2�̂�𝑗
samples 𝑋1, . . . , 𝑋𝑛 from a distribution 𝑓 , where

𝑑K(𝑓, 𝑓) ≤ 𝛿 = 𝑐1
2𝑛

= 𝑐1
9
√
𝜋𝑐2

�̂�𝑗. Then min𝑖 |𝑋𝑖 − �̂�𝑗| ∈ [𝑐3
2𝑘
𝜎𝑗, (

√
2 + 𝑐3

2𝑘
)𝜎𝑗] with proba-

bility ≥ 9
10

.

Summarizing what we have so far,

Lemma 29. Suppose we have sample access to a GMM with parameters (𝑤, 𝜇1, 𝜇2, 𝜎1, 𝜎2),

where 𝜎1

𝑤
≤ 𝜎2

1−𝑤
. Furthermore, we have estimates �̂�* ∈ 𝑤 ± 𝑂(𝜀), �̂�*

1 ∈ 𝜇1 ± 𝑂(𝜀)𝜎1.

Then for any 𝜀 > 0, using 𝑂(1
𝜀
) samples from the GMM, we can generate a collection

of 𝑂
(︀
1
𝜀

)︀
candidates for 𝜎1. With probability ≥ 9

10
, this will contain a candidate �̂�*

1

such that �̂�*
1 ∈ (1 ±𝑂(𝜀))𝜎1.

Proof. Let 𝑌 be the nearest sample to �̂�1. From Lemma 28, with probability ≥ 9
10

,

|𝑌 − �̂�1| ∈ [𝑐3
4
𝜎1, (

√
2 + 𝑐3

4
)𝜎1].

We can generate candidates by rearranging the bounds to obtain

𝑌√
2 + 𝑐3

4

≤ 𝜎1 ≤
𝑌
𝑐3
4

48

Applying Fact 3 and noting that 𝑅
𝐿

= 𝑂(1), we conclude that we can grid over

this range with 𝑂(1
𝜀
) candidates.

3.3.4 Learning the Last Component Using Robust Statistics

At this point, our collection of candidates must contain a triple (�̂�*, �̂�*
1, �̂�

*
1) which

are sufficiently close to the correct parameters. Intuitively, if we could remove this

component from the mixture, we would be left with a distribution corresponding to

a single Gaussian, which we could learn trivially. We will formalize the notion of

“component subtraction,” which will allow us to eliminate the known component and

obtain a description of an approximation to the CDF for the remaining component.

Using classic robust statistics (the median and the interquartile range), we can then

obtain approximations to the unknown mean and variance. This has the advantage of

a single additional candidate for these parameters, in comparison to 𝑂(1
𝜀
) candidates

for the previous mean and variance.

Our first step will be to generate an approximation of the overall distribution. We

will do this only once, at the beginning of the entire algorithm. Our approximation

is with respect to the Kolmogorov distance. Using the DKW inequality (Theorem

3) and Proposition 19, we obtain a 𝑂(1
𝜀2

)-interval partition representation of �̂� such

that 𝑑K(�̂�,𝐻) ≤ 𝜀, with probability ≥ 1 − 𝛿 using 𝑂(1
𝜀2

· log 1
𝛿
) time and samples

(where 𝐻 is the CDF of the GMM).

Next, for each candidate (�̂�, �̂�1, �̂�1), we apply Lemma 22 to obtain the 𝑂(1
𝜀2

)-

interval partition of the distribution with the known component removed, i.e., using

the notation of Lemma 22, let 𝐻 be the CDF of the GMM, 𝐹 is our DKW-based

approximation to 𝐻, 𝑤 is the weight �̂�, and 𝐺 is 𝒩 (�̂�1, �̂�
2
1). We note that this costs

𝑂(1
𝜀2

) for each candidate triple, and since there are �̃�(1
𝜀3

) such triples, the total cost of

such operations will be �̃�(1
𝜀5

). However, since the tournament we will use for selection

of a candidate will require Ω̃(1
𝜀5

) anyway, this does not affect the overall runtime of

our algorithm.

The following proposition shows that, when our candidate triple is (𝑤*, 𝜇*
1, 𝜎

*
1), the

distribution that we obtain after subtracting the known component out and rescaling

49

is close to the unknown component.

Proposition 30. Suppose there exists a mixture of two Gaussians 𝐹 = 𝑤𝒩 (𝜇1, 𝜎
2
1)+

(1 −𝑤)𝒩 (𝜇2, 𝜎
2
2) where 𝑂(𝜀) ≤ 𝑤 ≤ 1 −𝑂(𝜀), and we have 𝐹 , such that 𝑑K(𝐹 , 𝐹) ≤

𝑂(𝜀), �̂�*, such that |�̂�* − 𝑤| ≤ 𝑂(𝜀), �̂�*
1, such that |𝜇*

1 − 𝜇1| ≤ 𝑂(𝜀)𝜎1, and �̂�*
1, such

that |𝜎*
1 − 𝜎1| ≤ 𝑂(𝜀)𝜎1.

Then 𝑑K

(︁
𝒩 (𝜇2, 𝜎

2
2),

𝐹−�̂�*𝒩 (�̂�*
1,�̂�

*2
1)

1−�̂�*

)︁
≤ 𝑂(𝜀)

1−𝑤
.

Proof.

𝑑K

(︃
𝒩 (𝜇2, 𝜎

2
2),

𝐹 − �̂�*𝒩 (�̂�*
1, �̂�

*2
1)

1 − �̂�*

)︃
=

1

1 − �̂�
𝑑K(�̂�*𝒩 (�̂�*

1, �̂�
*2
1) + (1 − �̂�*)𝒩 (𝜇2, 𝜎

2
2), 𝐹)

≤ 1

1 − �̂�
(𝑑K(�̂�*𝒩 (�̂�*

1, �̂�
*2
1) + (1 − �̂�*)𝒩 (𝜇2, 𝜎

2
2), 𝐹) + 𝑑K(𝐹, 𝐹))

≤ 1

1 − �̂�
(𝑑T𝑉 (�̂�*𝒩 (�̂�*

1, �̂�
*2
1) + (1 − �̂�*)𝒩 (𝜇2, 𝜎

2
2), 𝐹) + 𝑂(𝜀))

≤ 1

1 − �̂�
(|𝑤 − �̂�| + 𝑑T𝑉 (𝒩 (𝜇1, 𝜎1),𝒩 (�̂�*

1, �̂�
*2
1)) + 𝑂(𝜀))

≤ 𝑂(𝜀)

1 − �̂�

≤ 𝑂(𝜀)

1 − 𝑤

The equality is a rearrangement of terms, the first inequality is the triangle inequal-

ity, the second inequality uses Fact 18, and the third and fourth inequalities use

Propositions 15 and 16 respectively.

Since the resulting distribution is close to the correct one, we can use robust

statistics (via Lemmas 23 and 24) to recover the missing parameters. We combine

this with previous details into the following Lemma.

Lemma 31. Suppose we have sample access to a GMM with parameters (𝑤, 𝜇1, 𝜇2, 𝜎1, 𝜎2),

where 𝜎1

𝑤
≤ 𝜎2

1−𝑤
. Furthermore, we have estimates �̂�* ∈ 𝑤 ± 𝑂(𝜀), �̂�*

1 ∈ 𝜇1 ± 𝑂(𝜀)𝜎1,

�̂�*
1 ∈ (1 ± 𝑂(𝜀))𝜎1. Then for any 𝜀 > 0, using 𝑂(1

𝜀2
· log 1

𝛿
) samples from the

GMM, with probability ≥ 1 − 𝛿, we can generate candidates �̂�*
2 ∈ 𝜇2 ± 𝑂

(︀
𝜀

1−𝑤

)︀
𝜎2

and �̂�*
2 ∈

(︀
1 ±𝑂

(︀
𝜀

1−𝑤

)︀)︀
𝜎2.

50

Proof. The proof follows the sketch outlined above. We first use Proposition 19 to

construct an approximation 𝐹 of the GMM 𝐹 . Using Proposition 30, we see that

𝑑K

(︁
𝒩 (𝜇2, 𝜎

2
2),

𝐹−�̂�*𝒩 (�̂�*
1,�̂�

*2
1)

1−�̂�*

)︁
≤ 𝑂(𝜀)

1−𝑤
. By Lemma 22, we can compute a distribution

�̂� such that 𝑑K(𝒩 (𝜇2, 𝜎
2
2), �̂�) ≤ 𝑂(𝜀)

1−𝑤
. Finally, using the median and interquartile

range and the guaranteed provided by Lemmas 23 and 24, we can compute candidates

�̂�*
2 ∈ 𝜇2 ±𝑂

(︀
𝜀

1−𝑤

)︀
𝜎2 and �̂�*

2 ∈
(︀
1 ±𝑂

(︀
𝜀

1−𝑤

)︀)︀
𝜎2 from �̂�, as desired.

3.3.5 Putting It Together

At this point, we are ready to prove our main result on generating candidate distri-

butions.

Proof of Theorem 4: We produce two lists of candidates corresponding to whether

min (𝑤, 1 − 𝑤) = Ω(𝜀) or not:

∙ In the first case, combining Lemmas 27, 29, and 31 and taking the Cartesian

product of the resulting candidates for the mixture’s parameters, we see that we

can obtain a collection of 𝑂
(︁

log 𝜀−1

𝜀3

)︁
candidate mixtures. With probability ≥ 4

5
,

this will contain a candidate (�̂�*, �̂�*
1, �̂�

*
2, �̂�

*
1, �̂�

*
2) such that �̂� ∈ 𝑤 ± 𝑂(𝜀), �̂�𝑖 ∈

𝜇𝑖 ± 𝑂(𝜀)𝜎𝑖 for 𝑖 = 1, 2, and �̂�𝑖 ∈ (1 ± 𝑂(𝜀))𝜎𝑖 for 𝑖 = 1, 2. Note that we can

choose the hidden constants to be as small as necessary for Lemma 17, and thus

we can obtain the desired total variation distance.

Finally, note that the number of samples that we need for the above to hold is

𝑂(1/𝜀2). For this, it is crucial that we first draw a sufficient 𝑂(1/𝜀2) samples

from the mixture (specified by the worse requirement among Lemmas 27, 29,

and 31), and then execute the candidate generation algorithm outlined in Lem-

mas 27, 29, and 31. In particular, we do not want to redraw samples for every

branching of this algorithm.

Finally, to boost the success probability, we repeat the entire process log5 𝛿
−1

times and let our collection of candidate mixutres be the union of the collections

from these repetitions. The probability that none of these collections contains

51

a suitable candidate distribution is ≤
(︀
1
5

)︀log5 𝛿−1

≤ 𝛿.

∙ In the second case, i.e. when one of the weights, w.l.o.g. 𝑤2, is 𝑂(𝜀), we set

�̂�1 = 1 and we only produce candidates for (𝜇1, 𝜎
2
1). Note that this scenario

fits into the framework of Lemmas 23 and 24. Our mixture 𝐹 is such that

𝑑K(𝐹,𝒩 (𝜇1, 𝜎
2
1)) ≤ 𝑑T𝑉 (𝐹,𝒩 (𝜇1, 𝜎

2
1)) ≤ 𝑂(𝜀). By the DKW inequality (Theo-

rem 3), we can use 𝑂(1
𝜀2
· log 1

𝛿
) samples to generate the empirical distribution,

which gives us a distribution 𝐹 such that 𝑑T𝑉 (𝐹 ,𝒩 (𝜇1, 𝜎
2
1)) ≤ 𝑂(𝜀) (by tri-

angle inequality), with probability ≥ 1 − 𝛿. From this distribution, using the

median and interquartile range and the guarantees of Lemmas 23 and 24, we

can extract �̂�*
1 and �̂�*

1 such that |�̂�*
1 − 𝜇1| ≤ 𝑂(𝜀)𝜎1 and |�̂�*

1 − 𝜎1| ≤ 𝑂(𝜀)𝜎1.

Thus, by Lemma 17, we can achieve the desired total variation distance.

3.4 Proof of Theorem 2

Finally, we conclude with the proof of our main learning result.

Proof of Theorem 2: Theorem 2 is an immediate consequence of Theorems 4 and 1.

Namely, we run the algorithm of Theorem 4 to produce a collection of Gaussian mix-

tures, one of which is within 𝜀 of the unknown mixture 𝐹 . Then we use FastTournament

of Theorem 1 to select from among the candidates a mixture that is 𝑂(𝜀)-close to

𝐹 . For the execution of FastTournament, we need a PDF comparator for all pairs

of candidate mixtures in our collection. Given that these are described with their

parameters, our PDF comparators evaluate the densities of two given mixtures at a

challenge point 𝑥 and decide which one is largest. We also need sample access to our

candidate mixtures. Given a parametric description (𝑤, 𝜇1, 𝜎
2
1, 𝜇2, 𝜎

2
2) of a mixture,

we can draw a sample from it as follows: first draw a uniform [0, 1] variable whose

value compared to 𝑤 determines whether to sample from 𝒩 (𝜇1, 𝜎
2
1) or 𝒩 (𝜇2, 𝜎

2
2) in the

second step; for the second step, use the Box-Muller transform [9] to obtain sample

from either 𝒩 (𝜇1, 𝜎
2
1) or 𝒩 (𝜇2, 𝜎

2
2) as decided in the first step.

52

3.5 Open Problems

There are a number of interesting directions for further study:

∙ Are there faster algorithms for proper learning mixtures of 2 Gaus-

sians in 1 dimension? Our algorithm has near-optimal sample complexity of

�̃�
(︀

1
𝜀2

)︀
, but the time complexity of �̃�

(︀
1
𝜀5

)︀
still has room for improvement. Can

it be lowered to the best-known lower bound of 𝑂
(︀

1
𝜀2

)︀
?

∙ What is the time complexity of proper learning mixtures of 𝑘 Gaus-

sians in 1 dimension? As shown in [45], performing parameter estimation for

a mixture of 𝑘 Gaussians requires a number of samples which is exponential in 𝑘,

even in 1 dimension. However, as demonstrated in [1], proper learning doesn’t

have the same restriction – they provide an algorithm for proper learning mix-

tures of 𝑘 Gaussians in 1 dimension whose sample complexity has a polynomial

dependence on 𝑘. Unfortunately, the running time of their algorithm is still

exponential in 𝑘. Is it possible to break through this exponential dependence

on the number of components, or is it required for proper learning?

∙ How efficiently can we learn mixtures of Gaussians in high dimen-

sions? While it has been shown that mixtures of Gaussians are efficiently

learnable in high dimensions [40, 45, 7], there are still many things we don’t

know. Do there exist practically efficient algorithms for this task, in any learn-

ing setting? In which circumstances can we avoid an exponential dependence on

the number of components? There have been a number of recent works which

study specific cases of this problem [39, 38, 1, 4], including mixtures of spherical

Gaussians or when the covariance matrices are known and identical, but it is

clear we still have much to learn.

53

54

Chapter 4

Covering Poisson Multinomial

Distributions

4.1 Introduction

A Poisson Multinomial distribution of size 𝑛 and dimension 𝑘 is the distribution of

the sum

𝑋 =
𝑛∑︁

𝑖=1

𝑋𝑖,

where 𝑋1, . . . 𝑋𝑛 are independent 𝑘-dimensional categorical random variables (i.e.,

distributions over the 𝑘 basis vectors). This generalizes both the Multinomial distri-

bution (in which all 𝑋𝑖 are identically distributed) and the Poisson Binomial distri-

bution (which corresponds to the special case 𝑘 = 2).

Our main result of this chapter is the following cover theorem:

Theorem 5. The set of Poisson Multinomial distributions of size 𝑛 and dimension

𝑘 can be 𝜀-covered by a set of size 𝑛𝑂(𝑘3)
(︀
𝑘
𝜀

)︀poly(𝑘, 1𝜀).
Using only Theorem 5 and Theorem 1, we can also obtain the following learning

result:

Corollary 32. There exists an algorithm with poly
(︀
log 𝑛, 𝑘, 1

𝜀

)︀
sample complexity

which learns Poisson Multinomial distributions. The running time of this algorithm

55

is 𝑛𝑂(𝑘3)
(︀
𝑘
𝜀

)︀poly(𝑘,1/𝜀).
There is a large body of work on Poisson Binomial distributions, including results

on approximation, learning, covering and testing (i.e., see [20, 25] and the references

contained therein). Comparatively, to our knowledge, there is far less prior work on

Poisson Multinomial distributions. Daskalakis and Papadimitriou initiated the study

of covers for Poisson Multinomial distributions, motivated by the efficient computa-

tion of approximate Nash equilibria for anonymous games [24]. Very recently, Valiant

and Valiant proved a central limit theorem for this class [53], which we use as a key

component in our analysis. In the realm of probability theory, there are some results

by Roos for approximating a Poisson Multinomial distribution with a multivariate

Poisson distribution or finite signed measures [49, 50, 51].

Approach. Our analysis will show that any Poisson Multinomial distribution is

close to the sum of a small number of discretized Gaussians and a sparse Poisson

Multinomial distribution. Since the resulting distribution has relatively few parame-

ters (and the minimum eigenvalues of the covariance matrices of these Gaussians are

sufficiently large), we can generate a sparse cover for this set by gridding over these

parameters.

At the heart of our approximation lies a central limit theorem by Valiant and

Valiant [53], which approximates a Poisson Multinomial distribution with a discretized

Gaussian. There are two issues with a naive application of this result: the accuracy of

the approximation decreases as we increase 𝑛 or decrease the minimum eigenvalue of

the covariance matrix of the distribution. The main technical challenge of this work

lies in avoiding these two penalties.

To mitigate the latter cost, we apply a rounding scheme to the parameters of our

distribution. We shift the parameters such that they are either equal to 0 or suffi-

ciently far from 0, while simultaneously approximately preserving our mean vector.

This results in each categorical random variable having a large variance in any di-

rection which it is non-zero. Partitioning the categorical random variables into sets

based on their non-zero directions and ignoring the zeroes, we get that the minimum

56

variance of each set is large.

To avoid the cost based on the value of 𝑛, we repeatedly partition and sort the

categorical random variables into bins. A bin will have the property that this cost

is negligible compared to the variance of the collection in the bin, so we can apply

the central limit theorem. We note that there will be a small number of categorical

random variables which do not fall into a bin that has this property – these leftover

variables result in the “sparse Poisson Multinomial distribution” component of our

cover.

The above approximation results a cover which contains the sum of many dis-

cretized Gaussians. In order to reduce the size of our cover, we merge many Gaussians

into a single distribution. It is well known that the sum of two Gaussians has the

same distribution as a single Gaussian whose parameters are equal to the sum of the

parameters of the two components. The same is not true for discretized Gaussians,

and we must quantify the error induced by this merging operation.

Comparison with Prior Work. The main prior work on this problem is in [24, 27].

They produce a cover of size 𝑛𝑂(𝑓(𝑘,1/𝜀)), where 𝑓 is polynomial in 1/𝜀 and exponential

in 𝑘3. In comparison, our cover is of size 𝑛𝑂(𝑘3)(𝑘/𝜀)𝑂(𝑘/𝜀), which significantly reduces

the exponent of 𝑛 and decouples the dependence on 𝑛 and 1/𝜀. However, theirs is

a proper cover (i.e., the class of covering distributions is a subclass of the class we

are trying to cover), while ours is improper (we cover it with a different class of

distributions).

As mentioned before, the case when 𝑘 = 2 is also called the Poisson Binomial

distribution. These distributions have been studied extensively [20, 25, 17, 26], and

as a result, we have a much richer understanding of them. The best known cover is

proper, and is of size 𝑛2 + 𝑛 · (1/𝜀)𝑂(log2(1/𝜀), which has a much milder exponent for

𝑛 and is exponential in only log2(1/𝜀). Furthermore, there exist learning algorithms

for this class which have sample complexity independent of 𝑛 and a time complexity

which is polynomial in log 𝑛. In light of these results, we believe that sparser covers

and more efficient algorithms exist for the Poisson Multinomial case.

57

4.2 Preliminaries

We start by formally defining a Poisson Multinomial distribution.

Definition 6. A Categorical Random Variable (CRV) of dimension 𝑘 is a random

variable that takes values in {𝑒1, . . . , 𝑒𝑘} where 𝑒𝑗 is the 𝑘-dimensional unit vector

along direction 𝑗. 𝜋(𝑖) is the probability of observing 𝑒𝑖.

Definition 7. A Poisson Multinomial Distribution (PMD) is given by the law of the

sum of 𝑛 independent but not necessarily identical categorical random variables of

dimension 𝑘. A PMD is parameterized by a nonnegative matrix 𝜋 ∈ [0, 1]𝑛×𝑘 each

of whose rows sum to 1 is denoted by 𝑀𝜋, and is defined by the following random

process: for each row 𝜋(𝑖, ·) of matrix 𝜋 interpret it as a probability distribution over

the columns of 𝜋 and draw a column index from this distribution; return a row vector

recording the total number of samples falling into each column (the histogram of the

samples). We will refer to 𝑛 and 𝑘 as the size and dimension of the PMD, respectively.

We note that a sample from a PMD is redundant – given 𝑘 − 1 coordinates of a

sample, we can recover the final coordinate by noting that the sum of all 𝑘 coordinates

is 𝑛. For instance, while a Binomial distribution is over a support of size 2, a sample

is 1-dimensional since the frequency of the other coordinate may be inferred given

the parameter 𝑛. With this inspiration in mind, we provide the following definitions:

Definition 8. A Truncated Categorical Random Variable of dimension 𝑘 is a random

variable that takes values in {0, 𝑒1, . . . , 𝑒𝑘−1} where 𝑒𝑗 is the (𝑘− 1)-dimensional unit

vector along direction 𝑗, and 0 is the (𝑘 − 1) dimensional zero vector. 𝜌(0) is the

probability of observing the zero vector, and 𝜌(𝑖) is the probability of observing 𝑒𝑖.

While we will approximate the Multinomial distribution with Gaussian distri-

butions, it does not make sense to compare discrete distributions with continuous

distributions, since the total variation distance is always 1. As such, we must dis-

cretize the Gaussian distributions. We will use the notation ⌊𝑥⌉ to say that 𝑥 is

rounded to the nearest integer (with ties being broken arbitrarily). If 𝑥 is a vector,

we round each coordinate independently to the nearest integer.

58

Definition 9. A Generalized Multinomial Distribution (GMD) is given by the law of

the sum of 𝑛 independent but not necessarily identical truncated categorical random

variables of dimension 𝑘. A GMD is parameterized by a nonnegative matrix 𝜌 ∈

[0, 1]𝑛×(𝑘−1) each of whose rows sum to at most 1 is denoted by 𝐺𝜌, and is defined

by the following random process: for each row 𝜌(𝑖, ·) of matrix 𝜌 interpret it as a

probability distribution over the columns of 𝜌 – including, if
∑︀𝑘

𝑗=1 𝜌(𝑖, 𝑗) < 1, an

“invisible” column 0 – and draw a column index from this distribution; return a row

vector recording the total number of samples falling into each column (the histogram

of the samples). We will refer to 𝑛 and 𝑘 as the size and dimension of the GMD,

respectively.

We note that a PMD corresponds to a GMD where the “invisible” column is the

zero vector, and thus the definition of GMDs is more general than that of PMDs.

However, whenever we refer to a GMD in this chapter, it will explicitly have a non-

zero invisible column – in particular, as we will see later, all entries in the invisible

column will be at least 1
𝑘
.

Definition 10. The 𝑘-dimensional Discretized Gaussian Distribution with mean 𝜇

and covariance matrix Σ, denoted ⌊𝒩 (𝜇,Σ)⌉, is the distribution with support Z𝑘 ob-

tained by picking a sample according to the 𝑘-dimensional Gaussian 𝒩 (𝜇,Σ), then

rounding each coordinate to the nearest integer.

Definition 11. The 𝑘-dimensional Detruncated Discretized Gaussian Distribution

with mean 𝜇, covariance matrix Σ, size 𝑛, and position 𝑖, denoted ⌊𝒩 (𝜇,Σ, 𝑛, 𝑖)⌉,

is the distribution with support Z𝑘 obtained by drawing a sample via the following

process: draw a sample from the (𝑘 − 1)-dimensional Gaussian 𝒩 (𝜇,Σ), round each

coordinate to the nearest integer to obtain a vector (𝑥1, . . . , 𝑥𝑘−1), and return the

vector (𝑥1, . . . , 𝑥𝑖−1, 𝑛−
∑︀𝑘−1

𝑗=1 𝑥𝑗, 𝑥𝑖, . . . , 𝑥𝑘−1).

We will use the following form of Chernoff/Hoeffding bounds:

Lemma 33 (Chernoff/Hoeffding). Let 𝑍1, . . . , 𝑍𝑚 be independent random variables

59

with 𝑍𝑖 ∈ [0, 1] for all 𝑖. Then, if 𝑍 =
∑︀𝑛

𝑖=1 𝑍𝑖 and 𝛾 ∈ (0, 1),

Pr[|𝑍 − 𝐸[𝑍]| ≥ 𝛾𝐸[𝑍]] ≤ 2 exp(−𝛾2𝐸[𝑍]/3).

4.2.1 Covariance Matrices of Truncated Categorical Random

Variables

First, recall the definition of a symmetric diagonally dominant matrix.

Definition 12. A matrix 𝐴 is symmetric diagonally dominant (SDD) if 𝐴𝑇 = 𝐴 and

𝐴𝑖𝑖 ≥
∑︀

𝑗 ̸=𝑖 |𝐴𝑖𝑗| for all 𝑖.

As a tool, we will use this corollary of the Gershgorin Circle Theorem [36] which

follows since all eigenvalues of a symmetric matrix are real.

Proposition 34. Given an SDD matrix 𝐴 with positive diagonal entries, the mini-

mum eigenvalue of 𝐴 is at least min𝑖 𝐴𝑖𝑖 −
∑︀

𝑗 ̸=𝑖 |𝐴𝑖𝑗|.

Proposition 35. The minimum eigenvalue of the covariance matrix Σ of a truncated

CRV is at least 𝜌(0) min𝑖 𝜌(𝑖).

Proof. The entries of the covariance matrix are

Σ𝑖𝑗 = 𝐸[𝑥𝑖𝑥𝑗] − 𝐸[𝑥𝑖]𝐸[𝑥𝑗]

=

⎧⎪⎨⎪⎩𝜌(𝑖) − 𝜌(𝑖)2 if 𝑖 = 𝑗

−𝜌(𝑖)𝜌(𝑗) else

We note that Σ is SDD, since
∑︀

𝑗 ̸=𝑖 |Σ𝑖𝑗| = 𝜌(𝑖)
∑︀

𝑗 ̸=𝑖 𝜌(𝑗) = 𝜌(𝑖)(1 − 𝜌(𝑖) − 𝜌(0)) ≤

𝜌(𝑖)(1 − 𝜌(𝑖)) = Σ𝑖𝑖. Thus, applying Proposition 34, we see that the minimum eigen-

value of Σ is at least min𝑖 𝜌(𝑖)(1 − 𝜌(𝑖)) − 𝜌(𝑖)(1 − 𝜌(𝑖) − 𝜌(0)) = 𝜌(0) min𝑖 𝜌(𝑖).

4.2.2 Sums of Discretized Gaussians

In this section, we will obtain total variation distance bounds on merging the sum

of discretized Gaussians. It is well known that the sum of multiple Gaussians has

60

the same distribution as a single Gaussian with parameters equal to the sum of the

components’ parameters. However, this is not true if we are summing discretized

Gaussians – we quantify the amount we lose by replacing the distribution with a

single Gaussian, and then discretizing afterwards.

As a tool, we will use the following result from [18]:

Proposition 36 (Proposition B.5 in [18]). Let 𝑋 ∼ 𝒩 (𝜇, 𝜎2) and 𝜆 ∈ R. Then

𝑑T𝑉 (⌊𝑋 + 𝜆⌉, ⌊𝑋⌉ + ⌊𝜆⌉) ≤ 1

2𝜎
.

From this, we can obtain the following:

Proposition 37. Let 𝑋1 ∼ 𝒩 (𝜇1, 𝜎
2
1) and 𝑋2 ∼ 𝒩 (𝜇2, 𝜎

2
2). Then

𝑑T𝑉 (⌊𝑋1 + 𝑋2⌉, ⌊𝑋1⌉ + ⌊𝑋2⌉) ≤
1

2𝜎
,

where 𝜎 = max𝑖 𝜎𝑖.

Proof. First, suppose without loss of generality that 𝜎1 ≥ 𝜎2.

𝑑T𝑉 (⌊𝑋1 + 𝑋2⌉, ⌊𝑋1⌉ + ⌊𝑋2⌉)

=
1

2

∞∑︁
𝑖=−∞

|Pr(⌊𝑋1 + 𝑋2⌉ = 𝑖) − Pr(⌊𝑋1⌉ + ⌊𝑋2⌉ = 𝑖)|

=
1

2

∞∑︁
𝑖=−∞

⃒⃒⃒⃒∫︁ ∞

−∞
𝑓𝑋2(𝜆) Pr(⌊𝑋1 + 𝜆⌉ = 𝑖) 𝑑𝜆−

∫︁ ∞

−∞
𝑓𝑋2(𝜆) Pr(⌊𝑋1⌉ + ⌊𝜆⌉ = 𝑖) 𝑑𝜆

⃒⃒⃒⃒

=
1

2

∞∑︁
𝑖=−∞

⃒⃒⃒⃒∫︁ ∞

−∞
𝑓𝑋2(𝜆)(Pr(⌊𝑋1 + 𝜆⌉ = 𝑖) − Pr(⌊𝑋1⌉ + ⌊𝜆⌉ = 𝑖)) 𝑑𝜆

⃒⃒⃒⃒

≤ 1

2

∞∑︁
𝑖=−∞

∫︁ ∞

−∞
𝑓𝑋2(𝜆) |(Pr(⌊𝑋1 + 𝜆⌉ = 𝑖) − Pr(⌊𝑋1⌉ + ⌊𝜆⌉ = 𝑖))| 𝑑𝜆

=
1

2

∫︁ ∞

−∞
𝑓𝑋2(𝜆)

(︃
∞∑︁

𝑖=−∞

|(Pr(⌊𝑋1 + 𝜆⌉ = 𝑖) − Pr(⌊𝑋1⌉ + ⌊𝜆⌉ = 𝑖))|

)︃
𝑑𝜆

≤
∫︁ ∞

−∞
𝑓𝑋2(𝜆)

1

2𝜎1

𝑑𝜆

=
1

2𝜎

61

The second inequality uses Proposition 36.

This leads to the following lemma:

Lemma 38. Let 𝑋1 ∼ 𝒩 (𝜇1,Σ1) and 𝑋2 ∼ 𝒩 (𝜇2,Σ2) be 𝑘-dimensional Gaussian

random variables, and let 𝜎 = min𝑗 max𝑖 𝜎𝑖,𝑗 where 𝜎𝑖,𝑗 is the standard deviation of

𝑋𝑖 in the direction parallel to the 𝑗th coordinate axis. Then

𝑑T𝑉 (⌊𝑋1 + 𝑋2⌉, ⌊𝑋1⌉ + ⌊𝑋2⌉) ≤
𝑘

2𝜎
.

Proof. The proof is by induction on 𝑘. The base case of 𝑘 = 1 is handled by Propo-

sition 37. For general 𝑘, we use a standard hybridization argument. Denote the 𝑗th

coordinate of 𝑋𝑖 as 𝑥𝑖𝑗.

𝑑T𝑉 (⌊𝑋1 + 𝑋2⌉, ⌊𝑋1⌉ + ⌊𝑋2⌉)

= 𝑑T𝑉 ((⌊𝑥11 + 𝑥21⌉, . . . , ⌊𝑥1𝑘 + 𝑥2𝑘⌉), (⌊𝑥11⌉ + ⌊𝑥21⌉, . . . , ⌊𝑥1𝑘⌉ + ⌊𝑥2𝑘⌉))

≤ 𝑑T𝑉 ((⌊𝑥11 + 𝑥21⌉, . . . , ⌊𝑥1𝑘 + 𝑥2𝑘⌉), (⌊𝑥11⌉ + ⌊𝑥21⌉, . . . , ⌊𝑥1𝑘 + 𝑥2𝑘⌉))

+ 𝑑T𝑉 ((⌊𝑥11⌉ + ⌊𝑥21⌉, . . . , ⌊𝑥1𝑘 + 𝑥2𝑘⌉), (⌊𝑥11⌉ + ⌊𝑥21⌉, . . . , ⌊𝑥1𝑘⌉ + ⌊𝑥2𝑘⌉))

≤ 𝑑T𝑉

(︀
(⌊𝑥11 + 𝑥21⌉, . . . , ⌊𝑥1(𝑘−1) + 𝑥2(𝑘−1)⌉), (⌊𝑥11⌉ + ⌊𝑥21⌉, . . . , ⌊𝑥1(𝑘−1)⌉ + ⌊𝑥2(𝑘−1)⌉

)︀
+ 𝑑T𝑉 (⌊𝑥1𝑘 + 𝑥2𝑘⌉, ⌊𝑥1𝑘⌉ + ⌊𝑥2𝑘⌉)

≤ 𝑘 − 1

2𝜎
+

1

2𝜎
=

𝑘

2𝜎

The first inequality is the triangle inequality, the second uses Lemma 1, and the third

uses the induction hypothesis and Proposition 37.

4.3 Bounding the Parameters Away from Zero

In this section, our goal is to replace our PMD with one where all non-zero proba-

bilities are sufficiently large, while still being close to the original in total variation

distance. This can be summarized in the following theorem:

62

Theorem 6. For any 𝑐 ≤ 1
2𝑘

, given access to the parameter matrix 𝜌 for a PMD 𝑀𝜌,

we can efficiently construct another PMD 𝑀𝜌, such that 𝜌(𝑖, 𝑗) ̸∈ (0, 𝑐) and

𝑑T𝑉

(︀
𝑀𝜌,𝑀𝜌

)︀
< 𝑂

(︂
𝑐1/2𝑘5/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

To prove this theorem, we will use a stripped-down version of the analysis from

[24]. At a high level, we will round the values which are in (0, 𝑐) by shifting probability

mass either to or from “heaviest” coordinate, while simultaneously (approximately)

preserving the mean of the PMD. We relate the two distributions using a careful

coupling argument and Poisson approximations to the Binomial distribution.

We will apply a rounding procedure to 𝑂(𝑘2) sets. Fix some coordinate 𝑥, and

select all CRVs where the parameter in coordinate 𝑥 is in the range (0, 𝑐). Partition

this subset into 𝑘 − 1 sets, depending on which coordinate 𝑦 ̸= 𝑥 is the heaviest. We

apply a rounding procedure separately to each of these sets. After this procedure,

none of the parameters in coordinate 𝑥 will be in (0, 𝑐). We repeat this for all 𝑘

possible settings of 𝑥. From the description below (and the restriction that 𝑐 ≤ 1
2𝑘

),

it will be clear that we will not “undo” any of our work and move probabilities back

into (0, 𝑐), so 𝑂(𝑘2) applications of our rounding procedure will produce the result

claimed in the theorem statement.

We fix some 𝑥, 𝑦 in order to describe and analyze the process more formally. Define

ℐ𝑥
𝑦 = {𝑖 | 0 < 𝜌(𝑖, 𝑥) < 𝑐 ∧ 𝑦 = arg max𝑗 𝜌(𝑖, 𝑗)} (breaking ties lexicographically), and

let 𝑀𝜌𝐼𝑥𝑦 be the PMD induced by this set. For the remainder of this section, without

loss of generality, assume that the indices selected by ℐ𝑥
𝑦 are 1 through |ℐ𝑥

𝑦 |.

We will apply the following rounding scheme to 𝜌𝐼𝑥𝑦 to obtain a new parameter

63

matrix 𝜌𝐼𝑥𝑦 :

𝜌𝐼𝑥𝑦 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜌𝐼𝑥𝑦 (𝑖, 𝑗) if 𝑗 ̸∈ {𝑥, 𝑦}

𝑐 if 𝑗 = 𝑥 ∧ 𝑖 ≤
⌊︂∑︀

𝑖′∈𝐼𝑥𝑦
𝜌𝐼𝑥𝑦 (𝑖

′,𝑥)

𝑐

⌋︂
0 if 𝑗 = 𝑥 ∧ 𝑖 >

⌊︂∑︀
𝑖′∈𝐼𝑥𝑦

𝜌𝐼𝑥𝑦 (𝑖
′,𝑥)

𝑐

⌋︂
1 −

∑︀
𝑗′ ̸=𝑦 𝜌𝐼𝑥𝑦 (𝑖, 𝑗′) if 𝑗 = 𝑦

For the sake of analysis, we define the process Fork, for sampling from a CRV

𝜌(𝑖, ·) in ℐ𝑥
𝑦 :

∙ Let 𝑋𝑖 be an indicator random variable, taking 1 with probability 1
𝑘

and 0

otherwise.

∙ If 𝑋𝑖 = 1, then return 𝑒𝑥 with probability 𝑘𝜌(𝑖, 𝑥) and 𝑒𝑦 with probability

1 − 𝑘𝜌(𝑖, 𝑥).

∙ If 𝑋𝑖 = 0, then return 𝑒𝑗 with probability 0 if 𝑗 = 𝑥, 𝑘
𝑘−1

(𝜌(𝑖, 𝑥) + 𝜌(𝑖, 𝑦) − 1
𝑘
)

if 𝑗 = 𝑦, and 𝑘
𝑘−1

𝜌(𝑖, 𝑗) otherwise.

We note that Fork is well defined as long as 𝜌(𝑖, 𝑥) ≤ 1
𝑘

and 𝜌(𝑖, 𝑥) + 𝜌(𝑖, 𝑦) ≥ 1
𝑘
.

The former is true since 𝑐 ≤ 1
𝑘
, and the latter is true since 𝑦 was chosen to be the

heaviest coordinate. Additionally, by calculating the probability of any outcome, we

can see that Fork is equivalent to the regular sampling process. Define the (random)

set 𝑋 = {𝑖 |𝑋𝑖 = 1}. We will use 𝜃 to refer to a particular realization of this set.

We define Fork for sampling from 𝜌(𝑖, ·) in the same way, though we will denote

the indicator random variables by �̂�𝑖 and �̂� instead. Note that, if 𝑐 ≤ 1
𝑘
, the

process will still be well defined after rounding. This is because 𝜌(𝑖, 𝑥) ≤ 𝑐 ≤ 1
𝑘
,

and 𝜌(𝑖, 𝑥) + 𝜌(𝑖, 𝑦) = 𝜌(𝑖, 𝑥) + 𝜌(𝑖, 𝑦) ≥ 1
𝑘
. For the rest of this section, when we are

drawing a sample from a CRV, we draw it via the process Fork.

The proof of Theorem 6 follows from the following lemmata:

64

Lemma 39.

Pr

(︃
𝜃 :

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒ ≤

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

∧

⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒⃒ ≤

⎛⎝𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⎞⎠1/2

⎞⎟⎠
≥ 1 − 4(𝑐𝑘)1/6

Lemma 40. Suppose that, for some 𝜃, the following hold:

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒ ≤

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒⃒ ≤

⎛⎝𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⎞⎠1/2

Then, letting 𝑍𝑖 be the Bernoulli random variable with expectation 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) (and 𝑍𝑖

defined similarly with 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)),

dTV

(︃∑︁
𝑖∈𝜃

𝑍𝑖,
∑︁
𝑖∈𝜃

𝑍𝑖

)︃
< 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

Lemma 41. For any ℐ𝑥
𝑦 ,

𝑑T𝑉

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

)︁
< 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

Since our final rounded PMD is generated after applying this rounding procedure

𝑂(𝑘2) times, Theorem 6 follows from our construction and Lemma 41 via the triangle

inequality.

65

Proof of Lemma 39: Note that
∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) =
∑︀

𝑖∈𝐼𝑥𝑦
Ω𝑖, where

Ω𝑖 =

⎧⎪⎨⎪⎩𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) with probability 1
𝑘

0 with probability 1 − 1
𝑘

We apply Lemma 33 to the rescaled random variables Ω′
𝑖 = 1

𝑐𝑘
Ω𝑖, with 𝛾 =

√︂
log 1

𝑐𝑘

2𝐸[
∑︀

𝑖∈𝐼𝑥𝑦
Ω𝑖]

,

giving

Pr

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝐼𝑥𝑦

Ω′
𝑖 − 𝐸

[︁∑︁
𝑖∈𝐼𝑥𝑦

Ω′
𝑖

]︁⃒⃒⃒⃒⃒⃒ ≥
⎛⎝1

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝐼𝑥𝑦

Ω′
𝑖

]︁⎞⎠1/2
⎤⎥⎦ ≤ 2(𝑐𝑘)1/6.

Unscaling the variables gives

Pr

⎡⎣⃒⃒⃒⃒⃒∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) − 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⃒⃒⃒⃒⃒ ≥

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁)︃1/2

⎤⎦
≤ 2(𝑐𝑘)1/6.

Applying the same argument to 𝜌𝐼𝑥𝑦 gives

Pr

⎡⎢⎣
⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) − 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⃒⃒⃒⃒⃒⃒ ≥

⎛⎝𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⎞⎠1/2

⎤⎥⎦
≤ 2(𝑐𝑘)1/6.

Since 𝑋 ∼ �̂�, by considering the joint probability space where 𝜃 = 𝑋 = �̂� and

66

applying a union bound, we get

Pr

(︃
𝜃 :

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒ ≤

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

∧

⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒⃒ ≤

⎛⎝𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⎞⎠1/2

⎞⎟⎠
≥ 1 − 4(𝑐𝑘)1/6

Proof of Lemma 40: Fix some 𝜃 = 𝑋 = �̂�. Without loss of generality, assume

𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≥ 𝐸

[︁∑︀
𝑖∈�̂� 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)

]︁
. There are two cases:

Case 1. 𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≤ (𝑐𝑘)3/4

From the first assumption in the lemma statement,

∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) ≤ 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁

+

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

≤ (𝑐𝑘)3/4 +
(𝑐𝑘)7/8√

2
log1/2

(︂
1

𝑐𝑘

)︂
:= 𝑔(𝑐, 𝑘)

Similarly, by the second assumption in the lemma statement and since

𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≥ 𝐸

[︁∑︀
𝑖∈�̂� 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)

]︁
, we also have that

∑︀
𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) ≤ 𝑔(𝑐, 𝑘).

By Markov’s inequality, Pr
[︁∑︀

𝑖∈𝜃 𝑍𝑖 ≥ 1
]︁
≤
∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) ≤ 𝑔(𝑐, 𝑘), and simi-

larly, Pr
[︁∑︀

𝑖∈𝜃 𝑍𝑖 ≥ 1
]︁
≤ 𝑔(𝑐, 𝑘). This implies that

⃒⃒⃒⃒
⃒Pr
[︁∑︁

𝑖∈𝜃

𝑍𝑖 = 0
]︁
− Pr

[︁∑︁
𝑖∈𝜃

𝑍𝑖 = 0
]︁⃒⃒⃒⃒⃒ ≤ 2𝑔(𝑐, 𝑘),

and thus by the coupling lemma,

𝑑T𝑉

(︃∑︁
𝑖∈𝜃

𝑍𝑖,
∑︁
𝑖∈𝜃

𝑍𝑖

)︃
≤ 4𝑔(𝑐, 𝑘) = 4

(︂
(𝑐𝑘)3/4 +

(𝑐𝑘)7/8√
2

log1/2

(︂
1

𝑐𝑘

)︂)︂

67

Case 2. 𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≥ (𝑐𝑘)3/4

We use the following claim, which is a combination of a classical result in Poisson

approximation [6] and Lemma 3.10 in [23].

Claim 42. For any set of independent Bernoulli random variables {𝑍𝑖}𝑖 with expec-

tations 𝐸[𝑍𝑖] ≤ 𝑐𝑘,

𝑑T𝑉

(︃∑︁
𝑖

𝑍𝑖, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(︁
𝐸
[︁∑︁

𝑖

𝑍𝑖

]︁)︁)︃
≤ 𝑐𝑘.

Applying this, we see

𝑑T𝑉

(︃∑︁
𝑖∈𝜃

𝑍𝑖, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(︁
𝐸
[︁∑︁

𝑖∈𝜃

𝑍𝑖

]︁)︁)︃
≤ 𝑐𝑘

𝑑T𝑉

(︃∑︁
𝑖∈𝜃

𝑍𝑖, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(︁
𝐸
[︁∑︁

𝑖∈𝜃

𝑍𝑖

]︁)︁)︃
≤ 𝑐𝑘

We must now bound the distance between the two Poisson distributions. We use the

following lemma from [24]:

Lemma 43 (Lemma B.2 in [24]). If 𝜆 = 𝜆0 + 𝐷 for some 𝐷 > 0, 𝜆0 > 0,

𝑑T𝑉 (𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆0)) ≤ 𝐷

√︂
2

𝜆0

.

Applying this gives that

𝑑T𝑉

(︃
𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(︁
𝐸
[︁∑︁

𝑖∈𝜃

𝑍𝑖

]︁)︁
, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(︁
𝐸
[︁∑︁

𝑖∈𝜃

𝑍𝑖

]︁)︁)︃

≤

⃒⃒⃒⃒
⃒𝐸[︁∑︁

𝑖∈𝜃

𝑍𝑖

]︁
− 𝐸

[︁∑︁
𝑖∈𝜃

𝑍𝑖

]︁⃒⃒⃒⃒⃒
⎯⎸⎸⎷ 2

min
{︁
𝐸
[︁∑︀

𝑖∈𝜃 𝑍𝑖

]︁
, 𝐸
[︁∑︀

𝑖∈𝜃 𝑍𝑖

]︁}︁
To bound this, we need the following proposition, which we prove below:

68

Proposition 44.⎯⎸⎸⎷ 2
⃒⃒∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) −
∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
⃒⃒2

min
{︀∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥),
∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
}︀ ≤

√︃
28𝑐𝑘 log

(︂
1

𝑐𝑘

)︂

Thus, using the triangle inequality and this proposition, for sufficiently small 𝑐,

we get

𝑑T𝑉

(︃∑︁
𝑖∈𝜃

𝑍𝑖,
∑︁
𝑖∈𝜃

𝑍𝑖

)︃
≤ 2𝑐𝑘 +

√︃
28𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
= 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂
.

By comparing Cases 1 and 2, we see that the desired bound holds in both cases.

Proof of Proposition 44: By the definition of our rounding procedure, we observe that⃒⃒⃒⃒
⃒⃒𝐸[︁∑︁

𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
− 𝐸

[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⃒⃒⃒⃒⃒⃒ ≤ 𝑐

By the assumptions of Lemma 40 and the assumption that 𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≥

𝐸
[︁∑︀

𝑖∈�̂� 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
,

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) −
∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒⃒𝐸[︁∑︁

𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
− 𝐸

[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⃒⃒⃒⃒⃒⃒

+

(︃
2𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁)︃1/2

≤ 𝑐 +

(︃
2𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁)︃1/2

,

69

and thus,

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) −
∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)

⃒⃒⃒⃒
⃒
2

≤ 𝑐2 + 2𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁

+

(︃
8𝑐3𝑘 log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁)︃1/2

(4.1)

From the assumption that 𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
≥ (𝑐𝑘)3/4, for sufficiently small 𝑐,

𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
≥ (𝑐𝑘)3/8

(︃
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁)︃1/2

≥

(︃
2𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

Combining this with the first assumption of Lemma 40,

∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) ≥ 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
−

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

≥ 1

2
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁

Similarly, since 𝐸
[︁∑︀

𝑖∈�̂� 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁
≥ 𝐸

[︁∑︀
𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)

]︁
− 𝑐 ≥ (𝑐𝑘)3/4 − 𝑐, for 𝑐

sufficiently small, ∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) ≥ 1

2
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁

70

It follows that

min

{︃∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥),
∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)

}︃

≥ 1

2
min

⎧⎨⎩𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
, 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁⎫⎬⎭

=
1

2
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁

≥ 1

2

(︃
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
− 𝑐

)︃

≥ 1

4
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁

(4.2)

where the last equality follows for 𝑐 sufficiently small because 𝐸
[︁∑︀

𝑖∈𝑋 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
]︁
≥

(𝑐𝑘)3/4.

From (4.1) and (4.2), for 𝑐 sufficiently small,

2
⃒⃒∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥) −
∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
⃒⃒2

min
{︀∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥),
∑︀

𝑖∈𝜃 𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑥)
}︀ ≤ 28𝑐𝑘 log

(︂
1

𝑐𝑘

)︂
,

from which the proposition statement follows.

Proof of Lemma 41: Throughout this proof, we will couple the two sampling processes

such that 𝜃 := 𝑋 = �̂�, which is possible since 𝑋 ∼ �̂�. Let 𝜑 be the random event

that 𝜃 satisfies the following conditions:

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒ ≤

(︃
𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈𝑋

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁)︃1/2

⃒⃒⃒⃒
⃒⃒∑︁
𝑖∈𝜃

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗) − 𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⃒⃒⃒⃒⃒⃒ ≤

⎛⎝𝑐𝑘

2
log

(︂
1

𝑐𝑘

)︂
𝐸
[︁∑︁
𝑖∈�̂�

𝑘𝜌𝐼𝑥𝑦 (𝑖, 𝑗)
]︁⎞⎠1/2

Suppose that 𝜑 occurs, and fix a 𝜃 in this probability space. We start by showing

71

that for such a 𝜃,

dTV

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

⃒⃒⃒
𝑋 = �̂� = 𝜃

)︁
< 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

Let 𝑀𝜌𝜃
𝐼𝑥𝑦 and 𝑀

𝜌𝜃
𝐼𝑥𝑦 be the PMDs induced by the CRVs in 𝑀

𝜌𝐼𝑥𝑦 with indices in 𝜃 and

not in 𝜃, respectively. Define 𝑀
𝜌𝜃
𝐼𝑥𝑦 and 𝑀

𝜌𝜃
𝐼𝑥𝑦 similarly. We can see

dTV

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

⃒⃒⃒
𝑋 = �̂� = 𝜃

)︁
= dTV

(︂
𝑀

𝜌𝜃
𝐼𝑥𝑦 + 𝑀

𝜌𝜃
𝐼𝑥𝑦 ,𝑀

𝜌𝜃
𝐼𝑥𝑦 + 𝑀

𝜌𝜃
𝐼𝑥𝑦

⃒⃒⃒⃒
𝑋 = �̂� = 𝜃

)︂
≤ dTV

(︁
𝑀

𝜌𝜃
𝐼𝑥𝑦 ,𝑀

𝜌𝜃
𝐼𝑥𝑦

⃒⃒⃒
𝑋 = �̂� = 𝜃

)︁
+ dTV

(︂
𝑀

𝜌𝜃
𝐼𝑥𝑦 ,𝑀

𝜌𝜃
𝐼𝑥𝑦

⃒⃒⃒⃒
𝑋 = �̂� = 𝜃

)︂
≤ dTV

(︁
𝑀

𝜌𝜃
𝐼𝑥𝑦 ,𝑀

𝜌𝜃
𝐼𝑥𝑦

⃒⃒⃒
𝑋 = �̂� = 𝜃

)︁
= dTV

(︃∑︁
𝑖∈𝜃

𝑍𝑖,
∑︁
𝑖∈𝜃

𝑍𝑖

⃒⃒⃒⃒
⃒𝑋 = �̂� = 𝜃

)︃

≤ 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

The first inequality is the triangle inequality, the second inequality is because the dis-

tributions for CRVs in 𝜃 are identical (since we do not change them in our rounding),

and the third inequality is Lemma 40.

By the law of total probability for total variation distance,

dTV

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

)︁
= Pr(𝜑)dTV

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

⃒⃒⃒
𝜑
)︁

+ Pr(𝜑)dTV

(︁
𝑀

𝜌𝐼𝑥𝑦 ,𝑀
𝜌𝐼𝑥𝑦

⃒⃒⃒
𝜑
)︁

≤
(︀
1 − 4(𝑐𝑘)1/6

)︀
·𝑂
(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂
+ 4(𝑐𝑘)1/6 · 1

= 𝑂

(︂
𝑐1/2𝑘1/2 log1/2

(︂
1

𝑐𝑘

)︂)︂

where the inequality is obtained by applying Lemma 39 and the bound shown above

pointwise for 𝜃 which satisfy 𝜑.

72

4.4 From PMDs to GMDs to Gaussians via Valiants’

CLT

4.4.1 Overview

At this point we have a “massaged” PMD 𝑀 �̂�, with no parameters lying in the interval

(0, 𝑐). We set 𝑐 to be some polynomial of 𝜀 and 1
𝑘

which will be specified later. In this

section, we will show how to relate the massaged PMD to our target distribution: a

sum of 𝑘 detruncated discretized Gaussians, plus a sparse PMD (i.e., one with size

only poly(𝑘, 1
𝜀
)).

The general roadmap is as follows: We start by partitioning the CRVs into 𝑘 sets

based on which basis vector we are most likely to observe. This allows us to argue

that the minimum eigenvalue of the covariance matrix of the PMD defined by each

set is sufficiently large. For each of these sets, we apply a central limit theorem by

Valiant and Valiant [53], which bounds the total variation distance between a PMD

and a discretized Gaussian with the same mean and covariance matrix. We must

be careful when applying this result – since their bound depends on the size of the

PMD, we must further partition each of these sets, apply the result to each of these

subsets, and then “merge” the resulting discretized Gaussians together using Lemma

38. This allows us to replace most of the CRVs with a single discretized Gaussian,

leaving us with a PMD of size poly(2𝑘, 1
𝜀
). We can apply the central limit theorem

again to all but poly(𝑘, 1
𝜀
) of these CRVs and obtain another discretized Gaussian,

which we merge with the others. Combining the result from each of the sets of the

original partition, we obtain the sum of 𝑘 discretized Gaussians and a PMD of size

poly(𝑘, 1
𝜀
), as desired.

4.4.2 Getting Our Hands Dirty

We now want to apply a result by Valiant and Valiant [53].

Theorem 7 (Theorem 4 from [53]). Given a generalized multinomial distribution

𝐺𝜌, with 𝑘 dimensions and 𝑛 rows, let 𝜇 denote its mean and Σ denote its covariance

73

matrix, then

𝑑T𝑉 (𝐺𝜌, ⌊𝒩 (𝜇, 𝜎)⌉) ≤ 𝑘4/3

𝜎1/3
· 2.2 · (3.1 + 0.83 log 𝑛)2/3

where 𝜎2 is the minimum eigenvalue of Σ.

As we can see from this inequality, there are two issues that may arise and lead

to a bad approximation:

∙ The GMD has small variance in some direction (cf. Proposition 35)

∙ The GMD has a large size parameter

We must avoid both of these issues simultaneously – we will apply this result to

several carefully chosen sets, and then merge the resulting Gaussians into one using

Lemma 38.

The first step is to convert our PMD into several GMDs. We start by partitioning

the CRVs into 𝑘 sets 𝑆1, . . . , 𝑆𝑘, where 𝑆𝑗′ = {𝑖 | 𝑗′ = arg max𝑗 �̂�(𝑖, 𝑗)} and ties are

broken by lexicographic ordering. This defines 𝑆𝑗′ to be the set of indices of CRVs

in which 𝑗′ is the heaviest coordinate. Let 𝑀 �̂�𝑗′ be the PMD induced by taking the

CRVs in 𝑆𝑗′ . For the remainder of this section, we will focus on 𝑆𝑘, the other cases

follow symmetrically.

We convert each CRV in 𝑆𝑘 into a truncated CRV by omitting the 𝑘th coordinate,

giving us a GMD 𝐺𝜌𝑘 . Since the 𝑘th coordinate was the heaviest, we can make the

following observation:

Observation 45. 𝜌𝑘(𝑖, 0) ≥ 1
𝑘

for all 𝑖 ∈ 𝑆𝑘.

If we tried to apply Theorem 7 to 𝐺𝜌𝑘 , we would obtain a vacuous result. For

instance, if there exists a 𝑗 such that 𝜌𝑘(𝑖, 𝑗) = 0 for all 𝑖, the variance in this

direction would be 0 and the CLT would give us a trivial result. Therefore, we

further partition 𝑆𝑘 into 2𝑘−1 sets indexed by 2[𝑘−1], where each set contains the

elements of 𝑆𝑘 which are non-zero on its indexing set and zero otherwise. More

formally, 𝑆ℐ
𝑘 = {𝑖 | (𝑖 ∈ 𝑆𝑘) ∧ (𝜌(𝑖, 𝑗) ≥ 𝑐 ∀𝑗 ∈ ℐ) ∧ (𝜌(𝑖, 𝑗) = 0 ∀𝑗 ̸∈ ℐ)}. For each of

74

these sets, due to our rounding procedure, we know that the variance is non-negligible

in each of the non-zero directions. The issue is that the size of each set might still be

large compared to this variance. As one last step before applying the CLT, we group

the sets 𝑆ℐ
𝑘 into buckets.

Define 𝛾 as a constant, and 𝑡 as a polynomial of 𝑘 and 1
𝜀
, both of which will be

specified later. Define 𝐵𝑙 =
⋃︀

ℐ∈𝑄𝑙
𝑆ℐ
𝑘 , where 𝑄𝑙 = {ℐ | |𝑆ℐ

𝑘 | ∈ [𝑙𝛾𝑡, (𝑙 + 1)𝛾𝑡)}. In

other words, bin 𝑙 will contain a collection of truncated CRVs, defined by the union

of the previously defined sets which have a size falling in a particular interval.

At this point, we are ready to apply the central limit theorem:

Lemma 46. Let 𝐺𝜌𝑙𝑘 be the GMD induced by the truncated CRVs in 𝐵𝑙, and 𝜇𝑙
𝑘 and

Σ𝑙
𝑘 be its mean and covariance matrix. Then

𝑑T𝑉

(︁
𝐺𝜌𝑙𝑘 , ⌊𝒩 (𝜇𝑙

𝑘,Σ
𝑙
𝑘)⌉
)︁
≤ 8.646𝑘3/2 log2/3(2𝑘(𝑙 + 1)𝛾𝑡)

𝑙𝛾/6𝑡1/6𝑐1/6

Proof. This follows from Theorem 7, it suffices to bound the values of “𝑛” and “𝜎2”

which appear in the theorem statement.

𝐵𝑙 is the union of at most 2𝑘 sets, each of size at most (𝑙 + 1)𝛾𝑡, which gives us

the upper bound of 2𝑘(𝑙 + 1)𝛾𝑡 as the size of induced GMD.

We must be more careful when reasoning about the minimum eigenvalue of Σ𝑙
𝑘 –

indeed, it may be 0 if there exists a 𝑗′ such that for all 𝑖, 𝜌𝑙𝑘(𝑖, 𝑗′) = 0. Therefore, we

apply the CLT on the GMD defined by removing all zero-columns from 𝜌𝑙𝑘, taking us

down to a dimension 𝑘′ ≤ 𝑘. Afterwards, we lift the related discretized Gaussian up to

𝑘 dimensions by inserting 0 for the means and covariances involving any of the 𝑘− 𝑘′

dimensions we removed. This operation will not increase the total variation distance,

by Lemma 1. From this point, we assume that all columns of 𝜌𝑙𝑘 are non-zero.

Consider an arbitrary 𝑆ℐ
𝑘 which is included in 𝐵𝑙. Let ℰℐ = span{𝑒𝑖 | 𝑖 ∈ ℐ}.

Applying Proposition 35, Observation 45, and the properties necessary for inclusion

in 𝑆ℐ
𝑘 , we can see that a CRV in 𝑆ℐ

𝑘 has variance at least 𝑐
𝑘

within ℰℐ . Since inclusion in

𝐵𝑙 means that |𝑆ℐ
𝑘 | ≥ 𝑙𝛾𝑡, and variance is additive for independent random variables,

the GMD induced by 𝑆ℐ
𝑘 has variance at least 𝑙𝛾𝑡 𝑐

𝑘
within ℰℐ . To conclude, we note

75

that if a column in 𝜌𝑙𝑘 is non-zero, there must be some ℐ* ∈ 𝑄𝑙 which intersects the

corresponding dimension. Since 𝑆ℐ*

𝑘 causes the variance in this direction to be at

least 𝑙𝛾𝑡 𝑐
𝑘
, we see that the variance in every direction must be this large.

By substituting these values into Theorem 7, we obtain the claimed bound.

We note that this gives us a vacuous bound for 𝐵0, which we must deal with

separately. The issue with this bin is that the variance in some directions might be

small compared to the size of the GMD induced by the bin. The intuition is that we

can remove the truncated CRVs which are non-zero in these low-variance dimensions,

and the remaining truncated CRVs can be combined into another GMD.

Lemma 47. Let 𝐺𝜌0𝑘 be the GMD induced by the truncated CRVs in 𝐵0. Given 𝜌0𝑘,

we can efficiently compute a partition of 𝐵0 into 𝑆 and 𝑆, where |𝑆| ≤ 𝑘𝑡. Letting

𝜇𝑆 and Σ𝑆 be the mean and covariance matrix of the GMD induced by 𝑆, and 𝐺𝜌𝑆𝑘 be

the GMD induced by 𝑆,

𝑑T𝑉

(︁
𝐺𝜌0𝑘 , ⌊𝒩 (𝜇𝑆,Σ𝑆)⌉ + 𝐺𝜌𝑆𝑘

)︁
≤ 8.646𝑘3/2 log2/3(2𝑘𝑡)

𝑡1/6𝑐1/6

Proof. The algorithm iteratively eliminates columns which have fewer than 𝑡 non-zero

entries. For each such column 𝑗, add all truncated CRVs which have non-zero entries

in column 𝑗 to 𝑆. Since there are only 𝑘 columns, we add at most 𝑘𝑡 truncated CRVs

to 𝑆.

Now, we apply Theorem 7 to the truncated CRVs in 𝑆. The analysis of this is

similar to the proof of Lemma 46. As argued before, we can drop the dimensions

which have 0 variance. This time, the size of the GMD is at most 2𝑘𝑡, which follows

from the definition of 𝐵0. Recall that the minimum variance of a single truncated

CRV in 𝑆 is at least 𝑐
𝑘

in any direction in the span of its non-zero columns. After

removing the CRVs in 𝑆, every dimension with non-zero variance must have at least

𝑡 truncated CRVs which are non-zero in that dimension, giving a variance of at least
𝑡𝑐
𝑘
. Substituting these parameters into Theorem 7 gives the claimed bound.

We put these two lemmata together to obtain the following result:

76

Lemma 48. Let 𝐺𝜌𝑘 be a GMD with 𝜌𝑘(𝑖, 𝑗) ̸∈ (0, 𝑐) and
∑︀

𝑗 𝜌𝑘(𝑖, 𝑗) ≤ 1 − 1
𝑘

for

all 𝑖, and let 𝑆𝑘 be its set of component truncated CRVs. There exists an efficiently

computable partition of 𝑆𝑘 into 𝑆 and 𝑆, where |𝑆| ≤ 𝑘𝑡. Furthermore, letting 𝜇𝑆

and Σ𝑆 be the mean and covariance matrix of the GMD induced by 𝑆, and 𝐺𝜌𝑆𝑘 be the

GMD induced by 𝑆,

𝑑T𝑉

(︁
𝐺𝜌𝑘 , ⌊𝒩 (𝜇𝑆,Σ𝑆)⌉ + 𝐺𝜌𝑆𝑘

)︁
≤ 𝑂

(︃
𝑘13/6 log2/3 𝑡

𝑐1/6𝑡1/6
+

𝑘3/2

𝑐1/2𝑡1/2

)︃

Proof. This is a combination of Lemmas 46 and 47, with the results merged using

Lemma 38.

As described above, we will group the truncated CRVs into several bins. We

first apply Lemma 46 to each of the non-empty bins 𝐵𝑙 for 𝑙 > 0. This will give

us a sum of many discretized Gaussians. If applicable, we apply Lemma 47 to 𝐵0

to obtain another discretized Gaussian and a set 𝑆 of ≤ 𝑘𝑡 truncated CRVs. By

applying Lemma 38, we can “merge” the sum of many discretized Gaussians into a

single discretized Gaussian. By triangle inequality, the error occured in the theorem

statement is the sum of all of these approximations.

We start by analyzing the cost of applying Lemma 46. Fix 𝛾 = 6 + 𝛿 for some

constant 𝛿 > 0. Let the set of 𝑁 non-empty bins be 𝒳 . Then the sum of the errors

incurred by all 𝑁 applications of Lemma 46 is at most

∑︁
𝑙∈𝒳

𝑂

(︃
𝑘3/2 log2/3(2𝑘(𝑙 + 1)(6+𝛿)𝑡)

𝑙(6+𝛿)/6𝑡1/6𝑐1/6

)︃
≤

∞∑︁
𝑙=1

𝑂

(︃
𝑘3/2 log2/3(2𝑘(𝑙 + 1)(6+𝛿)𝑡)

𝑙(6+𝛿)/6𝑡1/6𝑐1/6

)︃

≤
∞∑︁
𝑙=1

𝑂

(︃
𝑘13/6 log2/3 𝑙 log2/3 𝑡

𝑙(6+𝛿)/6𝑡1/6𝑐1/6

)︃

≤ 𝑘13/6 log2/3 𝑡

𝑐1/6𝑡1/6

∞∑︁
𝑙=1

𝑂

(︃
log2/3 𝑙

𝑙(6+𝛿)/6

)︃

≤ 𝑘13/6 log2/3 𝑡

𝑐1/6𝑡1/6

∞∑︁
𝑙=1

𝑂

(︂
1

𝑙(6+𝛿′)/6

)︂

≤ 𝑂

(︃
𝑘13/6 log2/3 𝑡

𝑐1/6𝑡1/6

)︃

77

for any constant 0 < 𝛿′ < 𝛿. The final inequality is because the series
∑︀∞

𝑛=1 𝑛
−𝑐

converges for any 𝑐 > 1.

The cost of applying Lemma 47 is analyzed similarly,

8.646𝑘3/2 log2/3(2𝑘𝑡)

𝑡1/6𝑐1/6
≤ 𝑂

(︃
𝑘13/6 log2/3 𝑡

𝑐1/6𝑡1/6

)︃

Finally, we analyze the cost of merging the 𝑁 + 1 Gaussians into one. We will

analyze this by considering the following process: we maintain a discretized Gaussian,

which we will name the candidate. The candidate is initialized to be the Gaussian

generated from the highest numbered non-empty bucket. At every time step, we

update the candidate to be the result of merging itself with the Gaussian from the

highest numbered non-empty bucket which has not yet been merged. We continue

until the Gaussian from every non-empty bucket has been merged with the candidate.

By Lemma 38, the cost of merging two Gaussians is at most 𝑂
(︀
𝑘
𝜎

)︀
, where 𝜎2 is

the minimum variance of either Gaussian in any direction where either has a non-zero

variance. Recall from the proof of Lemma 46 that the variance of the Gaussian from

𝐵𝑙 is at least 𝑙𝛾𝑡 𝑐
𝑘

in every direction of non-zero variance. Since we are considering the

bins in decreasing order and merging two Gaussians only increases the variance, when

merging the candidate with bucket 𝑙, the maximum cost we can incur is
(︁

𝑘3/2

𝑙𝛾/2𝑐1/2𝑡1/2

)︁
.

Summing over all bins in 𝒳 ,

∑︁
𝑙∈𝒳

𝑂

(︂
𝑘3/2

𝑙𝛾/2𝑐1/2𝑡1/2

)︂
≤ 𝑘3/2

𝑐1/2𝑡1/2

∞∑︁
𝑙=1

𝑂

(︂
1

𝑙(6+𝛿)/2

)︂
≤ 𝑂

(︂
𝑘3/2

𝑐1/2𝑡1/2

)︂

where the second inequality is because the series
∑︀∞

𝑛=1 𝑛
−𝑐 converges for any 𝑐 > 1.

We note that the cost incurred by merging the Gaussian obtained from 𝐵0 is upper

bounded by the term in this sum corresponding to 𝑙 = 1, so it does not affect our

bound.

By adding the error terms obtained from each of the approximations, we obtain

78

the claimed bound.

We make the following observation, which allows us to convert back from relat-

ing GMDs and discretized Gaussians to relating PMDs and detruncated discretized

Gaussians:

Observation 49. Let 𝐺𝜌 be a GMD of size 𝑛 and dimension 𝑘, and 𝑀𝜋 be the PMD

of size 𝑛 and dimension 𝑘 such that the submatrix of 𝜋 which excludes the 𝑖th column

is 𝜌. Then

𝑑T𝑉 (𝐺𝜌, ⌊𝒩 (𝜇,Σ)⌉) = 𝑑T𝑉 (𝑀𝜋, ⌊𝒩 (𝜇,Σ, 𝑛, 𝑖)⌉)

Finally, we conclude with our main theorem of the section by combining our results

for the sets 𝑆1 through 𝑆𝑘.

Theorem 8. Every Poisson Multinomial distribution of size 𝑛 and dimension 𝑘 is

𝜀-close to a sum of 𝑘 detruncated discretized Gaussians and a Poisson Multinomial

distribution of size ≤ 𝑘2𝑡 and dimension 𝑘.

Proof. First, we justify the structure of the approximation, and then show that it

can be 𝜀-close by carefully choosing the parameters 𝑐 and 𝑡. We start by applying

Theorem 6 to obtain a PMD 𝑀 �̂� such that �̂�(𝑖, 𝑗) ̸∈ (0, 𝑐) for all 𝑖, 𝑗. Partition the

component CRVs into 𝑘 sets 𝑆1, . . . , 𝑆𝑘, where the 𝑖th CRV is placed in the 𝑙th set if

𝑙 = arg max𝑗 �̂�(𝑖, 𝑗) (with ties broken lexicographically). Since index 𝑙 is the heaviest,

every CRV 𝑖 in 𝑆𝑙 has 𝜌(𝑖, 𝑙) ≥ 1
𝑘
. We convert the PMD induced by each 𝑆𝑙 to a GMD

by dropping the 𝑙th column. Applying Lemma 48 to each set, applying Observation

49, and summing the results from all sets gives the claimed structure.

Now, we must choose the parameters 𝑐 and 𝑡 in order to make the resulting

distribution be 𝜀-close to the original. Applying Theorem 6 introduces a cost of

𝑂
(︁
𝑐1/2𝑘5/2 log1/2

(︀
1
𝑐𝑘

)︀)︁
in our approximation. Choosing 𝑐 =

(︁
𝜀2

𝑘5

)︁1+𝛿𝑐
for any con-

stant 𝛿𝑐 > 0 makes this cost become 𝑂(𝜀), for 𝜀 sufficiently small. We apply Lemma 48

𝑘 times (once to each set 𝑆𝑙), so the total cost introduced here is 𝑂
(︁

𝑘19/6 log2/3 𝑡
𝑐1/6𝑡1/6

+ 𝑘5/2

𝑐1/2𝑡1/2

)︁
.

Choosing 𝑡 =
(︁

𝑘19

𝑐𝜀6

)︁1+𝛿𝑡
makes this cost 𝑂(𝜀) as well, for 𝜀 sufficiently small. By tri-

angle inequality, this makes the resulting approximation 𝑂(𝜀) close to the original

distribution.

79

4.5 A Sparse Cover for PMDs

Proof of Theorem 5: Our strategy will be as follows: Theorem 8 implies that the

original distribution is 𝑂(𝜀) close to a particular class of distributions. We generate

an 𝑂(𝜀)-cover for this generated class. By triangle inequality, this is an 𝑂(𝜀)-cover for

PMDs. In order to generate a cover, we will use a technique known as “gridding” (see

Section 1.2.1 for more details). We will generate a set of values for each parameter,

and take the Cartesian product of these sets. Our guarantee is that the resulting set

will contain at least one set of parameters defining a distribution which is 𝑂(𝜀)-close

to the PMD. We will assume 𝑐, 𝑡 are such that the approximation guaranteed by

Theorem 8 is 𝑂(𝜀), and we will substitute in the values from the proof of Theorem 8

at the end.

First, we note that we can naively grid over the set of PMDs of size 𝑘2𝑡 and

dimension 𝑘. We note that if two CRVs have parameters which are within ± 𝜀
𝑘

of

each other, then their total variation distance is at most 𝜀. Similarly, by triangle

inequality, two PMDs of size 𝑘2𝑡 and dimension 𝑘 with parameters within ± 𝜀
𝑘3𝑡

of

each other have a total variation distance at most 𝜀. By taking an additive grid of

granularity 𝜀
𝑘3𝑡

over all 𝑘2𝑡 parameters, we can generate an 𝑂(𝜀)-cover for PMDs of

size 𝑘2𝑡 and dimension 𝑘 with 𝑂
(︁

𝑘3𝑡
𝜀

)︁𝑘2𝑡
candidates.

Next, we wish to cover the detruncated discretized Gaussians. There are 𝑘 Gaus-

sians, and each has a mean with 𝑘− 1 parameters, a covariance matrix with (𝑘− 1)2

parameters, and a single size parameter. We describe how to generate a 𝑂
(︀
𝜀
𝑘

)︀
-cover

for a single one of these Gaussians. By taking the Cartesian product of the cover for

each of the Gaussians and applying the triangle inequality, we generate a 𝑂(𝜀)-cover

for the collection of Gaussians at the cost of a factor of 𝑘 in the exponent of the cover

size.

First, we examine the size parameter. Since the size parameter is an integer

between 0 and 𝑛, we can simply try them all, giving us a factor of 𝑂(𝑛) in the size of

our cover.

Covering the mean and covariance matrix takes a bit more care, and we use the

80

following Proposition from [53]:

Proposition 50 (Proposition 32 in [53]). Given two 𝑘-dimensional Gaussians 𝒩1 =

𝒩 (𝜇1,Σ1),𝒩2 = 𝒩 (𝜇2,Σ2) such that for all 𝑖, 𝑗 ∈ [𝑘], |Σ1(𝑖, 𝑗) − Σ2(𝑖, 𝑗)| ≤ 𝛼, and

the minimum eigenvalue of Σ1 is at least 𝜎2,

𝑑T𝑉 (𝒩1,𝒩2) ≤
‖𝜇1 − 𝜇2‖2√

2𝜋𝜎2
+

𝑘𝛼√
2𝜋𝑒(𝜎2 − 𝛼)

.

For the remainder of this proof, we let 𝒩1 be the Gaussian produced via Lemma

48, and we will construct a 𝒩2 which is close to it. We note that, by the construction

described in Lemma 48 (which is used in Theorem 8), after dropping all zero rows and

columns from the covariance matrix for one of our Gaussians, the minimum eigenvalue

of the resulting matrix will be ≥ 𝑐𝑡
𝑘
. Since our gridding strategy will try setting every

possible subset of the parameters to 0, there will exist an element in our cover which

matches these 0’s exactly, and we can focus on the sub-problem which excludes these

coordinates which are constantly 0. Thus, we assume that 𝜎2 ≥ 𝑐𝑡
𝑘
.

We examine the first term of the bound in Proposition 50. If ‖𝜇1 − 𝜇2‖2 ≤ 𝜀
√
𝑐𝑡

𝑘3/2
:

= 𝛽, then this term is 𝑂
(︀
𝜀
𝑘

)︀
. Note that 𝜇1 ∈ [0, 𝑛]𝑘−1, since each coordinate is the

sum of at most 𝑛 parameters which are at most 1. We can create a 𝛽-cover of size

𝑂
(︁

𝑛
√
𝑘

𝛽

)︁𝑂(𝑘)

for this space, with respect to the ℓ2 distance. To see this, consider

covering the space with (𝑘− 1)-cubes of side length 𝛽√
𝑘−1

. Any two points within the

same cube are at ℓ2 distance at most 𝛽. Our cover is defined as taking the same vertex

from each of these cubes. The volume of [0, 𝑛]𝑘−1 is 𝑛𝑘−1, and the volume of each

cube is
(︁

𝛽√
𝑘−1

)︁𝑘−1

, so the total number of points needed is 𝑂
(︁

𝑛
√
𝑘

𝛽

)︁𝑂(𝑘)

. Substituting

in the value of 𝛽 shows that a set of size 𝑂
(︁

𝑛𝑘2

𝜀
√
𝑐𝑡

)︁𝑂(𝑘)

suffices to cover the mean of

the Gaussian to a sufficient accuracy.

Next, we examine the second term in Proposition 50. Taking 𝛼 ≤ 𝜀𝑐𝑡
𝑘(𝑘2+𝜀)

= 𝑂
(︀
𝜀𝑐𝑡
𝑘3

)︀
sets this term to be 𝑂

(︀
𝜀
𝑘

)︀
. Since there are 𝑂(𝑘2) parameters in the covariance matrix,

and each is in [0, 𝑛], gridding at this granularity generates a set of size 𝑂
(︁

𝑛𝑘3

𝜀𝑐𝑡

)︁𝑂(𝑘2)

.

Combining with the gridding for the mean and size parameter, a 𝑂
(︀
𝜀
𝑘

)︀
-cover for one

81

of the Gaussians is of size

𝑂

(︃
𝑛

(︂
𝑛𝑘2

𝜀
√
𝑐𝑡

)︂𝑂(𝑘)(︂
𝑛𝑘3

𝜀𝑐𝑡

)︂𝑂(𝑘2)
)︃

=

(︂
𝑛𝑘

𝜀𝑐𝑡

)︂𝑂(𝑘2)

.

As mentioned before, this implies a 𝑂(𝜀) cover for the set of 𝑘 Gaussians of size

(︂
𝑛𝑘

𝜀𝑐𝑡

)︂𝑂(𝑘3)

.

Combining the cover for the Gaussian component and the sparse PMD gives us a

cover of size

𝑂

(︃(︂
𝑛𝑘

𝜀𝑐𝑡

)︂𝑂(𝑘3)(︂
𝑘3𝑡

𝜀

)︂𝑘2𝑡
)︃
.

Substituting in the values of 𝑐 and 𝑡 provided in the proof of Theorem 8 gives us a

cover of size

𝑛𝑂(𝑘3)

(︂
𝑘

𝜀

)︂𝑂
(︁

𝑘26+𝛿1

𝜀8+𝛿2

)︁
,

for any constants 𝛿1, 𝛿2 > 0, which satisfies the statement of the theorem.

4.6 Open Problems

The results presented here are just the beginning – we intend to further investigate

properties of Poisson Multinomial distributions. Here are some potential directions

for study:

∙ Can we reduce the size of the cover? The current cover size is 𝑛𝑂(𝑘3)
(︀
𝑘
𝜀

)︀poly(𝑘, 1𝜀).
We would ideally like to reduce the size to a form which is similar to [25],

𝑛𝑘
(︀
𝑘
𝜀

)︀poly(𝑘,log 1
𝜀). Some preliminary investigation has shown that it may be

possible to reduce the poly(1/𝜀) to poly(log(1/𝜀)), but at the price of an expo-

nential in 𝑘 blowup.

∙ Can we improve the structure of the cover? The structure of the cover

is currently the sum of 𝑘 discretized detruncated Gaussians and a sparse PMD,

but we believe it is possible to merge the 𝑘 Gaussians into a single Gaussian.

82

While we can merge the Gaussians using the same method as before, it is not

clear how to detruncate the Gaussian afterward, since we must now detruncate

in 𝑘 dimensions instead of just one.

∙ Can we efficiently learn Poisson Multinomial Distributions? In the

same vein as [20], we would like to obtain efficient learning algorithms. While

we provide an algorithm with sample complexity poly
(︀
log 𝑛, 𝑘, 1

𝜀

)︀
, the results

in [20] suggest that it may be possible to obtain an algorithm with poly
(︀
𝑘, 1

𝜀

)︀
sample complexity and poly

(︀
log 𝑛, 𝑘, 1

𝜀

)︀
time complexity.

83

84

Appendix A

Robust Estimation of Scale from a

Mixture of Gaussians

In this chapter, we examine the following statistic:

Given some point 𝑥 ∈ R and 𝑛 IID random variables 𝑋1, . . . , 𝑋𝑛, what is the

minimum distance between 𝑥 and any 𝑋𝑖?

We give an interval in which this statistic is likely to fall (Proposition 51), and

examine its robustness when sampling from distributions which are statistically close

to the distribution under consideration (Proposition 53). We then apply these results

to mixtures of Gaussians (Proposition 54 and Lemma 28).

Proposition 51. Suppose we have 𝑛 IID random variables 𝑋1, . . . , 𝑋𝑛 ∼ 𝑋, some

𝑥 ∈ R, and 𝑦 = 𝐹𝑋(𝑥). Let 𝐼𝑁 be the interval [𝐹−1
𝑋 (𝑦 − 𝑐1

𝑛
), 𝐹−1

𝑋 (𝑦 + 𝑐1
𝑛

)] and 𝐼𝐹

be the interval [𝐹−1
𝑋 (𝑦 − 𝑐2

𝑛
), 𝐹−1

𝑋 (𝑦 + 𝑐2
𝑛

)] for some constants 0 < 𝑐1 < 𝑐2 ≤ 𝑛, and

𝐼 = 𝐼𝐹∖𝐼𝑁 . Let 𝑗 = arg min𝑖 |𝑋𝑖 − 𝑥|. Then Pr[𝑋𝑗 ∈ 𝐼] ≥ 9
10

for all 𝑛 > 0.

Proof. We show that Pr[𝑋𝑗 ̸∈ 𝐼] ≤ 1
10

by showing that the following two bad events

are unlikely:

1. We have a sample which is too close to 𝑥

2. All our samples are too far from 𝑥

85

Showing these events occur with low probability and combining with the union bound

gives the desired result.

Let 𝑌 be the number of samples at distance < 𝑐1
𝑛

in distance in the CDF, i.e.,

𝑌 = |{𝑖 | |𝐹−1
𝑋 (𝑋𝑖)− 𝑦| < 𝑐1

𝑛
}|. By linearity of expectation, 𝐸[𝑌] = 2𝑐1. By Markov’s

inequality, Pr(𝑌 > 0) < 2𝑐1. This allows us to upper bound the probability that one

of our samples is too close to 𝑥.

Let 𝑍 be the number of samples at distance < 𝑐2
𝑛

in distance in the CDF, i.e.,

𝑍 = |{𝑖 | |𝐹−1
𝑋 (𝑋𝑖) − 𝑦| < 𝑐2

𝑛
}|, and let 𝑍𝑖 be an indicator random variable which

indicates this property for 𝑋𝑖. We use the second moment principle,

Pr(𝑍 > 0) ≥ 𝐸[𝑍]2

𝐸[𝑍2]

By linearity of expectation, 𝐸[𝑍]2 = 4𝑐22.

𝐸[𝑍2] =
∑︁
𝑖

𝐸[𝑍2
𝑖] +

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝐸[𝑍𝑖𝑍𝑗]

= 2𝑐2 + 𝑛(𝑛− 1)

(︂
4𝑐22
𝑛2

)︂
≥ 2𝑐2 + 4𝑐22

And thus, Pr(𝑍 = 0) ≤ 1
2𝑐2+1

. This allows us to upper bound the probability that all

of our samples are too far from 𝑥.

Setting 𝑐1 = 1
40

and 𝑐2 = 19
2

gives probability < 1
20

for each of the bad events,

resulting in a probability < 1
10

of either bad event by the union bound, and thus the

desired result.

We will need the following property of Kolmogorov distance, which states that

probability mass within every interval is approximately preserved:

Proposition 52. If 𝑑K(𝑓𝑋 , 𝑓𝑌) ≤ 𝜀, then for all intervals 𝐼 ⊆ R, |𝑓𝑋(𝐼)−𝑓𝑌 (𝐼)| ≤ 2𝜀.

86

Proof. For an interval 𝐼 = [𝑎, 𝑏], we can rewrite the property as

|𝑓𝑋(𝐼) − 𝑓𝑌 (𝐼)| = |(𝐹𝑋(𝑏) − 𝐹𝑋(𝑎)) − (𝐹𝑌 (𝑏) − 𝐹𝑌 (𝑎))|

≤ |𝐹𝑋(𝑏) − 𝐹𝑌 (𝑏)| + |𝐹𝑋(𝑎) − 𝐹𝑌 (𝑎)|

≤ 2𝜀

as desired, where the first inequality is the triangle inequality and the second inequal-

ity is due to the bound on Kolmogorov distance.

The next proposition says that if we instead draw samples from a distribution

which is close in total variation distance, the same property approximately holds

with respect to the original distribution.

Proposition 53. Suppose we have 𝑛 IID random variables �̂�1, . . . , �̂�𝑛 ∼ �̂� where

𝑑K(𝑓𝑋 , 𝑓�̂�) ≤ 𝛿, some 𝑥 ∈ R, and 𝑦 = 𝐹𝑋(𝑥). Let 𝐼𝑁 be the interval [𝐹−1
𝑋 (𝑦 − 𝑐1

𝑛
+

𝛿), 𝐹−1
𝑋 (𝑦 + 𝑐1

𝑛
− 𝛿)] and 𝐼𝐹 be the interval [𝐹−1

𝑋 (𝑦 − 𝑐2
𝑛
− 𝛿), 𝐹−1

𝑋 (𝑦 + 𝑐2
𝑛

+ 𝛿)] for

some constants 0 < 𝑐1 < 𝑐2 ≤ 𝑛, and 𝐼 = 𝐼𝐹∖𝐼𝑁 . Let 𝑗 = arg min𝑖 |𝑋𝑖 − 𝑎|. Then

Pr[𝑋𝑗 ∈ 𝐼] ≥ 9
10

for all 𝑛 > 0.

Proof. First, examine interval 𝐼𝑁 . This interval contains 2𝑐1
𝑛
−2𝛿 probability measure

of the distribution 𝐹𝑋 . By Proposition 52, |𝐹𝑋(𝐼𝑁)−𝐹�̂�(𝐼𝑁)| ≤ 2𝛿, so 𝐹�̂�(𝐼𝑁) ≤ 2𝑐1
𝑛

.

One can repeat this argument to show that the amount of measure contained by 𝐹�̂�

in [𝐹−1
𝑋 (𝑦 − 𝑐2

𝑛
− 𝛿), 𝐹−1

𝑋 (𝑦 + 𝑐2
𝑛

+ 𝛿)] is ≥ 2𝑐2
𝑛

.

As established through the proof of Proposition 51, with probability ≥ 9
10

, there

will be no samples in a window containing probability measure 2𝑐1
𝑛

, but there will be

at least one sample in a window containing probability measure 2𝑐2
𝑛

. Applying the

same argument to these intervals, we can arrive at the desired result.

We examine this statistic for some mixture of 𝑘 Gaussians with PDF 𝑓 around

the point corresponding to the mean of the component with the minimum value of
𝜎𝑖

𝑤𝑖
. Initially, we assume that we know this location exactly and that we are taking

samples according to 𝑓 exactly.

87

Proposition 54. Consider a mixture of 𝑘 Gaussians with PDF 𝑓 , components

𝒩 (𝜇1, 𝜎
2
1), . . . ,𝒩 (𝜇𝑘, 𝜎

2
𝑘) and weights 𝑤1, . . . , 𝑤𝑘. Let 𝑗 = arg min𝑖

𝜎𝑖

𝑤𝑖
. If we take

𝑛 samples 𝑋1, . . . , 𝑋𝑛 from the mixture (where 𝑛 > 3
√
𝜋𝑐2

2𝑤𝑗
), then min𝑖 |𝑋𝑖 − 𝜇𝑗| ∈[︁√

2𝜋𝑐1𝜎𝑗

𝑘𝑤𝑗𝑛
,
3
√
2𝜋𝑐2𝜎𝑗

2𝑤𝑗𝑛

]︁
with probability ≥ 9

10
, where 𝑐1 and 𝑐2 are as defined in Proposition

51.

Proof. We examine the CDF of the mixture around 𝜇𝑖. Using Proposition 1 (and

symmetry of a Gaussian about its mean), it is sufficient to show that

[︃
𝜇𝑖 +

√
2𝜋𝑐1𝜎𝑖

𝑘𝑤𝑖𝑛
, 𝜇𝑖 +

3
√

2𝜋𝑐2𝜎𝑖

2𝑤𝑖𝑛

]︃
⊇
[︁
𝐹−1(𝐹 (𝜇𝑖) +

𝑐1
𝑛

), 𝐹−1(𝐹 (𝜇𝑖) +
𝑐2
𝑛

)
]︁
,

where 𝐹 is the CDF of the mixture. We show that each endpoint of the latter interval

bounds the corresponding endpoint of the former interval.

First, we show 𝑐1
𝑛

≥ 𝐹
(︁
𝜇𝑖 +

√
2𝜋𝑐1𝜎𝑖

𝑘𝑤𝑖𝑛

)︁
− 𝐹 (𝜇𝑖). Let 𝐼 =

[︁
𝜇𝑖, 𝜇𝑖 +

√
2𝜋𝑐1𝜎𝑖

𝑘𝑤𝑖𝑛

]︁
, 𝑓 be

the PDF of the mixture, and 𝑓𝑖 be the PDF of component 𝑖 of the mixture. The

right-hand side of the inequality we wish to prove is equal to

∫︁
𝐼

𝑓(𝑥) d𝑥 =

∫︁
𝐼

𝑘∑︁
𝑗=1

𝑤𝑗𝑓𝑗(𝑥) d𝑥

≤
∫︁
𝐼

𝑘∑︁
𝑗=1

𝑤𝑗
1

𝜎𝑗

√
2𝜋

d𝑥

≤
∫︁
𝐼

𝑘𝑤𝑖

𝜎𝑖

√
2𝜋

d𝑥

=
𝑐1
𝑛

where the first inequality is since the maximum of the PDF of a Gaussian is 1
𝜎
√
2𝜋

,

and the second is since 𝜎𝑗

𝑤𝑗
≤ 𝜎𝑖

𝑤𝑖
for all 𝑗.

Next, we show 𝑐2
𝑛
≤ 𝐹

(︁
𝜇𝑖 + 3

√
2𝜋𝑐2𝜎𝑖

2𝑤𝑖𝑛

)︁
− 𝐹 (𝜇𝑖). We note that the right-hand side

is the probability mass contained in the interval - a lower bound for this quantity is

the probability mass contributed by the particular Guassian we are examining, which

88

is 𝑤𝑖

2
erf
(︁

3
√
𝜋𝑐2

2𝑤𝑖𝑛

)︁
. Taking the Taylor expansion of the error function gives

erf(𝑥) =
2√
𝜋

(︂
𝑥− 𝑥3

3
+ 𝑂(𝑥5)

)︂
≥ 2√

𝜋

(︂
2

3
𝑥

)︂

if 𝑥 < 1. Applying this here, we can lower bound the contributed probability mass

by 𝑤𝑖

2
2√
𝜋
2
3
3
√
𝜋𝑐2

2𝑤𝑖𝑛
= 𝑐2

𝑛
, as desired.

Finally, we deal with uncertainties in parameters and apply the robustness prop-

erties of Proposition 53 in the following lemma:

Proof of Lemma 28: We analyze the effect of each uncertainty:

∙ First, we consider the effect of sampling from 𝑓 , which is 𝛿-close to 𝑓 . By

using Proposition 53, we know that the nearest sample to 𝜇𝑗 will be at CDF

distance between 𝑐1
𝑛
− 𝛿 ≥ 𝑐1

2𝑛
and 𝑐2

𝑛
+ 𝛿 ≤ 3𝑐2

2𝑛
. We can then repeat the proof

of Proposition 54 with 𝑐1 replaced by 𝑐1
2

and 𝑐2 replaced by 3𝑐2
2

. This gives us

that min𝑖 |𝑋𝑖 − 𝜇𝑗| ∈
[︁ √

𝜋𝑐1√
2𝑘𝑤𝑗𝑛

𝜎𝑗,
9
√
𝜋𝑐2

2
√
2𝑤𝑗𝑛

𝜎𝑗

]︁
(where 𝑛 ≥ 9

√
𝜋𝑐2

4𝑤𝑗
) with probability

≥ 9
10

.

∙ Next, substituting in the bounds 1
2
�̂�𝑗 ≤ 𝑤𝑗 ≤ 2�̂�𝑗, we get min𝑖 |𝑋𝑖 − 𝜇𝑗| ∈[︁ √

𝜋𝑐1
2
√
2𝑘�̂�𝑗𝑛

𝜎𝑗,
9
√
𝜋𝑐2√

2�̂�𝑗𝑛
𝜎𝑗

]︁
(where 𝑛 ≥ 9

√
𝜋𝑐2

2�̂�𝑗
) with probability ≥ 9

10
.

∙ We use 𝑛 = 9
√
𝜋𝑐2

2�̂�𝑗
samples to obtain: min𝑖 |𝑋𝑖 − 𝜇𝑗| ∈

[︀
𝑐3
𝑘
𝜎𝑗,

√
2𝜎𝑗

]︀
with prob-

ability ≥ 9
10

.

∙ Finally, applying |�̂�𝑗 − 𝜇𝑗| ≤ 𝑐3
2𝑘
𝜎𝑗 gives the lemma statement.

89

90

Bibliography

[1] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theerta
Suresh. Near-optimal-sample estimators for spherical Gaussian mixtures. Online
manuscript, 2014.

[2] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha
Suresh. Sorting with adversarial comparators and application to density estima-
tion. In Proceedings of the 2014 IEEE International Symposium on Information
Theory, ISIT ’14, Washington, DC, USA, 2014. IEEE Computer Society.

[3] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of
distributions. In Proceedings of the 18th Annual Conference on Learning Theory,
COLT ’05, pages 458–469. Springer, 2005.

[4] Joseph Anderson, Mikhail Belkin, Navin Goyal, Luis Rademacher, and James R.
Voss. The more, the merrier: the blessing of dimensionality for learning large
Gaussian mixtures. In Proceedings of the 27th Annual Conference on Learning
Theory, COLT ’14, pages 1135–1164, 2014.

[5] Sanjeev Arora and Ravi Kannan. Learning mixtures of arbitrary Gaussians. In
Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing,
STOC ’01, pages 247–257, New York, NY, USA, 2001. ACM.

[6] Andrew D. Barbour, Lars Holst, and Svante Janson. Poisson Approximation.
Oxford University Press, New York, 1992.

[7] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families.
In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’10, pages 103–112, Washington, DC, USA, 2010. IEEE Computer
Society.

[8] Lucien Birgé. Estimating a density under order restrictions: Nonasymptotic
minimax risk. The Annals of Statistics, 15(3):995–1012, September 1987.

[9] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal
deviates. The Annals of Mathematical Statistics, 29(2):610–611, June 1958.

[10] Spencer Charles Brubaker and Santosh Vempala. Isotropic PCA and affine-
invariant clustering. In Proceedings of the 49th Annual IEEE Symposium on

91

Foundations of Computer Science, FOCS ’08, pages 551–560, Washington, DC,
USA, 2008. IEEE Computer Society.

[11] Clément Canonne, Dana Ron, and Rocco A Servedio. Testing probability distri-
butions using conditional samples. Online manuscript, 2012.

[12] Clément L Canonne, Dana Ron, and Rocco A Servedio. Testing equivalence be-
tween distributions using conditional samples. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1174–1192,
Philadelphia, PA, USA, 2014. SIAM.

[13] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions
underlying aggregated data. In Proceedings of the 41st international conference
on Automata, Languages, and Programming-Volume Part I, pages 283–295, 2014.

[14] Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Learning
mixtures of structured distributions over discrete domains. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages
1380–1394, Philadelphia, PA, USA, 2013. SIAM.

[15] Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Efficient
density estimation via piecewise polynomial approximation. In Proceedings of
the 46th Annual ACM Symposium on the Theory of Computing, STOC ’14, New
York, NY, USA, 2014. ACM.

[16] Sanjoy Dasgupta. Learning mixtures of Gaussians. In Proceedings of the 40th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’99, pages
634–644, Washington, DC, USA, 1999. IEEE Computer Society.

[17] Constantinos Daskalakis. An efficient PTAS for two-strategy anonymous games.
In Proceedings of the 4th International Workshop on Internet and Network Eco-
nomics, WINE ’08, pages 186–197, Berlin, Heidelberg, 2008. Springer-Verlag.

[18] Constantinos Daskalakis, Ilias Diakonikolas, Ryan O’Donnell, Rocco A. Servedio,
and Li Yang Tan. Learning sums of independent integer random variables. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’13, pages 217–226, Washington, DC, USA, 2013. IEEE Computer
Society.

[19] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A Servedio. Learning k-
modal distributions via testing. In Proceedings of the 23th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 1371–1385, Philadelphia,
PA, USA, 2012. SIAM.

[20] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning
Poisson binomial distributions. In Proceedings of the 44th Annual ACM Sympo-
sium on the Theory of Computing, STOC ’12, pages 709–728, New York, NY,
USA, 2012. ACM.

92

[21] Constantinos Daskalakis, Ilias Diakonikolas, Rocco A Servedio, Gregory Valiant,
and Paul Valiant. Testing k-modal distributions: Optimal algorithms via reduc-
tions. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’13, pages 1833–1852, Philadelphia, PA, USA, 2013. SIAM.

[22] Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal
algorithms for proper learning mixtures of Gaussians. In Proceedings of the 27th
Annual Conference on Learning Theory, COLT ’14, pages 1183–1213, 2014.

[23] Constantinos Daskalakis and Christos Papadimitriou. Computing equilibria in
anonymous games. In Proceedings of the 48th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS ’07, pages 83–93, Washington, DC, USA,
2007. IEEE Computer Society.

[24] Constantinos Daskalakis and Christos Papadimitriou. Discretized multinomial
distributions and Nash equilibria in anonymous games. In Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’08,
pages 25–34, Washington, DC, USA, 2008. IEEE Computer Society.

[25] Constantinos Daskalakis and Christos Papadimitriou. Sparse covers for sums of
indicators. Online manuscript, 2013.

[26] Constantinos Daskalakis and Christos H. Papadimitriou. On oblivious PTAS’s
for Nash equilibrium. In Proceedings of the 41st Annual ACM Symposium on
the Theory of Computing, STOC ’09, pages 75–84, New York, NY, USA, 2009.
ACM.

[27] Constantinos Daskalakis and Christos H. Papadimitriou. Approximate Nash
equilibria in anonymous games. Journal of Economic Theory, 2014.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[29] Luc Devroye and Gábor Lugosi. A universally acceptable smoothing factor for
kernel density estimation. The Annals of Statistics, 24:2499–2512, 1996.

[30] Luc Devroye and Gábor Lugosi. Nonasymptotic universal smoothing factors,
kernel complexity and yatracos classes. The Annals of Statistics, 25:2626–2637,
1997.

[31] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation.
Springer, 2001.

[32] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. The
Annals of Mathematical Statistics, 27(3):642–669, 09 1956.

93

[33] Jon Feldman, Ryan O’Donnell, and Rocco A. Servedio. PAC learning axis-
aligned mixtures of Gaussians with no separation assumption. In Proceedings of
the 19th Annual Conference on Learning Theory, COLT ’06, pages 20–34, Berlin,
Heidelberg, 2006. Springer-Verlag.

[34] Jon Feldman, Ryan O’Donnell, and Rocco A. Servedio. Learning mixtures
of product distributions over discrete domains. SIAM Journal on Computing,
37(5):1536–1564, 2008.

[35] Ronald Aylmer Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, pages 309–368, 1922.

[36] S. Gershgorin. Über die abgrenzung der Eigenwerte einer matrix. Izv. Akad.
Nauk. SSSR Ser. Mat., 1:749–754, 1931.

[37] Alison L. Gibbs and Francis E. Su. On choosing and bounding probability met-
rics. International Statistical Review, 70(3):419–435, December 2002.

[38] Moritz Hardt and Eric Price. Sharp bounds for learning a mixture of two Gaus-
sians. Online manuscript, 2014.

[39] Daniel Hsu and Sham M. Kakade. Learning mixtures of spherical Gaussians:
Moment methods and spectral decompositions. In Proceedings of the 4th Con-
ference on Innovations in Theoretical Computer Science, ITCS ’13, pages 11–20,
New York, NY, USA, 2013. ACM.

[40] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning
mixtures of two Gaussians. In Proceedings of the 42nd Annual ACM Symposium
on the Theory of Computing, STOC ’10, pages 553–562, New York, NY, USA,
2010. ACM.

[41] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E.
Schapire, and Linda Sellie. On the learnability of discrete distributions. In
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing,
STOC ’94, pages 273–282, New York, NY, USA, 1994. ACM.

[42] AN Kolmogorov. Certain asymptotic characteristics of completely bounded met-
ric spaces. Doklady Akademii Nauk SSSR, 108(3):385–388, 1956.

[43] Andrei Nikolaevich Kolmogorov and Vladimir Mikhailovich Tikhomirov. 𝜀-
entropy and 𝜀-capacity of sets in function spaces. Uspekhi Matematicheskikh
Nauk, 14(2):3–86, 1959.

[44] P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.
The Annals of Probability, 18(3):1269–1283, 07 1990.

94

[45] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mix-
tures of Gaussians. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’10, pages 93–102, Washington, DC,
USA, 2010. IEEE Computer Society.

[46] Karl Pearson. Contributions to the mathematical theory of evolution. Philo-
sophical Transactions of the Royal Society of London. A, pages 71–110, 1894.

[47] Karl Pearson. Contributions to the mathematical theory of evolution. II. Skew
variation in homogeneous material. Philosophical Transactions of the Royal So-
ciety of London. A, pages 343–414, 1895.

[48] Leo Reyzin. Extractors and the leftover hash lemma. http://www.cs.bu.edu/
~reyzin/teaching/s11cs937/notes-leo-1.pdf, March 2011. Lecture notes.

[49] B. Roos. Metric multivariate Poisson approximation of the generalized multino-
mial distribution. Teor. Veroyatnost. i Primenen., 43(2):404–413, 1998.

[50] B. Roos. Multinomial and Krawtchouk approximations to the generalized multi-
nomial distribution. Theory of Probability & Its Applications, 46(1):103–117,
2002.

[51] Bero Roos. Poisson approximation of multivariate Poisson mixtures. Journal of
Applied Probability, 40(2):376–390, 06 2003.

[52] Murray Rosenblatt. Remarks on some nonparametric estimates of a density
function. The Annals of Mathematical Statistics, 27(3):832–837, 09 1956.

[53] Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating
entropy. Electronic Colloquium on Computational Complexity (ECCC), 17:179,
2010.

[54] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixtures
of distributions. In Proceedings of the 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS ’02, pages 113–123, Washington, DC, USA,
2002. IEEE Computer Society.

[55] Yannis G. Yatracos. Rates of convergence of minimum distance estimators and
kolmogorov’s entropy. The Annals of Statistics, 13(2):768–774, 1985.

95

