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Before we begin…

• Only 3 hours!
• Basics of differential privacy

• Private machine learning

• For more, see:
• My course 

• http://www.gautamkamath.com/CS860-fa2020.html

• Full set of lecture notes and videos

• DifferentialPrivacy.org
• Blog posts, as well as links to resources

http://www.gautamkamath.com/CS860-fa2020.html


What is privacy?



What is privacy? What is not private?



Netflix Prize

• Can you predict which movies a 
user will like?
• $1M grand prize for best prediction 

engine

• Dataset: (anonymized) user ID, 
movie ID, rating, date
• No way to identify users, right…?

• Wrong! Narayanan and Shmatikov
matched users with IMDb

• Cancellation of the 2nd Netflix prize



Massachusetts Group Insurance Commission

• Public release of hospital visit records for every state employee
• Very sensitive!

• Anonymized data
• Original: Name, SSN, ZIP code, date of birth, sex, condition

• Anonymized: Name, SSN, ZIP code, date of birth, sex, condition

• Latanya Sweeney: bought voter rolls
• Contain name, address, ZIP code, date of birth, sex



Massachusetts Group Insurance Commission

• Public release of hospital visit records for every state employee
• Very sensitive!

• Anonymized data
• Original: Name, SSN, ZIP code, date of birth, sex, condition

• Anonymized: Name, SSN, ZIP code, date of birth, sex, condition

• Latanya Sweeney: bought voter rolls
• Contain name, address, ZIP code, date of birth, sex

• Can match up and reidentify!

• Cynthia Dwork: “Anonymized data isn’t.”



Memorization in Machine Learning

https://xkcd.com/2169/



Machine Learning Models are Vulnerable!

• Trained on very large datasets

• Can be coerced to reproduce training data 
verbatim!

• Personal information, copyrighted content

Paper: [Carlini, Tramer, Wallace, Jagielski, Herbert-Voss, Lee, Roberts, Brown, Song, Erlingsson, Oprea, Raffel], 2021

Blog post: [Wallace, Tramer, Jagielski, Herbert-Voss], 2020



A Concrete Scenario: Database 
Reconstruction
• Database with public identifiers, but one sensitive piece of info

• Analyst can ask “queries” involving the sensitive data

• Database returns the answer

• Can they “reconstruct” the sensitive data?



Database Reconstruction

• “How many females have the disease?” Response: 2

• “How many people born in the first half of the year have the 
disease?” Response: 2

• “How many males have the disease?” Response: 2

Certainly not private!



Noisy Database Reconstruction

• “How many females have the disease?” Response: 3

• “How many people born in the first half of the year have the 
disease?” Response: 1

• “How many males have the disease?” Response: 4

Can we still reconstruct the database, even with noisy answers?



Database Reconstruction Theorem

Theorem: Suppose there is a database with 𝑛 individuals. If an analyst 
is allowed to ask 2𝑛 queries, and the database returns errors with noise 
per query at most 𝐸, then the analyst can reconstruct all but 4𝐸 of the 
secret bits.

“If the analyst asks enough queries, they can reconstruct almost all the 
secret bits, even if the queries have noise added”

(Simple attack: find any database consistent with provided answers)

[Dinur, Nissim], 2003



(A Better) Database Reconstruction Theorem

Theorem: Suppose there is a database with 𝑛 individuals. If an analyst 
is allowed to ask 𝑂(𝑛) queries, and the database returns errors with 
noise per query at most 𝑂( 𝑛), then the analyst can reconstruct all but 
𝑂(1) of the secret bits.

“If the analyst asks enough queries, they can reconstruct almost all the 
secret bits, even if the queries have noise added”

(Simple attack: find any database consistent with provided answers)

[Dinur, Nissim], 2003



(A Better) Database Reconstruction Theorem

the analyst can reconstruct all but 
𝑂(1) of the secret bits.

[Dinur, Nissim], 2003

“Blatantly non-private”!



Reconstruction Attacks are Practical!



Enough on what isn’t private.. What is?

𝑀(𝑋)

Dataset Algorithm Output

𝑋

[Dwork, McSherry, Nissim, Smith], 2006



Enough on what isn’t private.. What is?

𝑀(𝑋)

Dataset Algorithm Output Adversary

𝑋

𝑋′

[Dwork, McSherry, Nissim, Smith], 2006

or

?

“An algorithm is differentially private if its distribution over outputs 
doesn’t change much after adding/removing one point.”



Differential Privacy (Informal)

“An algorithm is differentially private if its distribution over outputs 
doesn’t change much after adding/removing one point.”

Why is this a reasonable notion of privacy?

• Dropping a user’s datapoint is unlikely to change the output

• Thus looking at the output, can’t tell if a user was in the dataset or not

• If you can’t even know if a user is present, you can’t know their data

• E.g., protects against database reconstruction attacks (and much more!)



Differential Privacy

• Setup: 𝑛 datapoints 𝑋 = 𝑋1, … , 𝑋𝑛, given to a “trusted curator”

• The curator has an algorithm 𝑀 ∶ 𝒳𝑛 → 𝒴, outputs 𝑀(𝑋)

Definition: An algorithm 𝑀 is 𝜀-differentially private (DP) if for all 
datasets 𝑋 and 𝑋′ which differ in one entry, and for all events 𝑆 ⊆ 𝒴,

Pr[𝑀 𝑋 ∈ 𝑆] ≤ 𝑒𝜀 Pr[𝑀 𝑋′ ∈ 𝑆].

[Dwork, McSherry, Nissim, Smith], 2006



Comments on Differential Privacy

Definition: An algorithm 𝑀 is 𝜀-differentially private (DP) if for all 
datasets 𝑋 and 𝑋′ which differ in one entry, and for all events 𝑆 ⊆ 𝒴,

Pr[𝑀 𝑋 ∈ 𝑆] ≤ 𝑒𝜀 Pr[𝑀 𝑋′ ∈ 𝑆].

• Quantitative in 𝜀

• Bounds the multiplicative increase in prob of any event

• Symmetric definition (swap 𝑋 and 𝑋′)

• Can consider either “add/remove” or “change” one point
• Equivalent up to factor of 2 in 𝜀

[Dwork, McSherry, Nissim, Smith], 2006



What does DP protect against?

• Database reconstruction
• Finding a user’s private data

• Membership inference
• Determining whether or not a user was in the dataset

• Learning anything about a user that can’t be inferred w/o them



What doesn’t DP do?

• Important: does not prevent inferences (statistics/machine learning)
• (Public) smoker participates in (differentially private) study investigating 

whether smoking causes cancer

• Reveals that smoking causes cancer! Smoker’s insurance premiums increase!

• Was their (differential) privacy violated?

• No: smoking → cancer could be inferred whether or not they participated

• Differential privacy: outcome of algorithm is similar, whether or not someone 
participates

• Not appropriate when individual identities are important
• “Private” contact tracing



On to the algorithms!



The Laplace Mechanism

• Suppose 𝑋1, … , 𝑋𝑛 ∈ {0, 1}. 

• Goal: privately compute sum 𝑓 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

• How much can 𝑓(𝑋) change if a single 𝑋𝑖 is modified?
• Sensitivity Δ = 1

• Claim: 𝑓 𝑋 + 𝑍, where 𝑍 ∼ Laplace(1/𝜀), is 𝜀-DP

• Laplace 𝜎 ∝ exp(−|𝑥|/𝜎)
• Two-sided Exponential distribution

• Magnitude of error ≈ 1/𝜀

𝑓(𝑋) 𝑓(𝑋′)

Δ = 1

Ratio:
exp −

0

1/𝜀

exp −
1

1/𝜀

=
1

exp −𝜀
= 𝑒𝜀



Example: Counting Queries

• Asking a population of 100 people, how many smoke?

• E.g., 20 say yes

• Can guarantee 1-DP by adding Laplace(1) noise
• Sampled outputs: 20.68, 19.24, 20.28, 19.83,…

• Stronger privacy: 0.1-DP by adding Laplace(10) noise
• Sampled outputs: 22.45, 11.45, 2.4, 15.03, 29.47



The Laplace Mechanism

• More broadly: let 𝑓 𝑋 ∶ 𝒳𝑛 → 𝐑𝑑 be a function of interest

• Let Δ1
𝑓
= max

𝑋,𝑋′ differ in one entry
𝑓 𝑋 − 𝑓 𝑋′

1 be ℓ1-sensitivity of 𝑓

• “How much can the function change by modifying one datapoint?”

• Theorem: The Laplace Mechanism 𝑓 𝑋 + Lap Δ1
𝑓
/𝜀

⊗𝑑
is 𝜀-DP

• “Add Laplace noise to each coordinate, proportional to the ℓ1-sensitivity”



Application: Private Histograms

• Number of datapoints that fall into 
each of 𝑘 categories

• At most 1 count can change by at most 
1 by adding/removing datapoint
• Δ1 = 1

• Add 𝑍𝑖 ∼ Laplace(1/𝜀) noise to 𝑖th 
count
• Noised counts are 𝜀-DP

• Max error in a count: 𝑂
log 𝑘

𝜀

• Laplace tail bound: Pr 𝑍𝑖 ≥
𝑡

𝜀
= 𝑒−𝑡

• Union bound:Pr max 𝑍𝑖 ≥
𝑡

𝜀
≤ 𝑘𝑒−𝑡

• Set 𝑡 = 𝑂(log 𝑘)



Exponential Mechanism

• Privately select an object from a set based on a “score”

• Given: Set of objects 𝑄

Score function 𝑓:𝒳𝑛 × 𝑄 → 𝐑

Sensitive dataset 𝑋 = 𝑋1, … , 𝑋𝑛
• Output: 𝑞 ∈ 𝑄 which (approximately) maximizes 𝑓(𝑋, 𝑞)

• Exponential mechanism: Sample 𝑞 with probability ∝ exp 𝜀 ⋅ 𝑓(𝑋, 𝑞)

• Theorem: The exponential mechanism is 𝜀-differentially private



Exponential Mechanism Example

• Running an election
• Set of objects: election candidates

• Sensitive dataset: votes

• Score function: number of votes for each candidate

• Non-privately: pick the highest score

• Privately: sample winner ∝ exp(𝜀 ⋅ Score)

• Assign scores, use to noisily pick winner

20 votes18 votes15 votes

𝜀 = 0.1 25% chance 33.8% chance 41.2% chance



Laplace versus Exponential Mechanism

• Different “types” of mechanisms
• Noise addition versus sampling

• Useful in different settings
• Laplace mechanism: computing a statistics/function privately

• Exponential mechanism: private optimization over a set of objects

• Note: Laplace mechanism is a special case of exponential mechanism
• Set of objects 𝑄 = 𝐑

• Score function of a point 𝑞 is −|𝑓 𝑋 − 𝑞|

• Exponential mechanism samples 𝑞 w.p. ∝ exp −𝜀|𝑓 𝑋 − 𝑞|

• Equivalent to Laplace mechanism



Lots of other differential privacy tools

• Basic primitives
• Exponential mechanism

• Randomized response

• Sparse vector

• Can use to build more complex procedures
• Will see examples later



Properties of Differential Privacy



Post-Processing

• You can’t “undo” privatization of something which is released 
differentially privately

• Post-processing theorem: Let 𝑀 ∶ 𝒳𝑛 → 𝒴 be 𝜀-differentially private, 
and 𝐹 ∶ 𝒴 → 𝒵 be an arbitrary randomized mapping. Then 𝐹 ∘ 𝑀 is 𝜀-
differentially private



Group Privacy

• Differential privacy quantifies the change in probability of events 
when a single datapoint is changed. What if 𝑘 points are changed?

• Privacy loss decays gracefully

• Group privacy theorem: Let 𝑀 ∶ 𝒳𝑛 → 𝒴 be 𝜀-differentially private 
and let 𝑋 and 𝑋′ be two datasets which differ in exactly 𝑘 positions. 
Then for all events 𝑆 ⊆ 𝒴,

Pr[𝑀 𝑋 ∈ 𝑆] ≤ 𝑒𝑘𝜀 Pr[𝑀 𝑋′ ∈ 𝑆].



Composition

• Answering multiple questions about the same sensitive dataset will 
“intuitively” leak more privacy
• We know “more things” about the same dataset

• Differential privacy allows us to quantify!

• Basic Composition Theorem: Let 𝑀 = 𝑀1, … ,𝑀𝑘 be a sequence of 𝜀-
differentially private algorithms. Then 𝑀 is 𝑘𝜀-differentially private.

• If you release multiple differentially private statistics of a dataset, the 
privacy parameters “add up”

• The sequence of algorithms can be chosen adaptively

• Composition allows us to build complex procedures out of basic tools



Composition Example

• Consider some population of 100 people

• 20 are smokers
• Noised with Laplace 1 noise: 19.51

• 37 have a chronic illness
• Noised with Laplace 1 noise: 36.89

• 12 make over $250,000/year
• Noised with Laplace 1 noise: 12.53

• Releasing all three noised statistics 19.51, 36.89, 12.53 is 3-DP



Why is 𝜀-differential privacy “too hard”?

• Have to preserve the probability of every event
• Even very very low probability events

• Often, we want to do lots of queries, not just one
• To get 𝜀-DP when doing 𝑘 queries, each one has to be 𝜀/𝑘-DP

• Can we do better?

Consider instead a relaxation of 𝜀-DP



Approximate Differential Privacy

Definition: An algorithm 𝑀 is (𝜀, 𝛿)-differentially private (DP) if for all 
datasets 𝑋 and 𝑋′ which differ in one entry, and for all events 𝑆 ⊆ 𝒴,

Pr[𝑀 𝑋 ∈ 𝑆] ≤ 𝑒𝜀 Pr 𝑀 𝑋′ ∈ 𝑆 + 𝛿.

• Generalizes previous notion: setting 𝛿 = 0 gives 𝜀-DP
• Sometimes called “pure” differential privacy

• 𝛿: probability of (potential) “total privacy failure”
• Needs to be very small

• Definitely less than 1/𝑛, but preferably much smaller

• Compare with 𝜀, which is usually ≈ 1

[Dwork, Kenthapadi, McSherry, Mironov, and Naor], 2006



Properties of Approximate DP

• Post-processing theorem: Let 𝑀 ∶ 𝒳𝑛 → 𝒴 be (𝜀, 𝛿)-differentially 
private, and 𝐹 ∶ 𝒴 → 𝒵 be an arbitrary randomized mapping. Then 
𝐹 ∘ 𝑀 is(𝜀, 𝛿)-differentially private

• Group privacy theorem: Let 𝑀 ∶ 𝒳𝑛 → 𝒴 be 𝜀, 𝛿 -differentially 
private and let 𝑋 and 𝑋′ be two datasets which differ in exactly 𝑘
positions. Then for all events 𝑆 ⊆ 𝒴,

Pr[𝑀 𝑋 ∈ 𝑆] ≤ 𝑒𝑘𝜀 Pr 𝑀 𝑋′ ∈ 𝑆 + 𝑘𝑒 𝑘−1 𝜀𝛿.

• Basic Composition Theorem: Let 𝑀 = 𝑀1, … ,𝑀𝑘 be a sequence of 
(𝜀, 𝛿)-differentially private algorithms. Then 𝑀 is (𝑘𝜀, 𝑘𝛿)-
differentially private.



Advanced Composition

• Basic Composition Theorem: Let 𝑀 = 𝑀1, … ,𝑀𝑘 be a sequence of 
(𝜀, 𝛿)-differentially private algorithms. Then 𝑀 is (𝑘𝜀, 𝑘𝛿)-
differentially private.
• If you do 𝑘 private analyses, you pay 𝑘 times the privacy cost of one analysis

• Advanced Composition Theorem (informal): Let 𝑀 = 𝑀1, … ,𝑀𝑘 be 
a sequence of (𝜀, 𝛿)-differentially private algorithms. Then 𝑀 is 
(𝑂 𝑘𝜀 , 𝑘𝛿)-differentially private.

• If you do 𝑘 private analyses, you pay 𝑘 times the privacy cost of one analysis

• 10,000 queries (advanced comp) vs 100 queries (basic comp)



The Gaussian Mechanism

• Let 𝑓 𝑋 ∶ 𝒳𝑛 → 𝐑𝑑 be a function of interest

• Let Δ2
𝑓
= max

𝑋,𝑋′ differ in one entry
𝑓 𝑋 − 𝑓 𝑋′

2 be ℓ2-sensitivity of 𝑓

• “How much can the function change by modifying one datapoint?”

• Theorem (roughly): 

The Gaussian Mechanism 𝑓 𝑋 + 𝑁 0,
Δ2
𝑓
log(1/𝛿)

𝜀

2 ⊗𝑑

is (𝜀, 𝛿)-DP

• “Add Gaussian noise to each coordinate, proportional to the ℓ2-sensitivity”

• Note: since ℓ2-norm is ≤ ℓ1-norm, adds less noise vs Laplace mech



What can we do with it…?

Google COVID-19 Community Mobility Reports protected by DP



What can we do with it…?

2020 US Census data protected by DP



Recap of the basics

• Privacy and non-privacy

• Differential Privacy and its properties
• Pure and approx. DP, composition, etc.

• Private mechanisms
• Laplace, Exponential, Gaussian



Private Machine Learning



Machine Learning Models are Vulnerable!

• Trained on very large datasets

• Can be coerced to reproduce training data 
verbatim!

• Personal information, copyrighted content

Paper: [Carlini, Tramer, Wallace, Jagielski, Herbert-Voss, Lee, Roberts, Brown, Song, Erlingsson, Oprea, Raffel], 2021

Blog post: [Wallace, Tramer, Jagielski, Herbert-Voss], 2020



Private Machine Learning

• Sensitive training data

• Train a machine learning model without leaking too much info

• Can we use the ideas we know about differential privacy?



Stochastic Gradient Descent (SGD)

Training a model non-privately: SGD is the go-to algorithm

1. Choose a random minibatch 𝐵 of points from the dataset

2. Compute the average gradient 
1

|𝐵|
σ 𝑥,𝑦 ∈𝐵 ∇ℓ(𝜃𝑡 , 𝑥, 𝑦)

3. Take a step in the negative direction of the gradient

4. Repeat 𝑘 times



Differentially Private Stochastic Gradient 
Descent (DPSGD)
1. Sample a “lot” of points of (expected) size 𝐿 by selecting each point 

to be in the lot with probability 𝐿/𝑛

2. For each point in the lot, compute the gradient ∇ℓ(𝜃𝑡, 𝑥, 𝑦) and 
“clip” it to have ℓ2 norm at most 𝐶

3. Average the clipped gradients and add Gaussian noise
• Apply the Gaussian Mechanism

4. Take a step in the negative direction of resulting vector

5. Repeat 𝑘 times

𝐶

[Song-Chaudhuri-Sarwate ‘13, Bassily-Smith-Thakurta ‘14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang ‘16]



Analyzing DPSGD

• Suppose one step of DPSGD has privacy with parameter 𝜀

• 𝑘 steps: use advanced composition, overall 𝜀 𝑘 privacy cost

• Use amplification by subsampling!
• Sample a “lot” of points of (expected) size 𝐿 by selecting each point to be in 

the lot with probability 𝐿/𝑛

• Claim: Scales down privacy cost by 𝐿/𝑛. Why?

• Overall 𝜀 𝑘𝐿/𝑛 privacy cost

• Better analysis: “Moments accountant”
• Track moments of privacy loss RV, choose best one



DPSGD can be slow!

[Subramani-Vadivelu-K. ’21]



Does it work?

• MNIST: black and white image classification
• Canonical “easy” ML task

• Non-private test accuracy: ≈ 100%

• Private (𝜀 from 1 to 3): 98% - 99%
• [Tramer-Boneh, ‘21]

• Works pretty well for “easy” datasets!



Does it work?

• CIFAR-10: Low resolution images
• Same size as MNIST, but harder

• Non-privately: 98%+

• Privately (𝜀 = 3): 69%
• [Tramer-Boneh, ‘21]
• Much worse!

• Very recent results: 73.5% for 𝜀 = 4 and 82.5% for 𝜀 = 8
• [De-Berrada-Hayes-Smith-Balle, ‘21], [Klause-Ziller-Rueckert-Hammernik-Kaissis, ‘21]

• What is the limit for private learning? Do we have to memorize training 
data?
• Maybe [Feldman, ‘20], [Feldman-Zhang, ‘20]



Does it work?

• ImageNet: a hard dataset
• Millions of higher resolution images, 1000 classes

• Non-privately: ∼ 87%

• Privately (𝜀 = 8): 32.4%
• [De-Berrada-Hayes-Smith-Balle, ‘21]

• Very tough to achieve (compute, expertise, etc.)

• Not quite there yet…



Using (unlabeled) public data: PATE

• Train many classifiers non-privately, aggregate predictions privately
• Sample and aggregate

• [Papernot-Abadi-Erlingsson-Goodfellow-Talwar, '17]



Using public data

• Pretrain the model with public data
• Very large amounts of (public) data scraped from the Internet

• Fine-tune model (privately) with sensitive data
• Smaller and task specific dataset



Using public data



Using public data (text)

• Can train privately while approaching the non-private accuracy
• Language model setting

• [Yu, Naik, Backurs, Gopi, Inan, Kamath, Kulkarni, Lee, Manoel, Wutschitz, 
Yekhanin, Zhang, ‘22], [Li, Tramer, Liang, Hashimoto, ‘22]



Using public data (ImageNet)

• [De, Berrada, Hayes, Smith, 
Balle, ‘22]
• Pretrain with JFT-300M

• [Mehta, Thakurta, Kurakin, 
Cutkosky, ‘22]
• Pretrain with JFT-3B



Conclusion

• Differential privacy is a strong and useful privacy notion

• Can be restrictive, but techniques are getting better

• A lot of useful tools for solving a wide variety of problems


