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What’s a Gaussian Mixture Model (GMM)? 

• Interpretation 1: PDF is a convex 
combination of Gaussian PDFs
• 𝑝 𝑥 = Σ𝑖𝑤𝑖𝒩 𝜇𝑖 , 𝜎𝑖

2, 𝑥

• Interpretation 2: Several unlabeled 
Gaussian populations, mixed together

• Focus on mixtures of 2 Gaussians 
(2-GMM) in one dimension



PAC (Proper) Learning Model

• Output (with high probability) a 2-GMM  𝑋 which is close to 𝑋 (in statistical 
distance*)

• Algorithm design goals:
• Minimize sample size
• Minimize time

𝑋 ∈ ℱ 𝒜
𝑥1, 𝑥2, … , 𝑥𝑚~ 𝑋  𝑋 ∈ ℱ

*statistical distance = total variation distance = ½ × 𝐿1 distance
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• Sample lower bounds:
• Improper and Proper Learning: Ω 1/𝜀2 [folklore]

• Parameter Estimation: Ω 1/𝜀6 [HP14]
• Matching upper bound, but not immediately extendable to proper learning
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Who Do We Want In Our Pool?

• Hypothesis: ( 𝑤, 𝜇1,  𝜎1,  𝜇2,  𝜎2)

• Need at least one “good” hypothesis

• Parameters are close to true parameters
• Implies desired statistical distance bound

• Want:
• 𝑤 −  𝑤 ≤ 𝜀

• 𝜇𝑖 −  𝜇𝑖 ≤ 𝜀𝜎𝑖
• 𝜎𝑖 −  𝜎𝑖 ≤ 𝜀𝜎𝑖



Warm Up: Learning one Gaussian

• Easy! 

•  𝜇 = sample mean

•  𝜎2 = sample variance



The Real Deal: Mixtures of Two Gaussians

• Harder!

• Sample moments mix up 
samples from each component

• Plan:
• Tall, skinny Gaussian* stands out –

learn it first

• Remove it from the mixture

• Learn one Gaussian (easy?)

*Component with maximum 
𝑤𝑖

𝜎𝑖



The First Component

• Claim: Using 𝑂
1

𝜀2
sample size, can 

generate  𝑂
1

𝜀3
candidates 

 𝑤, 𝜇1, 𝜎1 , at least one is close to the 
taller component

• If we knew which candidate was 
right, could we remove this 
component?
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Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

• Using sample of size 𝑂
1

𝜀2
from a distribution 𝑋, can output  𝑋 such 

that 𝑑𝐾 𝑋,  𝑋 ≤ 𝜀

• Kolmogorov distance – CDFs of distributions are close in 𝐿∞distance
• Weaker than statistical distance

• Works for any probability distribution!
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Subtracting out the known component

Monotonize
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Robust Statistics

• Broad field of study in statistics

• Median

• Interquartile range

• Recover original parameters 
(approximately), even for 
distributions at distance 𝜀

• Entirely determined by the 
other component

• Still  𝑂
1

𝜀3
candidates!
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Hypothesis Selection

• 𝑁 candidate distributions

• At least one is 𝜀-close to 𝑋 (in 
statistical distance)

• Goal: Return candidate which is 
𝑂 𝜀 -close to 𝑋

𝜀

𝑐𝜀

𝑋



Hypothesis Selection

• Classical approaches [Yat85], [DL01]
• Scheffé estimator, computation of the “Scheffé set” (potentially hard)

• 𝑂(𝑁2) time

• Acharya et al. [AJOS14]
• Based on Scheffé estimator

• 𝑂(𝑁 log𝑁) time

• Our result [DK14]
• General estimator, minimal access to hypotheses

• 𝑂(𝑁 log𝑁) time

• Milder dependence on error probability



Hypothesis Selection

• Input:
• Sample access to 𝑋 and hypotheses ℋ = 𝐻1, … , 𝐻𝑁
• PDF comparator for each pair 𝐻𝑖 , 𝐻𝑗
• Accuracy parameter 𝜀 , confidence parameter 𝛿

• Output:
• 𝐻 ∈ ℋ
• If there is a 𝐻∗ ∈ ℋ such that 𝑑𝑠𝑡𝑎𝑡 𝐻

∗, 𝑋 ≤ 𝜀, then 𝑑𝑠𝑡𝑎𝑡 𝐻,𝑋 ≤ 𝑂(𝜀) with probability ≥
1 − 𝛿

• Sample complexity: 𝑂
log 1/𝛿

𝜀2
log𝑁

• Time complexity: 𝑂
log 1/𝛿

𝜀2
𝑁 log𝑁 + log2

1

𝛿

• Expected time complexity: 𝑂
𝑁 log 𝑁/𝛿

𝜀2



Hypothesis Selection

• Naive: Tournament among candidate hypotheses; compare every 
pair; output hypothesis with most wins

• Us: Set up a single-elimination tournament
• Issue: error doubles at every level of tree; log𝑁 levels →Ω(2log 𝑁 𝜀) error

• Better analysis via double-window argument:
• Great hypotheses: those within 𝜀 of target

• Good hypotheses: those within 8𝜀 of target

• Bad hypotheses: the rest

• Show: if density of good hypotheses small, error propagation won’t happen

• If density large, sub-sample 𝑁 hypotheses; run naive tournament



Putting It All Together

• 𝑁 =  𝑂
1

𝜀3
candidates

• Use hypothesis selection algorithm to pick one

• Sample complexity:  𝑂 log(1/𝛿) /𝜀2

• Time complexity:  𝑂 log3(1/𝛿) /𝜀5



Open Questions

• Faster algorithms for 2-GMMs

• Time complexity of k-GMMs

• High dimensions
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