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What's a Gaussian Mixture Model (GMM)?

* Interpretation 1: PDF is a convex
combination of Gaussian PDFs

« p(x) = Zw; N (uy, 07, x)

* Interpretation 2: Several unlabeled
Gaussian populations, mixed together

 Focus on mixtures of 2 Gaussians
(2-GMM) in one dimension
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PAC (Proper) Learning Model

X1, X2, ey Xy~ X

e Output (with high probability) a 2-GMM X which is close to X (in statistical
distance™)

* Algorithm design goals:
* Minimize sample size
* Minimize time

*statistical distance = total variation distance = % x L! distance



Learning Goals
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Prior Work
Learning Model Sample Complexity | Time Complexity

Improper Learning
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Prior Work

Learning Model Sample Complexity | Time Complexity

Improper Learning 0(1/&?) poly(1/¢) [CDSS14]

Proper Learning 0(1/€?) 0(1/€7) [AJOS14]
0(1/€%) 0(1/€°) [DK14]

Parameter Estimation poly(1/¢) poly(1/e) [KMV10]

* Sample lower bounds:

* Improper and Proper Learning: (1/£2) [folklore]
e Parameter Estimation: Q(1/£°) [HP14]
* Matching upper bound, but not immediately extendable to proper learning
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Who Do We Want In OQur Pool?

* Hypothesis: (W, i1, 07, U2, 05)
* Need at least one “good” hypothesis

* Parameters are close to true parameters
* Implies desired statistical distance bound

* Want:

e lw —w| <¢
* lu — il < eg;
* loy — 63| < €0




Warm Up: Learning one Gaussian

* Easy!

e il =sample mean

e g% = sample variance




The Real Deal: Mixtures of Two Gaussians

e Harder!
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 Sample moments mix up

samples from each component oas]:

* Plan: o20)-
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* Learn one Gaussian (easy?) 005 -

0.00

*Component with maximum ;‘
i



The First Component
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e Claim: Using O ( ) sample size, can
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Some Tools Along the Way

a) How to remove part of a distribution which we already know
b) How to robustly estimate parameters of a distribution
c) How to pick a good hypothesis from a pool of hypotheses




Dvoretzky—Kiefer—Wolfowitz (DKW) inequality

* Using sample of size O (i) from a distribution X, can output X such

2
that dg (X, X) < ¢ )

» Kolmogorov distance — CDFs of distributions are close in L distance
* Weaker than statistical distance

* Works for any probability distribution!




Subtracting out the known component
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Subtracting out the known component
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Subtracting out the known component

i Subtract component
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Subtracting out the known component

Monotonize




Warm Up (?): Learning one (almost) Gaussian
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Robust Statistics

05 [ 1 1 1 i 1 ] ] 1

* Broad field of study in statistics
¢ Median o4 |= median: =F ' (0.5) -
* Interquartile range

03

* Recover original parameters
(approximately), even for
distributions at distance ¢ 01

IQR:=F '(0.75)—F ' (0.25)

P(x>

* Entirely determined by the
other component o)

. Still 0 (8%) candidates!
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Some Tools Along the Way
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Hypothesis Selection :

N candidate distributions

* At least one is e-close to X (in °
statistical distance)

e Goal: Return candidate which is
O(e)-closeto X




Hypothesis Selection

* Classical approaches [Yat85], [DLO1]
» Scheffé estimator, computation of the “Scheffé set” (potentially hard)
« O(N%) time

e Acharya et al. [AJOS14]
 Based on Scheffé estimator
* O(NlogN) time

e Our result [DK14]
* General estimator, minimal access to hypotheses
* O(NlogN) time
* Milder dependence on error probability



Hypothesis Selection

* Input:
e Sample access to X and hypotheses H = {Hq, ..., Hy}
* PDF comparator for each pair H;, H;
e Accuracy parameter £, confidence parameter 6

* Output:
e HeH
. Ilfthe(ge isa H* € H such that dg,; (H*, X) < ¢, then dg;q:(H, X) < 0(€) with probability >
: 1
* Sample complexity: O ( Oi:/a log N)
* Time complexity: O (log;/(s (N log N + log? %))
* Expected time complexity: O (N 10521\//5)



Hypothesis Selection

* Naive: Tournament among candidate hypotheses; compare every
pair; output hypothesis with most wins

e Us: Set up a single-elimination tournament

* Issue: error doubles at every level of tree; log N levels — Q (2198 N ¢) error

* Better analysis via double-window argument:
* Great hypotheses: those within & of target
* Good hypotheses: those within 8¢ of target
e Bad hypotheses: the rest

* Show: if density of good hypotheses small, error propagation won’t happen
e If density large, sub-sample VN hypotheses; run naive tournament



Putting It All Together

*N=0 (8%) candidates

* Use hypothesis selection algorithm to pick one
» Sample complexity: 0(log(1/68) /&2)

* Time complexity: 0(log3(1/8) /&)



Open Questions

* Faster algorithms for 2-GMMs
* Time complexity of k-GMMs
* High dimensions
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