Private Hypothesis Selection

Mark Bun Gautam Kamath Thomas Steinke Zhiwei (Steven) Wu Boston University University of Waterloo IBM Research – Almaden University of Minnesota

This Talk in One Slide

Input: Known collection of distributions $H = \{h_1, ..., h_m\}$ D = i.i.d. samples $x_1, ..., x_n$ from unknown p<u>Goal:</u> Find a hypothesis $h \in H$ which is "close" to p in total variation distance while protecting privacy of D

Our results:

New algorithms with sample complexity competitive with the best *non-private* algorithms

Applications: Private distribution learning, complexity of private mean estimation under product vs. non-product distributions

Privacy-Preserving Data Analysis

Want curators that are:

Private

Statistically useful

Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05] [Dwork-McSherry-Nissim-Smith06]

Outcome of *M* should not depend "too much" on any individual

Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05] [Dwork-McSherry-Nissim-Smith06]

D and D' are **neighbors** if they differ on one row

M is **differentially private** if for all neighbors D, D': Distribution of M(D)Distribution of M(D')

Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05] [Dwork-McSherry-Nissim-Smith06]

D and D' are **neighbors** if they differ on one row

M is ε -differentially private if for all neighbors *D*, *D*' and $T \subseteq \text{Range}(M)$:

 $\begin{aligned} \Pr[M(D) \in T] &\leq \mathbf{e}^{\varepsilon} \, \Pr[M(D') \in T] \\ & \uparrow \\ \mathsf{small \ constant, \ e.g.} \ \varepsilon &= 0.1 \\ & \Rightarrow \mathbf{e}^{\varepsilon} &\approx 1 + \varepsilon \end{aligned}$

Things to Love about Differential Privacy

Resilient to both known and unforeseen attacks In particular, robust to post-processing

Group privacy

Automatic protection for small groups of individuals

Composition

- *m*-fold composition at worst $m\varepsilon$ -DP
- Enables differentially private "programming"

Other Algorithmic Applications

- Privacy-preserving data analysis (duh)
- Algorithmic mechanism design [McSherry-Talwar07, Kearns-Pai-Roth-Ullman12, Nissim-Smorodinsky-Tennenholtz12]
- False discovery control in adaptive data analysis [Dwork-Feldman-Hardt-Pitassi-Reingold-Roth14, Hardt-Ullman14]
- Proofs of concentration inequalities [Steinke-Ullman17, Nissim-Stemmer17]
- Cryptography: Traitor-tracing [Tang-Zhang17] and multi-party coin flipping lower bounds [Beimel-Haitner-Makriyannis-Omri18]
- Gentle measurement of quantum states [Aaronson-Rothblum19]

Variants of Differential Privacy

M satisfies *insert privacy definition* if for all neighbors *D*, *D*'

 ε -"Pure DP" [Dwork-McSherry-Nissim-Smith06] For all T \subseteq Range(M): Pr[M(D) \in T] $\leq e^{\varepsilon}$ Pr[M(D') \in T] Equivalently, "privacy loss" always $\leq \varepsilon$

 ε -"Concentrated DP" [Dwork-Rothblum12, B.-Steinke16] "Privacy loss" is subgaussian with standard dev. $\leq \varepsilon$

 (ε, δ) -"Approximate DP" [Dwork-Kenthapadi-McSherry-Mironov-Naor06] For all T⊆Range(M): Pr[M(D)∈T] ≤ e^{\varepsilon}Pr[M(D')∈T] + δ Equivalently, "privacy loss" ≤ ε except with prob. ≤ δ

Variants of Differential Privacy

$(\underline{\varepsilon}, \delta)$ -DP Truncated Laplace Noise PTR/Stability Smooth Sensitivity

<u>ε-CDP</u>

Advanced Composition Gaussian Noise Projection Mechanism Less stringent privacy chniques Less stringent privacy techniques Less stringent privacy techniques

<u>ε-DP</u>

Basic Composition Laplace Noise Randomized Response Exponential Mechanism Sparse Vector

d binary attributes

		Unicorn?	Pegasus?	LovesMuffins?	Princess?
n rows	S.	1	0		0
		0	0		0
	2	0	1		0
		1	1	0	1

+

Noise()

d binary attributes

		Unicorn?	Pegasus?	LovesMuffins?	Princess?
n rows	s??	1	0		0
		0	0		0
	2	0	1		0
	<u></u>	1	1	0	1

(To get α -error, need $n \ge 1/\alpha \varepsilon$)

d binary attributes

		Unicorn?	Pegasus?	LovesMuffins?	Princess?
	S.	1	0		0
n		0	0		0
rows		0	1		0
		1	1	0	1
	-	1/2 +	1/2	3/4 +	1/4 +
		Noise()	Noise()	Noise()	Noise()

With pure differential privacy

d binary attributes

(To get α -error per query, need $n \ge d/\alpha \varepsilon$)

With pure differential privacy

d binary attributes

(To get α -error per query, need $n \ge d^{1/2}/\alpha \varepsilon$)

With concentrated or approximate differential privacy

Outline of This Talk

- Problem: Differentially private hypothesis selection
- Algorithms
 - (The path to) a basic algorithm
 - A semi-agnostic algorithm
 - Exploiting combinatorial structure
- Applications
 - Privately learning Gaussians
 - Product vs. non-product distributions

The Problem: Hypothesis Selection

Input: Known collection of distributions $H = \{h_1, ..., h_m\}$ $D = \text{i.i.d. samples } x_1, ..., x_n \text{ from unknown } p$ <u>Goal:</u> If there exists $h^* \in H$ such that $\text{TV}(p, h^*) \leq \alpha$, w.h.p. output $h \in H$ such that $\text{TV}(p, h) \leq O(\alpha)$

The Problem: Hypothesis Selection

Input: Known collection of distributions $H = \{h_1, ..., h_m\}$ $D = \text{i.i.d. samples } x_1, ..., x_n \text{ from unknown } p$ <u>Goal:</u> If there exists $h^* \in H$ such that $\text{TV}(p, h^*) \leq \alpha$, w.h.p. output $h \in H$ such that $\text{TV}(p, h) \leq O(\alpha)$

<u>Theorem:</u> Achievable using $n = O(\log m / \alpha^2)$ samples (non-privately)

Non-Private Solution: "Scheffé Tournament" [Yatracos85, Devroye-Lugosi01]

<u>Idea:</u> Set up $\binom{m}{2}$ pairwise contests between candidates, and output candidate which won the most contests

<u>Contest subroutine</u>: To compare distributions h, h':

Scheffé Tournament Analysis

[Yatracos85, Devroye-Lugosi01]

<u>Theorem</u>: Achievable using $n = O(\log m / \alpha^2)$ samples

<u>Lemma:</u> If *h* wins against *h*', then $TV(h, p) \leq 3 \min\{TV(h, p), TV(h', p)\} + 4 |p(S) - D(S)|$ = errSuppose $err \leq \alpha$ for all $\binom{m}{2}$ pairwise contests simultaneously

Divide H into 4 quality tiers:

$$\begin{split} T_1: \mathrm{TV}(h, \ p) &\leq \alpha \\ T_2: \mathrm{TV}(h, \ p) &\in (\alpha, \ 4\alpha] \\ T_3: \mathrm{TV}(h, \ p) &\in (4\alpha, \ 12\alpha] \\ T_4: \mathrm{TV}(h, \ p) &> 12\alpha \end{split}$$

By Lemma,

- Every $h\!\!\in\!T_1$ has $\geq |\,T_3|\!+\!|\,T_4|$ wins
- Every $h\!\!\in\!T_4\,\mathrm{has}\geq |\,T_1|\!+\!|\,T_2|\,\,\mathrm{losses}$

Hence a T_4 hypothesis is never selected

Towards a Private Tournament

<u>A First Attempt:</u> Noisy Pairwise Contests

To compare distributions h, h':

Define Scheffé set $S = \{x : h(x) > h'(x)\}$

$$\hat{D}(S) = D(S) + \operatorname{Lap}\left(\frac{\binom{m}{2}}{\varepsilon}\right)$$

 $h \text{ wins if } |h(S) - \hat{D}(S)| < |h'(S) - \hat{D}(S)|;$ otherwise h' wins

Analysis of First Attempt

<u>Lemma:</u> If *h* wins against *h*', then $TV(h, p) \le 3 \min\{TV(h, p), TV(h', p)\} + 4 |p(S) - \hat{D}(S)|$

By previous analysis, select a good hypothesis as long as $\operatorname{err} \leq \alpha$ for all $\binom{m}{2}$ pairwise contests simultaneously

Improving the First Attempt

Theorem: Private hypothesis selection is possible using $n = O\left(\frac{\log m}{\alpha^2} + \frac{m^2\log m}{\alpha\varepsilon}\right)$ samples

- Relaxing to concentrated or approximate DP lets us use Gaussian noise and "advanced" composition, bringing the second term to $\frac{m\sqrt{\log m}}{\alpha\varepsilon}$
- Can possibly be further improved using more efficient tournaments making $\tilde{O}(m)$ comparisons [Acharya-Jafarpour-Orlitsky-Suresh14, Daskalakis-Kamath14...] to something like $\tilde{O}\left(\frac{\sqrt{m}}{\alpha\varepsilon}\right)$

Still an exponential "price of privacy"

A Second (and Final) Attempt: Private Discrete Optimization

<u>Given:</u> An objective function $q: X^n \times H \to \mathbb{R}$ Private dataset $D = (x_1, ..., x_n)$ <u>Output:</u> $h \in H$ which approximately maximizes q(D, h)

Exponential Mechanism [McSherry-Talwar07] Sample $h \in H$ with probability $\propto \exp\left(\frac{\varepsilon q(D,h)}{2\Delta}\right)$

where
$$\Delta = \sup_{h \in H, D \sim D'} |q(D, h) - q(D', h)|$$

"Sensitivity" of the objective function q

Private Discrete Optimization

Exponential Mechanism [McSherry-Talwar07] Sample $h \in H$ with probability $\propto \exp\left(\frac{\varepsilon q(D,h)}{2\Delta}\right)$

where
$$\Delta = \sup_{h \in H, D \sim D'} |q(D, h) - q(D', h)|$$

Claim 1: Guarantees ε -differential privacy

Claim 2: W.h.p. produces $h \in H$ with $q(D,h) \ge OPT - O\left(\frac{\Delta \log |H|}{\varepsilon}\right)$

Instantiating the Exponential Mechanism

Sample
$$h \in H$$
 w.p. $\propto \exp\left(\frac{\varepsilon q(D,h)}{2\Delta}\right)$
where $\Delta = \sup_{h \in H, D \sim D'} |q(D,h) - q(D',h)|$
• ε -DP
• Error $O(\Delta \log |H| / \varepsilon)$

How to choose q?

Sensitivity 1

Attempt 2.1: q(D, h) = #contests won by hProblem: Very high sensitivity $\Delta = m - 1$

Attempt 2.2: $q(D, h) = \min \#$ of samples in D that must be changed before $h \operatorname{loses}$ at least one contest

By how to ensure OPT is good?

Instantiating the Exponential Mechanism

Attempt 2.3:(Really the final one, I swear) $q(D, h) = \min \#$ of samples in D that must be
changed before h loses at least one contest

<u>Pairwise contest with draws</u>: To compare distributions h, h': [Daskalakis-Diakonikolas-Servedio11, Daskalakis-Kamath14]

If $h(S) - h'(S) < 6\alpha$: Declare "Draw" Else if $D(S) > h(S) - 3\alpha$: Declare h as winner Else if $D(S) < h'(S) + 3\alpha$:

Declare h' as winner

Else: Declare "Draw"

Instantiating the Exponential Mechanism

Attempt 2.3:(Really the final one, I swear) $q(D, h) = \min \#$ of samples in D that must be
changed before h loses at least one contest

Pairwise contest with draws

[Daskalakis-Diakonikolas-Servedio11, Daskalakis-Kamath14]

<u>Main Lemma:</u> Suppose there exists $h^* \in H$ with $TV(\mathbf{p}, h^*) \leq \alpha$. Let $\mathbf{D} = (x_1, ..., x_n)$ i.i.d. from \mathbf{p} for $n = O(\log m / \alpha^2)$. Then w.h.p.,

1)
$$q(D, h^*) > \alpha n$$
 and

(completeness)

2) q(D, h) = 0 for every h where $TV(p, h) > 7\alpha$ (soundness)

Completing the Analysis

Exponential Mechanism with sensitivity-1 score Sample $h \in H$ w.p. $\propto \exp\left(\frac{q(D,h)}{2\varepsilon}\right)$

• ε -DP • W.h.p. outputs h with $q(D,h) \ge OPT - O\left(\frac{\log m}{\varepsilon}\right)$

Main Lemma: Suppose there exists $h^* \in H$ with $\operatorname{TV}(p, h^*) \leq \alpha$.Let $D = (x_1, ..., x_n)$ i.i.d. from p for $n = O(\log m / \alpha^2)$. Then w.h.p.,1) $q(D, h^*) > \alpha n$ and(completeness)2) q(D, h) = 0 for every h where $\operatorname{TV}(p, h) > 7\alpha$ (soundness)

- $\operatorname{OPT} = q(D, h^*) > \alpha n$ by 1), assuming $n \ge \operatorname{O}(\log m / \alpha^2)$
- EM outputs h with $q(D, h) > \alpha n O(\log m / \epsilon) > 0$ assuming $n \ge O(\log m / \alpha \epsilon)$

• Conclude $\mathrm{TV}(p, h) \leq 7\alpha$ by 2), assuming $n \geq \mathrm{O}(\log m \ / \alpha^2)$

Completing the Analysis

Exponential Mechanism with sensitivity-1 score Sample $h \in H$ w.p. $\propto \exp\left(\frac{q(D,h)}{2\varepsilon}\right)$

• ε -DP • W.h.p. outputs h with $q(D,h) \ge OPT - O\left(\frac{\log m}{\varepsilon}\right)$

Main Lemma:Suppose there exists $h^* \in H$ with $\operatorname{TV}(p, h^*) \leq \alpha$.Let $D = (x_1, ..., x_n)$ i.i.d. from p for $n = O(\log m / \alpha^2)$. Then w.h.p.,1) $q(D, h^*) > \alpha n$ and(completeness)2) q(D, h) = 0 for every h where $\operatorname{TV}(p, h) > 7\alpha$ (soundness)

<u>Theorem</u>: There is an ε -DP algorithm such that, if there exists $h^* \in H$ with $\operatorname{TV}(p, h^*) \leq \alpha$, the algorithm outputs $h \in H$ with $\operatorname{TV}(p, h) \leq 7\alpha$ w.h.p. as long as $n \geq O\left(\frac{\log m}{\alpha^2} + \frac{\log m}{\alpha\varepsilon}\right)$

Outline of This Talk

- Problem: Differentially private hypothesis selection
- Algorithms
 - (The path to) a basic algorithm
 - A semi-agnostic algorithm
 - Exploiting combinatorial structure
- Applications
 - Privately learning Gaussians
 - Product vs. non-product distributions

Obtaining a Semi-Agnostic Algorithm

Input: Known collection of distributions $H = \{h_1, ..., h_m\}$ $D = \text{i.i.d. samples } x_1, ..., x_n \text{ from unknown } p$ <u>Goal:</u> If there exists $h^* \in H$ such that $\text{TV}(p, h^*) \leq \alpha$, w.h.p. output $h \in H$ such that $\text{TV}(p, h) \leq O(\alpha)$

Obtaining a Semi-Agnostic Algorithm

Input: Known collection of distributions $H = \{h_1, ..., h_m\}$ D = i.i.d. samples $x_1, ..., x_n$ from unknown pGoal: Let $OPT = \operatorname{argmin}_h \operatorname{TV}(p, h)$ w.h.p. output $h \in H$ such that $\operatorname{TV}(p, h) \leq O(OPT) + \alpha$

Obtaining a Semi-Agnostic Algorithm

<u>Problem</u>: Even the non-private analysis of pairwise contest with draws seems to require $\mbox{OPT} \leq \alpha$

Solution:

1) Run algorithm of Attempt 2.3 $T = \log(1/\alpha)$ times, starting with $\alpha_1 = \alpha, \ \alpha_2 = 2\alpha, \ ..., \ \alpha_T = 1$ producing hypotheses $h_1, \ ..., \ h_T$

2) Use algorithm of Attempt 1 to semi-agnostically select the best of $h_1, \ ..., \ h_T$

Final sample complexity bound is the same as Attempt 2.3, up to additive $\log^2(1/\alpha)\,/\alpha\varepsilon$

Outline of This Talk

- Problem: Differentially private hypothesis selection
- Algorithms
 - (The path to) a basic algorithm
 - A semi-agnostic algorithm
 - Exploiting combinatorial structure
- Applications
 - Privately learning Gaussians
 - Product vs. non-product distributions

Exploiting the Structure of ${\cal H}$

For a set H of distributions, define VC(H) to be the VC dimension of the collection of Scheffé sets $S_{h,h'} = \{x : h(x) > h'(x)\}$

For a distribution p, let $N_{\alpha}(p, H) = |\{h \in H : TV(p, h) < \alpha\}|$

<u>Theorem</u>: There is an ε -DP algorithm such that, if there exists $h^* \in H$ with $\mathrm{TV}(p, h^*) \leq \alpha$, the algorithm outputs $h \in H$ with $\mathrm{TV}(p, h) \leq 7\alpha$ w.h.p. as long as

$$m \ge O\left(\frac{\log m}{\alpha^2} + \frac{\log m}{\alpha\varepsilon}\right)$$

Exploiting the Structure of ${\cal H}$

For a set H of distributions, define VC(H) to be the VC dimension of the collection of Scheffé sets $S_{h,h'} = \{x : h(x) > h'(x)\}$

For a distribution p, let $N_{\alpha}(p, H) = |\{h \in H : TV(p, h) < \alpha\}|$

<u>Theorem</u>: There is an (ε, δ) -DP algorithm such that, if there exists $h^* \in H$ with $TV(p, h^*) \leq \alpha$, the algorithm outputs $h \in H$ with $TV(p, h) \leq 7\alpha$ w.h.p. as long as

$$m \ge O\left(\frac{\operatorname{VC}(H)}{\alpha^2} + \frac{\log N_{7\alpha}(p, H) + \log(1/\delta)}{\alpha\varepsilon}\right)$$

1) $\log m \rightarrow VC(H)$: Replace Chernoff + union with uniform convergence **2)** $\log m \rightarrow N(p,H)$: Exploit *stability* to pay only for hypotheses with score > 0

Outline of This Talk

- Problem: Differentially private hypothesis selection
- Algorithms
 - (The path to) a basic algorithm
 - A semi-agnostic algorithm
 - Exploiting combinatorial structure
- Applications
 - Privately learning Gaussians
 - Product vs. non-product distributions

<u>Problem:</u> Let $p = \mathcal{N}(\mu, \Sigma)$ be an unknown *d*-dimensional Gaussian. Given i.i.d. samples $D = (x_1, ..., x_n)$ from p, privately find a Gaussian h with $TV(p, h) \leq \alpha$.

<u>Problem:</u> Let $p = \mathcal{N}(\mu, \Sigma)$ be an unknown *d*-dimensional Gaussian. Given i.i.d. samples $D = (x_1, ..., x_n)$ from p, privately find a Gaussian h with $TV(p, h) \leq \alpha$.

Generic statistical estimation frameworks

[Dwork-Lei09, Smith11]

Private confidence intervals for univariate Gaussians

[Karwa-Vadhan18]

Private means/covariances of multivariate Gaussians

[Kamath-Li-Singhal-Ullman19]

Univariate mean estimation via smooth sensitivity

[Nissim-Raskhodnikova-Smith07, B.-Steinke19]

<u>Problem:</u> Let $p = \mathcal{N}(\mu, \text{ Id})$ be an unknown *d*-dimensional Gaussian with $||\mu||_2 \leq M$. Given i.i.d. samples $D = (x_1, ..., x_n)$ from *p*, privately find a Gaussian *h* with $\text{TV}(p, h) \leq O(\alpha)$.

Solution via Private Hypothesis Selection

- 1) Construct a finite cover H of $\{\mathcal{N}(\mu, \operatorname{Id}) : ||\mu||_2 \leq M\}$ w.r.t. TV distance. I.e., construct set of Gaussians H such that for every μ with $||\mu||_2 \leq M$ there exists $h \in H$ with $\operatorname{TV}(\mathcal{N}(\mu, \operatorname{Id}), h) < \alpha$.
- 2) Apply Attempt 2.3 using the cover *H*, incurring error $O(\alpha)$ with sample complexity What's the VC

$$n = O\left(\frac{\operatorname{VC}(H)}{\alpha^2} + \frac{\log|H|}{\alpha\varepsilon}\right)$$

What's the VC dimension? How big does the cover need to be?

<u>Problem:</u> Let $p = \mathcal{N}(\mu, \text{ Id})$ be an unknown *d*-dimensional Gaussian with $||\mu||_2 \leq M$. Given i.i.d. samples $D = (x_1, ..., x_n)$ from *p*, privately find a Gaussian *h* with $\text{TV}(p, h) \leq O(\alpha)$.

VC Dimension of Gaussians

Scheffé sets are halfspaces, which have VC-dimension d+1

Covering Gaussians

<u>Lemma:</u> $\operatorname{TV}(\mathcal{N}(\mu, \operatorname{Id}), \mathcal{N}(\mu', \operatorname{Id})) \leq ||\mu - \mu'||_2$

⇒ Suffices to cover l_2 -ball of radius M using balls of radius α Can be done using a cover of size $\approx \left(\frac{\sqrt{d}M}{\alpha}\right)^d$

<u>Problem:</u> Let $p = \mathcal{N}(\mu, \text{ Id})$ be an unknown *d*-dimensional Gaussian with $||\mu||_2 \leq M$. Given i.i.d. samples $D = (x_1, ..., x_n)$ from *p*, privately find a Gaussian *h* with $\text{TV}(p, h) \leq O(\alpha)$.

Solution via Private Hypothesis Selection

- 1) Construct a size- $\left(\frac{\sqrt{d}M}{\alpha}\right)^d$ cover H of $\{\mathcal{N}(\mu, \operatorname{Id}) : ||\mu||_2 \leq M\}$ w.r.t. TV distance. I.e., construct set of Gaussians H such that for every μ with $||\mu||_2 \leq M$ there exists $h \in H$ with $\operatorname{TV}(\mathcal{N}(\mu, \operatorname{Id}), h) < \alpha$.
- 2) Apply Attempt 2.3 using the cover $H\!\!\!\!$ incurring error $O(\alpha)$ with sample complexity

$$n = O\left(\frac{d}{\alpha^2} + \frac{d}{\alpha\varepsilon}\log\left(\frac{dM}{\alpha}\right)\right)$$

Other Applications

of "Cover-and-Select"

- Other variants of Gaussian estimation
 Unbounded means, unknown covariances, etc.
- Discrete product distributions
- Piecewise polynomials
- Sums of Independent Integer Random Variables (SIIRVs)
- Poisson Multinomial distributions

Product vs. Non-Product Distributions

<u>Definition</u>: A (k, d)-product distribution is a product distribution over $[k]^d$

<u>Lemma:</u> The set of (k, d)-product distributions admits an α -cover of size $\approx \left(\frac{kd}{\alpha}\right)^{d(k-1)}$

So using cover-and-select, we get an ε -DP algorithm for learning (k, d)-product distributions to TV distance α with sample complexity

$$n = \tilde{O}\left(\frac{kd}{\alpha^2} + \frac{kd}{\alpha\varepsilon}\right)$$

Set k=2, $\alpha=1/2$

Product vs. Non-Product Distributions

<u>Definition</u>: A (k, d)-product distribution is a product distribution over $[k]^d$

<u>Lemma</u>: The set of (k, d)-product distributions admits an α -cover of size $\approx \left(\frac{kd}{\alpha}\right)^{d(k-1)}$

So using cover-and-select, we get an ε -DP algorithm for learning product distributions over $\{0, 1\}^d$ to TV distance 1/2 with sample complexity

$$n = \tilde{O}\left(\frac{d}{\varepsilon}\right)$$

Product vs. Non-Product Distributions

<u>Definition</u>: A (k, d)-product distribution is a product distribution over $[k]^d$

<u>Lemma</u>: The set of (k, d)-product distributions admits an α -cover of size $\approx \left(\frac{kd}{\alpha}\right)^{d(k-1)}$

So using cover-and-select, we get an ε -DP algorithm for learning the mean of a product distribution over $\{0, 1\}^d$ to l_1 distance $2\sqrt{d}$ with sample complexity

$$n = \tilde{O}\left(\frac{d}{\varepsilon}\right)$$

(Privately) Answering Attribute Means

d binary attributes

(To get α -error per query, **need** $n \ge d/\alpha \varepsilon$)

[Hardt-Talwar10]

With pure differential privacy

(Privately) Answering Attribute Means

d binary attributes

Conclusions

- New algorithms for private hypothesis selection with minimal "cost of privacy"
- Applications: Private distribution learning, complexity of privacy under product vs. non-product distributions

Thank you!

Open Questions:

- Combinatorial characterization of private (and non-private!) sample complexity
- Computationally efficient algorithms for sample-optimal Gaussian mean estimation
- Deeper understanding of complexity of estimation under product distributions