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This Talk in One Slide

Input: Known collection of distributions H= {h, ..., h_}
D =i.i.d. samples z,, ...,  from unknown p

Goal: Find a hypothesis i € H which is “close” to p in total
variation distance while protecting privacy of D

Our results:
New algorithms with sample complexity competitive with

the best non-private algorithms

Applications: Private distribution learning, complexity of
private mean estimation under product vs. non-product
distributions
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Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05]
[Dwork-McSherry-Nissim-Smith06]

L
: ——> Outcome

Outcome of M should not depend
“too much” on any individual
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Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05]
[Dwork-McSherry-Nissim-Smith06]

j D and D’ are neighbors if they
-2 differ on one row
z, \
% M is differentially private if for all
- \ " neighbors D, D’:
" A Distribution of M(D)

Distribution of M(D")
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Differential Privacy

[Dinur-Nissim03, Dwork-Nissim04, Blum-Dwork-McSherry-Nissim05]
[Dwork-McSherry-Nissim-Smith06]

D and D’ are neighbors if they
differ on one row

M s e-differentially private if for all
neighbors D, D’ and T' C Range(M):

Pr[M(D)eT] < e Pr[M(D)eT]

small constant, e.g. ¢ = 0.1
=efr~ 1+ ¢



Things to Love about Differential Privacy

Resilient to both known and unforeseen attacks

In particular, robust to post-processing

Group privacy

Automatic protection for small groups of individuals

Composition e [~

‘‘‘‘‘‘‘‘‘‘
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— m-fold composition at worst me-DP T
— Enables differentially private “programming”



Other Algorithmic Applications

Privacy-preserving data analysis (duh)

Algorithmic mechanism design [McSherry-Talwar07, Kearns-Pai-Roth-
Ullman12, Nissim-Smorodinsky-Tennenholtz12]

False discovery control in adaptive data analysis [Dwork-Feldman-
Hardt-Pitassi-Reingold-Roth14, Hardt-Ullman14]

Proofs of concentration inequalities [Steinke-Ullman17, Nissim-
Stemmerl7]

Cryptography: Traitor-tracing [Tang-zhang17] and multi-party
coin flipping lower bounds [Beimel-Haitner-Makriyannis-Omri18]

Gentle measurement of quantum states [Aaronson-Rothblum19]



Variants of Differential Privacy

M satisfies insert privacy definition if for all neighbors D, D’

e-“Pure DP” [Dwork-McSherry-Nissim-Smith06]
For all TS Range(M): PriM(D) €T] < ecPr[M(D’) €T]
Equivalently, “privacy loss” always < ¢

e-“Concentrated DP” [Dwork-Rothblum12, B.-Steinke16]
“Privacy loss” is subgaussian with standard dev. < ¢

(5, (5) —”Approximate DP” [Dwork-Kenthapadi-McSherry-Mironov-Naor06]

For all TS Range(M): PrIM(D) €T] < ecPr[M(D’)ET] + 0
v Equivalently, “privacy loss” < ¢ except with prob. <0

Less stringent privacy requirement




Variants of Differential Privacy

(e, 0)-DP

Truncated Laplace Noise
PTR/Stability

Smooth Sensitivity

e-CDP
Advanced Composition

Gaussian Noise
Projection Mechanism e

c-DP

)
Basic Composition (\q’bo\ ec‘,(\‘\\ 0\\(\6"
Laplace Noise (\\Q e e(\o
Randomized Response RO Qe’\0
Exponential Mechanis \,Qf,‘)c’ (e’b\% Q(O
Sparse Vector v (00 66( X0



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?

Noise( )



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?
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3/4
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Noise(1/en)

(To get a-error, need n 2 1/ ae)



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?

1/2 1/2 3/4 1/4
+ + + +
Noise( ) Noise( ) Noise( ) Noise( )

With pure differential privacy



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?
n "‘Q 0 0 1 0)
rows % 3 0 1 1 0
4 1 1 0) 1
1/2 1/2 3/4 1/4
+ + + +
Noise(d/en) Noise(d/en) Noise(d/en) Noise(d/en)

(To get a-error per query, need n 2 d/ae)

With pure differential privacy



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?
n "") 0 0 1 0)
4
rows 4 3 0 1 1 0
4 1 1 0) 1
1/2 1/2 3/4 1/4
+ + + +

Noise(d/2/en)  Noise(d2/csn)  Noise(d'2/en) Noise(dY/2/en)
(To get a-error per query, need n > d*/2/ae)

With concentrated or approximate differential privacy



Outline of This Talk

* Problem: Differentially private hypothesis selection

e Algorithms
e (The path to) a basic algorithm
e A semi-agnostic algorithm
* Exploiting combinatorial structure

* Applications
* Privately learning Gaussians
* Product vs. non-product distributions



The Problem: Hypothesis Selection

Input: Known collection of distributions H= {h,, ..., h_}
D = i.i.d. samples z,, ..., z from unknown p

Goal: If there exists h*€ Hsuch that TV (p, h™) <a,
w.h.p. output 4 € Hsuch that TV (p, h) <O(«)




The Problem: Hypothesis Selection

Input: Known collection of distributions H= {h,, ..., h_}
D = i.i.d. samples z,, ..., z from unknown p

Goal: If there exists h*€ Hsuch that TV (p, h™) <a,
w.h.p. output 4 € Hsuch that TV (p, h) <O(«)

Theorem: Achievable using n = O(log m /a?) samples
(non-privately)




Non-Private Solution: “Scheffé Tournament”
[Yatracos85, Devroye-LugosiOl]

Idea: Set up (2) pairwise contests between candidates,
and output candidate which won the most contests

Contest subroutine: To compare distributions A, ':

Define Scheffé set S = {z : h(x) > h'(z)}

Let A(S) = probability mass h places on S
h’(S) = probability mass h’ places on S
D(S) = fraction of D which landsin S

S h wins if |h(S) — D(S)| < |h'(S) — D(S)|;
otherwise h’ wins



Scheffé Tournament Analysis

[Yatracos85, Devroye-LugosiOl]

[ Theorem: Achievable using n = O(log m /a?) samples }

Chernoff + union

Lemma: If A wins against i, then
TV(h, p) <3 min{TV(h, p), TV(I',p)} + 4 |p(S) — D(S)]
N— ———

— CeIT

Suppose err < « for all (?) pairwise contests simultaneously

Divide H into 4 quality tiers:

By Lemma,
T,: TV(h, p) < « - Every he T} has > | T5|+| T| wins
T,: TV (h, p) € (o, 40 - Every he T, has > | T,|+| T,| losses
T,: TV(h, p) € (4a, 120
T,:'TV(h, p) > 12¢ Hence a 1), hypothesis is never selected



Towards a Private Tournament

A First Attempt: Noisy Pairwise Contests

To compare distributions A, /':
Define Scheffé set S = {x : h(x) > h'(z)}

Let h(.S) = probability mass h places on S
h’(S) = probability mass h’ places on S
D(S) = fraction of D which lands in §

L D(S) = D(S) + Lap (@) }

h wins if [h(S) = D(S)| < |F'(S) —D(S)];
otherwise h’ wins




Analysis of First Attempt

Lemma: If h wins against i, then
TV(h, p) < 3 min{TV(h, p), TV(I',p)} +£4 p(5) 15(5)}
| S

— eIT

By previous analysis, select a good hypothesis as long as err < «
for all (7;) pairwise contests simultaneously

p(S) — D(S)| < |p(S) — D(S)| + |D(S) — D(S)

, Laplace tail bound +
Chernoff + union union

" Theorem: Private hypothésis selection/{possible using
C— 0 <logm N m? logm>

o2 QE

._samples D,




Improving the First Attempt

" Theorem: Private hypothesis selection is possible using

— O <log2m N m? logm>
o aE

._samples )

* Relaxing to concentrated or approximate DP lets us use

Gaussian noise and “advanced” composition, bringing the

second term to mvlogm
QE

* Can possibly be further improved using more efficient

tournaments making O(m) comparisons [Acharya-jafarpour-

Orlitsky-Suresh14, Daskalakis-Kamath14...] TO something like O <@>

0739

Still an exponential “price of privacy”



A Second (and Final) Attempt:
Private Discrete Optimization

Given: An objective function ¢ : X" x H — R
Private dataset D = (z,, ..., ©,)

Output: h € H which approximately maximizes ¢(D, h)

Exponential Mechanism Mcsherry-Talwaro7]

Sample h € H with probability « exp <5q<2DA’ h)>

where A= sup |¢(D,h)—q(D', h)
heH,D~D’

“Sensitivity” of the objective function ¢



Private Discrete Optimization

Exponential Mechanism [Mcsherry-Talwaro7]

Sample h € H with probability o exp (‘SQ(QDA’ h)>

where A= sup |¢(D,h)—q(D’, h)]
heH, DD

L Claim 1: Guarantees e-differential privacy

-
Claim 2: W.h.p. produces h € H with

Alog |H |
3

¢(D,h) > OPT —O (




Instantiating the Exponential Mechanism

@ D, h N
Sample h € H w.p. xexp (5Q(2A’ )) . o

c B O(A log |H
where A = sup lq(D, h) —q(D’, h)| fels ( 08 ‘ ’ / 5)

hE€H,D~D’

-
How to choose ¢?

Attempt 2.1:  ¢(D, h) = #contests won by h
Problem: Very high sensitivity A = m — 1 L

)

Attempt 2.2:  ¢(D, h) = min # of samples in D that
must be changed before h loses at least one contest

Sensitivity 1! (&) By how to ensure OPT is good? A:



Instantiating the Exponential Mechanism

Attempt 2.3: (Really the final one, | swear)

q(D, h) = min # of samples in D that must be
changed before h loses at least one contest

Pairwise contest with draws: To compare distributions h, h':
[Daskalakis-Diakonikolas-Servedioll, Daskalakis-Kamath14]

If h(S) — h'(5) < 6 h
Declare “Draw”

Else if D(S) > h(S) — 3
Declare h as winner

Else if D(S) < h'(S) + 3
Declare 7’ as winner

Else: Declare “Draw”



Instantiating the Exponential Mechanism

Attempt 2.3: (Really the final one, | swear)

q(D, h) = min # of samples in D that must be
changed before h loses at least one contest

Pairwise contest with draws
[Daskalakis-Diakonikolas-Servedioll, Daskalakis-Kamath14]

/Main Lemma: Suppose there exists 1 € H with TV(p, 1) <cu I
Let D = (zy, ..., z,) i.i.d. from pfor n = O(log m /a?). Then w.h.p.,

1) ¢(D, ") > an and (completeness)

() q(D, h) = 0 for every hwhere TV (p, h) > T« (soundness)/




Completing the Analysis

/Exponential Mechanism with sensitivity-1 score N
Sample h € H w.p. « exp (Q(gg’h))
e ¢-DP  W.h.p. outputs h with ¢(D,h) > OPT -0 (logm)
\_ = 7
\

‘Main Lemma: Suppose there exists 1 € H with TV (p, h") <cu
Let D = (x4, ..., ) i.i.d. from p for n = O(log m /a?). Then w.h.p.,

1) ¢(D, ') > an and (completeness)
\2) q(D, h) = 0 for every hwhere TV (p, h) > T« (soundness)

« OPT = ¢(D, ") > an by 1), assuming n > O(log m /a?)

* EM outputs hwith ¢(D, h) > an — O(log m /&) > 0
assuming n > O(log m /ae)

e Conclude TV(p, h) < 7a by 2),assuming n > O(log m /a?)



Completing the Analysis

/Exponential Mechanism with sensitivity-1 score N

Sample h € H w.p. « exp (Q(gg’h))
e ¢-DP  W.h.p. outputs h with ¢(D,h) > OPT -0 (logm)
N A
‘Main Lemma: Suppose there exists 1 € H with TV (p, h") <cu N

Let D = (x4, ..., ) i.i.d. from p for n = O(log m /a?). Then w.h.p.,

1) ¢(D, h') > an and (completeness)
\2) q(D, h) = 0forevery hwhere TV(p, h) > 7a (soundness)

Theorem: There is an e-DP algorithm such that, if there exists N
h*e Hwith TV (p, h™) <aq, the algorithm outputs 4 € H with
TV(p, h) < 7a w.h.p. as long as

n> 0 (logm N logm>

\_ % Qe -




Outline of This Talk

* Problem: Differentially private hypothesis selection

e Algorithms
e (The path to) a basic algorithm
* A semi-agnostic algorithm
* Exploiting combinatorial structure

* Applications
* Privately learning Gaussians
* Product vs. non-product distributions



Obtaining a Semi-Agnostic Algorithm

Input: Known collection of distributions H= {h,, ..., h_}
D = i.i.d. samples z,, ..., z from unknown p

Goal: If there exists h*€ Hsuch that TV (p, h™) <a,
w.h.p. output 4 € Hsuch that TV (p, h) <O(«)




Obtaining a Semi-Agnostic Algorithm

Input: Known collection of distributions H= {h,, ..., h_}
D =i.i.d. samples z,, ..., , from unknown p
Goal: Let OPT = argmin, TV (p, h)
w.h.p. output 4 € H such that TV (p, h)<O(OPT)+«

Y Y °
¢ PS
. o OPT, o
® O\P\T—i—a °®
o ¥ o .
Y ®



Obtaining a Semi-Agnostic Algorithm

Problem: Even the non-private analysis of pairwise contest
with draws seems to require OPT <«

Solution:
1) Run algorithm of Attempt 2.3 T' = log(1/«) times, starting with
o = o, & = 2q, ..., ap = 1 producing hypotheses h,, ..., h;

2) Use algorithm of Attempt 1 to semi-agnostically select the best of
hl, ceey hT

Final sample complexity bound is the same as Attempt 2.3, up to
additive log?(1/a) /ae



Outline of This Talk

* Problem: Differentially private hypothesis selection

e Algorithms
e (The path to) a basic algorithm
e A semi-agnostic algorithm
* Exploiting combinatorial structure

* Applications
* Privately learning Gaussians
* Product vs. non-product distributions



Exploiting the Structure of H

For a set H of distributions, define VC( H) to be the VC dimension
of the collection of Scheffé sets S, ,, = {z: h(z) > h'(z)}

For a distribution p, let N (p, H) = |{h € H: TV(p, h) < a}|

/Theorem: There is an e-DP algorithm such that, if there exists\
h*e Hwith TV (p, h*) <aq, the algorithm outputs 4 € H with
TV(p, h) < Ta w.h.p. as long as

n>0 <logm N logm>

o2 QE

o /




Exploiting the Structure of H

For a set H of distributions, define VC( H) to be the VC dimension
of the collection of Scheffé sets S, ,, = {z: h(z) > h'(z)}

For a distribution p, let N (p, H) = |{h € H: TV(p, h) < a}|

/" Theorem: There is an (£,0)-DP algorithm such that, if there N
exists h*€ Hwith TV (p, ™) <q, the algorithm outputs h € H
with TV (p, h) < Ta w.h.p. as long as

n>0 (VC(H) | Jog Nra(p, H) + log(1/5)>

o2 QE

o /

1) log m = VC(H): Replace Chernoff + union with uniform convergence
2) log m = N(p,H): Exploit stability to pay only for hypotheses with score > 0




Outline of This Talk

* Problem: Differentially private hypothesis selection

e Algorithms
e (The path to) a basic algorithm
e A semi-agnostic algorithm
* Exploiting combinatorial structure

* Applications
* Privately learning Gaussians
* Product vs. non-product distributions



Privately Learning Gaussians

"Problem: Let D = Cl\f(,u, >2) be an unknown d-dimensional

Gaussian. Given i.i.d. samples D = (z, ..., x,) from p,
_privately find a Gaussian h with TV (p, h) < .

/

PN

-



Privately Learning Gaussians

"Problem: Let p = N(u, ) be an unknown d-dimensional '
Gaussian. Given i.i.d. samples D = (z,, ..., z,) from p,
_privately find a Gaussian h with TV (p, h) < .

/

Generic statistical estimation frameworks
[Dwork-Lei09, Smith11]

Private confidence intervals for univariate Gaussians
[Karwa-Vadhan18]

Private means/covariances of multivariate Gaussians
[Kamath-Li-Singhal-Ullman19]

Univariate mean estimation via smooth sensitivity
[Nissim-Raskhodnikova-Smith07, B.-Steinke19]



Privately Learning Gaussians

Problem: Let p = N(y, Id) be an unknown d-dimensional
Gaussian with ||u||, < M. Given i.i.d. samples D = (zy, ..., z,)
_from p, privately find a Gaussian h with TV(p, h) < O(«a).

4 N

Solution via Private Hypothesis Selection

1) Construct a finite cover H of {N(y, Id) : ||ul|, < M} w.r.t. TV
distance. l.e., construct set of Gaussians H such that for every u

with ||u||, < M there exists h € H with TV(N(y, Id), h) < «.

2) Apply Attempt 2.3 using the cover H, incurring error O(«) with

sample complexity What's the VC
n =0 (VC(H) 1 log |H | dimension?

How big does the
cover need to be?

a2 QE



Privately Learning Gaussians

4 N

Problem: Let p = N(y, Id) be an unknown d-dimensional
Gaussian with ||ul||, < M. Given i.i.d. samples D = (zy, ..., z,)
_from p, privately find a Gaussian h with TV(p, h) < O(«a).

VC Dimension of Gaussians
Scheffé sets are halfspaces, which have VC-dimension d+1

@\

Lemma: TV(N{y:, 1), Ny, 14)) < [~ 1, |

Covering Gaussians

= Suffices to cover [,-ball of radius M using balls of radius a
JEM>d

(87

Can be done using a cover of size =~ (



Privately Learning Gaussians

Problem: Let p = N(y, Id) be an unknown d-dimensional
Gaussian with ||u||, < M. Given i.i.d. samples D = (zy, ..., z,)
_from p, privately find a Gaussian h with TV(p, h) < O(«a).

4 N

Solution via Private Hypothesis Selection

1) Construct a size- <@> cover H of {N(y, Id) : ||ul|, < M} w.r.t.

a

TV distance. l.e., construct set of Gaussians H such that for every
1 with |||, < M there exists b € H with TV(N(p, Id), h) < o

2) Apply Attempt 2.3 using the cover H, incurring error O(«) with
sample complexity

n:O<d2-|- d log<dﬂ))
Q e Q




Other Applications

of “Cover-and-Select”

Other variants of Gaussian estimation
Unbounded means, unknown covariances, etc.

Discrete product distributions

Piecewise polynomials

Sums of Independent Integer Random Variables
(SIIRVs)

Poisson Multinomial distributions



Product vs. Non-Product Distributions

Definition: A (k, d)-product distribution is a product
distribution over | k]|

(0%

{ Lemma: The set of (k, d)-product distributions admits

_ g\ A=)
an a-cover of size ~ <_)

So using cover-and-select, we get an -DP algorithm for
learning (&, d)-product distributions to T'V distance a

with sample complexity
~ <kd kd>
n = O ) + —
o) Qe

Setk =2, a=1/2



Product vs. Non-Product Distributions

Definition: A (k, d)-product distribution is a product
distribution over | k]|

(0%

{ Lemma: The set of (k, d)-product distributions admits

_ d(k—1)
an a-cover of size ~ (@)

So using cover-and-select, we get an -DP algorithm for
learning product distributions over {0, 1}? to TV
distance 1/2 with sample complexity

o



Product vs. Non-Product Distributions

Definition: A (k, d)-product distribution is a product
distribution over | k]|

(0%

{ Lemma: The set of (k, d)-product distributions admits

_ d(k—1)
an a-cover of size ~ (@)

So using cover-and-select, we get an -DP algorithm for
learning the mean of a product distribution over {0, 1}¢
to [1 distance 2v/d with sample complexity

e



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?
n "") 0 0 1 0
rows % 3 0 1 1 0
4 1 1 0 1
1/2 1/2 3/4 1/4
+ + + +
Noise(d/en) Noise(d/en) Noise(d/en) Noise(d/en)
(To get a-error per query, need n > d/ ae) [Hardt-Talwar10]

With pure differential privacy



(Privately) Answering Attribute Means

d binary attributes

Unicorn? Pegasus? LovesMuffins? Princess?

n "‘Q 0 0 1 0)
4

rows 4 3 0 1 1 0

4 1 1 0) 1

1/2 1/2 3/4 1/4
+ + + +
Noise(d/en) Noise(d/en) Noise(d/en) Noise(d/en)

(To get [, distance 2v/d, need n > d3/%/¢)

Compare to only d/e for product distributions

[Hardt-Talwarl0]

With pure differential privacy




Open Questions:

Conclusions

New algorithms for private hypothesis selection with minimal
“cost of privacy”

Applications: Private distribution learning, complexity of
privacy under product vs. non-product distributions

Thank you!

Combinatorial characterization of private (and non-private!)
sample complexity

Computationally efficient algorithms for sample-optimal
Gaussian mean estimation

Deeper understanding of complexity of estimation under
product distributions



