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This	Talk	in	One	Slide	
Input:	Known	collection	of	distributions	H	= {h1, …, hm} 

							D = i.i.d.	samples	x1, …, xn from	unknown	p 
Goal:	Find	a	hypothesis	h ∈H	which	is	“close”	to	p in	total	
variation	distance	while	protecting	privacy	of	D 
 
Our	results:	
New	algorithms	with	sample	complexity	competitive	with	
the	best	non-private	algorithms	
	
Applications:	Private	distribution	learning,	complexity	of	
private	mean	estimation	under	product	vs.	non-product	
distributions	



Privacy-Preserving	Data	Analysis	
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Differential	Privacy	
[Dinur-Nissim03,	Dwork-Nissim04,	Blum-Dwork-McSherry-Nissim05]	

[Dwork-McSherry-Nissim-Smith06]	
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Differential	Privacy	
[Dinur-Nissim03,	Dwork-Nissim04,	Blum-Dwork-McSherry-Nissim05]	

[Dwork-McSherry-Nissim-Smith06]	

M	is	differentially	private	if	for	all	
neighbors	D,	D’:	

	

Distribution	of	M(D)  
≈  

Distribution	of	M(D’)  
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M	is	ε-differentially	private	if	for	all	
neighbors	D,	D’	and	T ⊆ Range(M):	

	
	

Pr[M(D)∈T] ≤ eε Pr[M(D’)∈T] 

small	constant,	e.g.	ε	= 0.1  
	⇒	eε ≈ 1 + ε	

	

Differential	Privacy	
[Dinur-Nissim03,	Dwork-Nissim04,	Blum-Dwork-McSherry-Nissim05]	

[Dwork-McSherry-Nissim-Smith06]	



Things	to	Love	about	Differential	Privacy	

Resilient	to	both	known	and	unforeseen	attacks	
	In	particular,	robust	to	post-processing	

	

Group	privacy	
	Automatic	protection	for	small	groups	of	individuals	

	

Composition	
–  	m-fold	composition	at	worst	mε-DP	
– Enables	differentially	private	“programming”	

	



Other	Algorithmic	Applications	
•  Privacy-preserving	data	analysis	(duh)	

•  Algorithmic	mechanism	design	[McSherry-Talwar07,	Kearns-Pai-Roth-
Ullman12,	Nissim-Smorodinsky-Tennenholtz12]	

•  False	discovery	control	in	adaptive	data	analysis	[Dwork-Feldman-
Hardt-Pitassi-Reingold-Roth14,	Hardt-Ullman14]	

•  Proofs	of	concentration	inequalities	[Steinke-Ullman17,	Nissim-
Stemmer17]	

•  Cryptography:	Traitor-tracing	[Tang-Zhang17]	and	multi-party	
coin	flipping	lower	bounds	[Beimel-Haitner-Makriyannis-Omri18]	

•  Gentle	measurement	of	quantum	states	[Aaronson-Rothblum19]	



Variants	of	Differential	Privacy	

ε-“Pure	DP”	[Dwork-McSherry-Nissim-Smith06]	

ε-“Concentrated	DP”	[Dwork-Rothblum12,	B.-Steinke16]	

	

(ε, δ)-“Approximate	DP”	[Dwork-Kenthapadi-McSherry-Mironov-Naor06]	

	

For	all	T⊆Range(M):	 	 	Pr[M(D)∈T]	≤	eεPr[M(D’)∈T]	
Equivalently,	“privacy	loss”	always	≤	ε	

M	satisfies	insert	privacy	definition	if	for	all	neighbors	D,	D’	

For	all	T⊆Range(M):	 	 	Pr[M(D)∈T]	≤	eεPr[M(D’)∈T]	+	δ	
Equivalently,	“privacy	loss”	≤	ε except	with	prob.	≤	δ	

“Privacy	loss”	is	subgaussian	with	standard	dev.	≤	ε		
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ε-DP	
Basic	Composition	
Laplace	Noise	
Randomized	Response	
Exponential	Mechanism	
Sparse	Vector	

ε-CDP	
Advanced	Composition	
Gaussian	Noise	
Projection	Mechanism	
	
	

(ε, δ)-DP	
Truncated	Laplace	Noise	
PTR/Stability	
Smooth	Sensitivity	
	
	

Variants	of	Differential	Privacy	



(Privately)	Answering	Attribute	Means	
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With	pure	differential	privacy	



(To	get	α-error	per	query,	need	n	≥	d/αε)	
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Outline	of	This	Talk	

•  Problem:	Differentially	private	hypothesis	selection	

•  Algorithms	
•  (The	path	to)	a	basic	algorithm	
•  A	semi-agnostic	algorithm	
•  Exploiting	combinatorial	structure	

•  Applications	
•  Privately	learning	Gaussians	
•  Product	vs.	non-product	distributions	



The	Problem:	Hypothesis	Selection	

Input:	Known	collection	of	distributions	H	= {h1, …, hm} 
							D = i.i.d.	samples	x1, …, xn from	unknown	p 

Goal:	If	there	exists	h*∈	H	such	that	TV(p, h*) ≤α,  
       w.h.p. output	h ∈H	such	that	TV(p, h) ≤O(α) 
 

α

O(α) 



The	Problem:	Hypothesis	Selection	

Input:	Known	collection	of	distributions	H	= {h1, …, hm} 
							D = i.i.d.	samples	x1, …, xn from	unknown	p 

Goal:	If	there	exists	h*∈	H	such	that	TV(p, h*) ≤α,  
       w.h.p. output	h ∈H	such	that	TV(p, h) ≤O(α) 
 

Theorem:	Achievable	using	n = O(log m /α2) samples	
	 	 		(non-privately)	



Non-Private	Solution:	“Scheffé	Tournament”	
[Yatracos85,	Devroye-Lugosi01]	

Idea:	Set	up								pairwise	contests	between	candidates,	
and	output	candidate	which	won	the	most	contests	
	

Contest	subroutine:	To	compare	distributions	h, h’:	

S 

Define	Scheffé	set	S = {x : h(x) > h’(x)} 
 
Let	h(S) = probability	mass	h	places	on	S 
    h’(S) = probability	mass	h’	places	on	S 
    D(S) = fraction	of	D	which	lands	in	S 
 

  h wins	if	|h(S) – D(S)| < 	|h’(S) – D(S)|; 
 otherwise	h’ wins 	

 



Scheffé	Tournament	Analysis	
[Yatracos85,	Devroye-Lugosi01]	

Lemma:	If	h	wins	against	h’,	then	
   TV(h, p) ≤ 3 min{TV(h, p), TV(h’,p)}  + 4 |p(S) – D(S)|	

= err 
Suppose	err ≤ α for	all	      pairwise	contests	simultaneously	
	
Divide	H	into	4	quality	tiers:	
	

		T1:	TV(h, p) ≤ α 
		T2:	TV(h, p) ∈ (α, 4α] 
		T3:	TV(h, p) ∈ (4α, 12α] 
		T4:	TV(h, p) > 12α	

By	Lemma,	
-  Every	h∈T1 has ≥ |T3|+|T4| wins	
-  Every	h∈T4	has	≥ |T1|+|T2| losses	
	
Hence	a	T4	hypothesis	is	never	selected	

Theorem:	Achievable	using	n = O(log m /α2) samples		
Chernoff	+	union	



Towards	a	Private	Tournament	
A	First	Attempt: 	 	Noisy	Pairwise	Contests	
To	compare	distributions	h, h’:	

S 

Define	Scheffé	set	S = {x : h(x) > h’(x)} 
 
Let	h(S) = probability	mass	h	places	on	S 
    h’(S) = probability	mass	h’	places	on	S 
    D(S) = fraction	of	D	which	lands	in	S 
 
 
 
 

  h wins	if	|h(S) –       | < 	|h’(S) –       |; 
 otherwise	h’ wins 	

 



Analysis	of	First	Attempt	
Lemma:	If	h	wins	against	h’,	then	
   TV(h, p) ≤ 3 min{TV(h, p), TV(h’,p)} +  4 |p(S) –       |	

= err 

By	previous	analysis,	select	a	good	hypothesis	as	long	as		err ≤ α  
for	all	      pairwise	contests	simultaneously	

Theorem:	Private	hypothesis	selection	is	possible	using	
		
	

samples		

Chernoff	+	union	
Laplace	tail	bound	+	
union	



Improving	the	First	Attempt	
Theorem:	Private	hypothesis	selection	is	possible	using	
		
	

samples		

•  Relaxing	to	concentrated	or	approximate	DP	lets	us	use	
Gaussian	noise	and	“advanced”	composition,	bringing	the	
second	term	to		

•  Can	possibly	be	further	improved	using	more	efficient	
tournaments	making												comparisons	[Acharya-Jafarpour-
Orlitsky-Suresh14,	Daskalakis-Kamath14…	]	to	something	like	

	Still	an	exponential	“price	of	privacy”	



A	Second	(and	Final)	Attempt:		
Private	Discrete	Optimization	

Given:	An	objective	function		
	 		Private	dataset	D = (x1, …, xn) 

Output:	h ∈H	which	approximately	maximizes	q(D, h) 
	
Exponential	Mechanism	[McSherry-Talwar07]	

Sample	h ∈H		with	probability		
			
where		

	
“Sensitivity”	of	the	objective	function	q 



Private	Discrete	Optimization	

Exponential	Mechanism	[McSherry-Talwar07]	

Sample	h ∈H		with	probability		
			
where		

	
Claim	1:	Guarantees	ε-differential	privacy	

Claim	2:	W.h.p.	produces	h ∈H	with			



Instantiating	the	Exponential	Mechanism	

Sample	h ∈H		w.p.	
	

where		
	

•  ε-DP	
•  Error	O(Δ log |H| / ε) 

How	to	choose	q?	
	

Attempt	2.1: 	q(D, h) = #contests	won	by	h 
 Problem:	Very	high	sensitivity	Δ = m – 1 

 
Attempt	2.2: 	 q(D, h) = min	# of	samples	in	D that	

	must	be	changed	before	h	loses	at	least	one	contest	
 	
 Sensitivity	1! 	 			By	how	to	ensure	OPT	is	good? 



Attempt	2.3: 	 	(Really	the	final	one,	I	swear)	
 q(D, h) = min	# of	samples	in	D that	must	be	
	changed	before	h	loses	at	least	one	contest	

	

Instantiating	the	Exponential	Mechanism	

	

Pairwise	contest	with	draws:	To	compare	distributions	h, h’:	
[Daskalakis-Diakonikolas-Servedio11,	Daskalakis-Kamath14]	

S 

If	h(S) – h’(S) < 6α:	
	Declare	“Draw”	

	

Else	if	D(S) > h(S) – 3α:	
	Declare	h	as	winner	

	

Else	if	D(S) < h’(S) + 3α:	
		Declare	h’	as	winner	

	

Else: 			Declare	“Draw”	
	

h	

 h’	



Attempt	2.3: 	 	(Really	the	final	one,	I	swear)	
 q(D, h) = min	# of	samples	in	D that	must	be	
	changed	before	h	loses	at	least	one	contest	

	

Instantiating	the	Exponential	Mechanism	

	

Pairwise	contest	with	draws		
[Daskalakis-Diakonikolas-Servedio11,	Daskalakis-Kamath14]	

Main	Lemma:	Suppose	there	exists	h* ∈H		with	TV(p, h*) ≤α.  
Let	D = (x1, …, xn)	i.i.d.	from	p	for	n = O(log m /α2).	Then	w.h.p., 
	
1)	 q(D, h*) > αn and 	 	 	 	 	 	 	 	 	(completeness) 
 
2)			q(D, h) = 0	for	every	h	where	TV(p, h) > 7α   (soundness) 



Completing	the	Analysis	
Exponential	Mechanism	with	sensitivity-1	score	
Sample	h ∈H		w.p.	
	
•  ε-DP	 •   W.h.p.	outputs	h	with	 

Main	Lemma:	Suppose	there	exists	h* ∈H		with	TV(p, h*) ≤α.  
Let	D = (x1, …, xn)	i.i.d.	from	p	for	n = O(log m /α2).	Then	w.h.p., 
	

1)	 q(D, h*) > αn and 	 	 	 	 	 	 	 	 	(completeness) 
2)			q(D, h) = 0	for	every	h	where	TV(p, h) > 7α   (soundness) 

•  OPT = q(D, h*) > αn    by	1),	assuming	n ≥ O(log m /α2)  
•  EM	outputs	h	with	q(D, h) > αn – O(log m /ε) > 0 

	 	assuming	n ≥ O(log m /αε)  
	

•  Conclude	TV(p, h) ≤ 7α   by	2),	assuming	n ≥ O(log m /α2)  
	



Completing	the	Analysis	
Exponential	Mechanism	with	sensitivity-1	score	
Sample	h ∈H		w.p.	
	
•  ε-DP	 •   W.h.p.	outputs	h	with	 

Theorem:	There	is	an	ε–DP	algorithm	such	that,	if	there	exists	
h*∈	H	with	TV(p, h*) ≤α, the	algorithm outputs	h ∈H	with	
TV(p, h) ≤ 7α w.h.p.	as	long	as 
	

Main	Lemma:	Suppose	there	exists	h* ∈H		with	TV(p, h*) ≤α.  
Let	D = (x1, …, xn)	i.i.d.	from	p	for	n = O(log m /α2).	Then	w.h.p., 
	

1)	 q(D, h*) > αn and 	 	 	 	 	 	 	 	 	(completeness) 
2)			q(D, h) = 0	for	every	h	where	TV(p, h) > 7α   (soundness) 



Outline	of	This	Talk	

•  Problem:	Differentially	private	hypothesis	selection	

•  Algorithms	
•  (The	path	to)	a	basic	algorithm	
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•  Privately	learning	Gaussians	
•  Product	vs.	non-product	distributions	



Obtaining	a	Semi-Agnostic	Algorithm	

Input:	Known	collection	of	distributions	H	= {h1, …, hm} 
							D = i.i.d.	samples	x1, …, xn from	unknown	p 

Goal:	If	there	exists	h*∈	H	such	that	TV(p, h*) ≤α,  
       w.h.p. output	h ∈H	such	that	TV(p, h) ≤O(α) 
 

α

O(α) 



Obtaining	a	Semi-Agnostic	Algorithm	

Input:	Known	collection	of	distributions	H	= {h1, …, hm} 
							D = i.i.d.	samples	x1, …, xn from	unknown	p 

Goal:	Let	OPT = argminh	TV(p, h)  
       w.h.p. output	h ∈H	such	that	TV(p, h)≤O(OPT)+α 
 

OPT	

OPT+α 



Obtaining	a	Semi-Agnostic	Algorithm	
Problem:	Even	the	non-private	analysis	of	pairwise	contest	
with	draws	seems	to	require		OPT ≤α 
 
Solution:		
1)  Run	algorithm	of	Attempt	2.3	T = log(1/α)	times,	starting	with		
α1 = α, α2 = 2α, …, αT = 1	producing	hypotheses	h1, …, hT 
 
2)		Use	algorithm	of	Attempt	1	to	semi-agnostically	select	the	best	of	
h1, …, hT 

	
Final	sample	complexity	bound	is	the	same	as	Attempt	2.3,	up	to	
additive	log2(1/α)	/αε	
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•  Problem:	Differentially	private	hypothesis	selection	

•  Algorithms	
•  (The	path	to)	a	basic	algorithm	
•  A	semi-agnostic	algorithm	
•  Exploiting	combinatorial	structure	

•  Applications	
•  Privately	learning	Gaussians	
•  Product	vs.	non-product	distributions	



Exploiting	the	Structure	of	H 
For	a	set	H	of	distributions,	define	VC(H)	to	be	the	VC	dimension	
of	the	collection	of	Scheffé	sets	Sh,h’ = {x : h(x) > h’(x)} 
 

For	a	distribution	p,	let	Nα(p, H) = |{h ∈ H : TV(p, h) < α}| 

Theorem:	There	is	an	ε–DP	algorithm	such	that,	if	there	exists	
h*∈	H	with	TV(p, h*) ≤α, the	algorithm outputs	h ∈H	with	
TV(p, h) ≤ 7α w.h.p.	as	long	as 
	



Exploiting	the	Structure	of	H 
For	a	set	H	of	distributions,	define	VC(H)	to	be	the	VC	dimension	
of	the	collection	of	Scheffé	sets	Sh,h’ = {x : h(x) > h’(x)} 
 

For	a	distribution	p,	let	Nα(p, H) = |{h ∈ H : TV(p, h) < α}| 

Theorem:	There	is	an	(ε,δ)–DP	algorithm	such	that,	if	there	
exists	h*∈	H	with	TV(p, h*) ≤α, the	algorithm outputs	h ∈H	
with	TV(p, h) ≤ 7α w.h.p.	as	long	as 
	

1)	log m è	VC(H):	Replace	Chernoff	+	union	with	uniform	convergence	
2)	log m è	N(p,H):	Exploit	stability	to	pay	only	for	hypotheses	with	score	> 0 
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Privately	Learning	Gaussians	
Problem:	Let	p = N(µ, Σ) be	an	unknown	d-dimensional	
Gaussian.	Given	i.i.d.	samples	D = (x1, …, xn)	from	p,	
privately	find	a	Gaussian	h	with	TV(p, h) ≤ α.	



Privately	Learning	Gaussians	
Problem:	Let	p = N(µ, Σ) be	an	unknown	d-dimensional	
Gaussian.	Given	i.i.d.	samples	D = (x1, …, xn)	from	p,	
privately	find	a	Gaussian	h	with	TV(p, h) ≤ α.	

Generic	statistical	estimation	frameworks		
	[Dwork-Lei09,	Smith11]	

Private	confidence	intervals	for	univariate	Gaussians		
	[Karwa-Vadhan18]		

Private	means/covariances	of	multivariate	Gaussians		
	[Kamath-Li-Singhal-Ullman19]	

Univariate	mean	estimation	via	smooth	sensitivity	
	[Nissim-Raskhodnikova-Smith07,	B.-Steinke19]	



Privately	Learning	Gaussians	
Problem:	Let	p = N(µ, Id) be	an	unknown	d-dimensional	
Gaussian	with	||µ||2	≤ M.	Given	i.i.d.	samples	D = (x1, …, xn)	
from	p,	privately	find	a	Gaussian	h	with	TV(p, h) ≤ O(α).	

Solution	via	Private	Hypothesis	Selection	
	
1)  Construct	a	finite	cover	H of	{N(µ, Id) : ||µ||2 ≤ M}	w.r.t.	TV	

distance.	I.e.,	construct	set	of	Gaussians	H	such	that	for	every	µ 
with ||µ||2 ≤ M there	exists	h ∈ H with TV(N(µ, Id), h) < α. 

2)			Apply	Attempt	2.3	using	the	cover	H,	incurring	error	O(α) with	
	sample	complexity	 What’s	the	VC	

dimension?	
How	big	does	the	
cover	need	to	be?	



Privately	Learning	Gaussians	

Covering	Gaussians	

Lemma:	TV(N(µ, Id), N(µ’, Id)) ≤ ||µ – µ’||2	

Problem:	Let	p = N(µ, Id) be	an	unknown	d-dimensional	
Gaussian	with	||µ||2	≤ M.	Given	i.i.d.	samples	D = (x1, …, xn)	
from	p,	privately	find	a	Gaussian	h	with	TV(p, h) ≤ O(α).	

⇒ Suffices	to	cover	l2-ball	of	radius	M	using	balls	of	radius	α 
 

Can	be	done	using	a	cover	of	size	 

VC	Dimension	of	Gaussians	
	Scheffé	sets	are	halfspaces,	which	have	VC-dimension d+1 



Privately	Learning	Gaussians	
Problem:	Let	p = N(µ, Id) be	an	unknown	d-dimensional	
Gaussian	with	||µ||2	≤ M.	Given	i.i.d.	samples	D = (x1, …, xn)	
from	p,	privately	find	a	Gaussian	h	with	TV(p, h) ≤ O(α).	

Solution	via	Private	Hypothesis	Selection	
	
1)  Construct	a	size-													cover	H of	{N(µ, Id) : ||µ||2 ≤ M}	w.r.t.	

TV	distance.	I.e.,	construct	set	of	Gaussians	H	such	that	for	every	
µ with ||µ||2 ≤ M there	exists	h ∈ H with TV(N(µ, Id), h) < α. 

2)			Apply	Attempt	2.3	using	the	cover	H,	incurring	error	O(α) with	
	sample	complexity	 



Other	Applications	
of	“Cover-and-Select”	

•  Other	variants	of	Gaussian	estimation	
	Unbounded	means,	unknown	covariances,	etc.	

•  Discrete	product	distributions	
•  Piecewise	polynomials	
•  Sums	of	Independent	Integer	Random	Variables	
(SIIRVs)	

•  Poisson	Multinomial	distributions	



Product	vs.	Non-Product	Distributions	
Definition:	A	(k, d)-product	distribution	is	a	product	
distribution	over	[k]d 

Lemma:	The	set	of	(k, d)-product	distributions	admits	
an	α-cover	of	size 

So	using	cover-and-select,	we	get	an	ε-DP	algorithm	for	
learning	(k, d)-product	distributions	to	TV	distance	α	
with	sample	complexity		

Set	k = 2,	α = 1/2	



Product	vs.	Non-Product	Distributions	
Definition:	A	(k, d)-product	distribution	is	a	product	
distribution	over	[k]d 

Lemma:	The	set	of	(k, d)-product	distributions	admits	
an	α-cover	of	size 

So	using	cover-and-select,	we	get	an	ε-DP	algorithm	for	
learning	product	distributions	over	{0, 1}d to	TV	
distance	1/2	with	sample	complexity		



Product	vs.	Non-Product	Distributions	
Definition:	A	(k, d)-product	distribution	is	a	product	
distribution	over	[k]d 

Lemma:	The	set	of	(k, d)-product	distributions	admits	
an	α-cover	of	size 

So	using	cover-and-select,	we	get	an	ε-DP	algorithm	for	
learning	the	mean	of	a	product	distribution	over	{0, 1}d 
to	l1 distance        with	sample	complexity		



(To	get	α-error	per	query,	need	n	≥	d/αε)	

d	binary	attributes	

n	
rows	

3/4		
+		

Noise(d/εn)	
	

1/4		
+		

Noise(d/εn)	
	

1/2		
+		

Noise(d/εn)	
	

1/2		
+		

Noise(d/εn)	
	

Unicorn?	 Pegasus?	 LovesMuffins?	 Princess?	

1	 0	 1	 0	

0	 0	 1	 0	

0	 1	 1	 0	

1	 1	 0	 1	

(Privately)	Answering	Attribute	Means	

With	pure	differential	privacy	

[Hardt-Talwar10]	



(To	get	l1 distance       ,	need	n	≥	d3/2/ε)	

d	binary	attributes	

n	
rows	

3/4		
+		

Noise(d/εn)	
	

1/4		
+		

Noise(d/εn)	
	

1/2		
+		

Noise(d/εn)	
	

1/2		
+		

Noise(d/εn)	
	

Unicorn?	 Pegasus?	 LovesMuffins?	 Princess?	

1	 0	 1	 0	

0	 0	 1	 0	

0	 1	 1	 0	

1	 1	 0	 1	

(Privately)	Answering	Attribute	Means	

With	pure	differential	privacy	Compare	to	only	d/ε for	product	distributions	

[Hardt-Talwar10]	



Conclusions	
•  New	algorithms	for	private	hypothesis	selection	with	minimal	

“cost	of	privacy”	
•  Applications:	Private	distribution	learning,	complexity	of	

privacy	under	product	vs.	non-product	distributions	

Open	Questions:	
•  Combinatorial	characterization	of	private	(and	non-private!)	

sample	complexity	
•  Computationally	efficient	algorithms	for	sample-optimal	

Gaussian	mean	estimation	
•  Deeper	understanding	of	complexity	of	estimation	under	

product	distributions	

Thank	you!	


