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In this document, we will provide bounds on the expected maximum of n samples from a Gaussian distri-
bution.

Theorem 1. Let Y = max1≤i≤nXi, where Xi ∼ N (0, σ2) are i.i.d. random variables. Then

1√
π log 2

σ
√

log n ≤ E[Y ] ≤
√

2σ
√

log n.

We comment that both constants which multiply σ
√

log n are tight. Indeed, as n → ∞, E[Y ]/
√

log n
converges to

√
2σ. On the other hand, by explicit calculations, one can verify the cases n = 1 and 2, for

which E[Y ] is 0 and σ/
√
π, respectively. In the former case, the inequality trivially holds for any multiplying

constant, and in the latter, our inequality is tight.
First, we show E[Y ] ≤ σ

√
2
√

log n. This result and method are folklore, but we include them here for
completeness.

exp (tE[Y ]) ≤ E[exp (tY )]

= E[max exp (tXi)]

≤
n∑
i=1

E[exp (tXi)]

= n exp
(
t2σ2/2

)
The first inequality is Jensen’s inequality, the second is the union bound, and the final equality follows from
the definition of the moment generating function.

Taking the logarithm of both sides of this inequality, we get

E[Y ] ≤ log n

t
+
tσ2

2
.

This can be minimized by setting t =
√
2 logn
σ , which gives us the desired result

E[Y ] ≤ σ
√

2
√

log n.

Next, we show the more difficult direction, the lower bound. We have already established that it holds
for n = 1 and 2. It can be verified for n = 3 to 2834 using the Python 3 code provided in Section A. Thus,
for the remainder of the proof, we assume n ≥ 2835.

Note that we have the following crude bound, which uses the Chernoff bound and the lower bound on n:

E[Y ] ≥ Pr(|{i : Xi ≥ 0}| ≥ dn/3e) ·E
[

max
1≤i≤dn/3e

|Xi|
]

+ Pr(|{i : Xi ≥ 0}| < dn/3e) ·E[−|Xi|]

≥ 0.999 ·E
[

max
1≤i≤dn/3e

|Xi|
]
− 0.001σ ·

√
2

π
.

The second inequality uses the expected value of the half-normal distribution.
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It remains to lower bound E [max1≤i≤k |Xi|]. We will show that

Pr(|Xi| ≥ σ
√

log n) ≥ 9

n
.

This will imply the following lower bound:

E

[
max

1≤i≤dn/3e
|Xi|

]
≥ σ

√
log n · Pr(∃i : |Xi| ≥ σ

√
log n)

≥ σ
√

log n ·

(
1−

(
1− 9

n

)dn/3e)

≥
(

1− 1

e2

)
σ
√

log n

We compute the CDF of |Xi| at the point σ
√

log n.

Pr(|Xi| ≥ σ
√

log n) = 1− erf

(√
log n√

2

)
≥ 1−

√
1− exp

(
− 2

π
log n

)
= 1−

√
1− n− 2

π ,

where the first equality is based on the CDF of the half-normal distribution and the inequality is from the

bound on the error function, erf(x) ≤
√

1− exp
(
− 4
πx

2
)
[Bul]. We require this value to be at least 9

n :

1−
√

1− n− 2
π ≥ 9

n
⇔

1− 9

n
≥
√

1− n− 2
π ⇔

1− 18

n
+

81

n2
≥ 1− 1

n
2
π

⇔

n2−
2
π ≥ 18n− 81 ⇔(

2− 2

π

)
log n ≥ log(18n− 81) ⇔(

2− 2

π

)
log n

log(18n− 81)
≥ 1

This inequality holds for all n ≥ 2835, as desired.
Putting these inequalities together, we have

E[Y ] ≥ 0.999

(
1− 1

e2

)
σ
√

log n− 0.001σ ·
√

2

π
≥ 1√

π log 2
σ
√

log n,

where the second inequality holds for any integer n > 1.

Other proofs. Proofs of qualitatively similar lower bounds also appear in [vH14] and [OP15].

Acknowledgments

The author would like to thank Francesco Orabona, Dávid Pál, Zifan Li, Ambuj Tewari, Pan Li, Kshiteej
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[OP15] Francesco Orabona and Dávid Pál. Optimal non-asymptotic lower bound on the minimax regret of
learning with expert advice. arXiv preprint arXiv:1511.02176, 2015.

[vH14] Ramon van Handel. Probability in high dimension. Technical report, Princeton University, 2014.

A Code for verifying small n

We derive a simple method for computing the expected maximum of a set of random variables. This will
not, in general, give closed form expressions, but will be amenable to numerical evaluation.

Let FX(x) be the CDF of a random variable X, i.e., FX(x) = Pr[X ≤ x]. If Y = max1≤i≤nXi where the
Xi are all i.i.d. according to X, then this simplifies to FY (x) = FX(x)n. Taking the derivative of the CDF
gives us the PDF f , and thus by chain rule, fY (x) = nfX(x)FX(x)n−1. Integrating over the entire domain
gives us the expected value, and thus

E[Y ] =

∫ ∞
−∞

xnfX(x)FX(x)n−1dx.

We substitute in the following expressions for N(0, 1):

fX(x) =
1√
2π

exp

(
−x

2

2

)
;

FX(x) =
1

2

[
1 + erf

(
x√
2

)]
,

giving the following expression:

E[Y ] =

∫ ∞
−∞

x · n · 1√
2π

exp

(
−x

2

2

)
·
(

1

2

[
1 + erf

(
x√
2

)])n−1
dx.

As mentioned before, it is not generally possible to evaluate this integral in closed form. Instead, we use
numerical integration from Python 3’s SciPy library. In particular, we verify the theorem for n = 3 to 2834.

import scipy.integrate as integrate

import scipy.special as special

import numpy as np

import math

for n in range(3,2835):

result = integrate.quad(lambda x: x*n*(1/np.sqrt(2*math.pi))*math.exp(-math.pow(x,2)/2)\

*math.pow(0.5*(1 + special.erf(x/np.sqrt(2))),n-1), -np.inf, np.inf)

if ((result[0]-result[1])/np.sqrt(np.log(n))) <= 1/np.sqrt(math.pi*np.log(2)):

print("The inequality may not be true for n = " + str(n))
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