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1 Introduction

In 1963, Dynkin introduced the secretary problem [6]. In this problem, an algorithm is presented
with n positive values, one by one. After each value, the algorithm must either accept or reject
the value, where all decisions are final. The algorithm can only pick one value, and the goal is
to pick the maximum value in the sequence. The name for this problem arises from a situation
where n candidates are interviewed for a secretary position, and the interviewer wants to hire
the best candidate. Other names for this problem include the best choice problem, the marriage
problem, and the MIT dating problem.

At first glance, it may seem impossible to hope to pick the greatest value - since the values are
arbitrary, couldn’t we always have a bigger element after we accept one? It turns out that one
can pick the best value with probability approaching é The essential idea is to learn properties
of the sequence based on the first several values, and then using what we learned in order to
make a decision on the remainder of the sequence.

This concept is very general, and can be applied on extensions of the original problem. Indeed, a
number of extensions have studied - the most natural extension is the multiple-choice secretary
problem [7], where the algorithm may choose k values, rather than just one. Other extensions
include the submodular secretary problem [3] and the knapsack secretary problem [1]. In
this survey, we concern ourselves with the matroid secretary problem. This is another multiple-
choice secretary problem, but the elements selected must be an independent set in some matroid.
This problem was introduced by Babaioff et. al in 2007 [2], where they provide a O(logk)
approximation, where k is the rank of the matroid. While there have been many results on
particular matroid structures [5] or in slightly modified models [8], it has proven challenging to
improve on this approximation. In 2012, a new result by Chakraborty and Lachish improves
the approximation factor to O(y/logk), though it is conjectured that there exists a constant
factor approximation for general matroid settings.

Surprisingly, matroid secretary problems also have applications in mechanism design. We can
consider an auction in which agents arrive one by one. Agents have a set of outcomes that
would satisfy them - they gain a value of v; if they are satisfied, and 0 otherwise. Once an agent
arrives, he announces his value. At that point, the mechanism must either commit to satisfying
the agent or not. After all agents have arrived, the mechanism must output an outcome which
fulfills all prior commitments. We'd like an auction to be truthful (an agent has no incentive
to lie about his value v;) and to maximize the social welfare (maximizing ), ¢ v;, where S is
the set of satisfied agents). It turns out that an approximate solution to a matroid secretary
problem can be used to design a truthful mechanism that approximately maximizes the social
welfare [1].



2 Preliminaries

2.1 Matroids

A matroid is a combinatorial structure, which can be thought of as a generalization of a forest
on a graph. We provide the formal definition first, followed by several examples to illustrate
the properties of a matroid.

Definition 1 A matroid is a pair (U,Z), where U (the ground set) is a finite set, and T
(the independent sets) is a set of subsets of U. T has the following properties:

1. ) € T (The empty set is independent.)

2. VX CY CE)Y €T — X €T (Every subset of an independent set is independent. This
is the hereditary property.)

XY eIN|X|<|Y|—=3TyeY {ytUX €T (Given two independent sets of different
sizes, there exists an element in the larger set which can be added to the smaller set without
breaking independence. This is the augmentation property.)

We will find it convenient to refer to the rank and a basis of a matroid.

Definition 2 The rank of a matroid is the maximum cardinality of any independent set.

Definition 3 A basis of matroid is an independent set with cardinality equal to the rank of
the matroid.

Matroids arise naturally in a number of combinatorial settings, as shown in the following ex-
amples. As an exercise to gain intuition about matroids, verify that they follow the properties
stated in the definition.

e Uniform matroid: A uniform matroid of rank k£ has a ground set U, where a subset X of
U is independent iff | X| < k.

e Partition matroid: Suppose we have some collection of k disjoint sets S;. A partition
matroid has a ground set U = U; S;, where a subset X of U is independent iff | X N.S;| <
1 Vi. The rank of this matroid is k.

e Graphic matroid: Suppose we have some graph G = (V| E). A graphic matroid has a
ground set U = E, where a subset X of U/ is independent iff X does not contain a cycle
in G. If the graph is connected, the rank of this matroid is |V| — 1. Otherwise, the rank
is |V| — ¢, where ¢ is the number of connected components. Note that a basis of this
matroid corresponds to a spanning forest of G.



e Gammoid: Suppose we have a graph G = (V, E), with two (not necessarily disjoint)
subsets of V: S and T. A gammoid has a ground set &/ = T, where a subset X of U is
independent iff there exists | X| vertex disjoint paths from S onto X. A gammoid is strict
fU=T=1V.

e Transversal matroid: Suppose we have a bipartite graph G = (U, V, E). A transversal
matroid has a ground set U = U, where a subset X of U is independent iff there exists a
matching of size |X| between the elements of X and V. Note that this is a special case
of a gammoid.

e Vector matroid: Suppose we have a vector space V. A vector matroid has a ground set
U = S, where S is some finite subset of V. A subset X of U is independent iff X is
linearly independent in V.

A natural extension to a matroid is a weighted matroid, in which we assign weights to the
elements.

Definition 4 A weighted matroid is a pair (w, M), where M = (U,T) is a matroid and
w:U — RY is a function which assigns a positive weight to each element.

For ease of notation, we let w(X) =" _y w(x).

There exists a very simple greedy algorithm which computes a maximum weight basis of a
matroid. This algorithm is a generalization of Kruskal’s algorithm on graphic matroids.

Algorithm 1 The greedy algorithm on matroids

Sort the elements of U in decreasing order of weight
B=10
for xr € U do

if BU{z} € 7 then

B+ BU{z}

end if

end for

return B

2.2 The Secretary Problem
2.2.1 The Classical Secretary Problem

While there are many variants of the classical secretary problem, the most common variant is
as follows: An algorithm is given n positive values sequentially, where the value of n is known
beforehand. The specific values given are arbitrary, but they are provided to the algorithm in
a uniformly random order. After being given each value, the algorithm can either choose to



accept or reject the value, where all decisions are irreversible. The algorithm may only accept
one value, and the goal is to maximize the probability of choosing the greatest value.

It turns out that a very simple algorithm yields a constant probability of choosing the greatest
value. Consider the following algorithm:

Algorithm 2 Constant probability secretary problem algorithm
threshold = 0
fori=1,...,5 do
Reject Ali]
threshold = max(threshold, Ali))
end for

fori=2%,...,ndo
if Ali] > threshold then
Accept Ali]
else
Reject Ai
end if
end for

We reject the first half of the values, compute a threshold equal to the maximum value in
the first half, and then accept the first value greater than the threshold. Observe that, if the
second largest element is in the first half, and the largest element is in the second half, then
this algorithm will output the maximum element. This happens with probability - - 5= > %,
giving us at least 25% chance of selecting the maximum element. This can be improved to a
fraction % ~ 36.8% using a very similar algorithm with a neater analysis - instead of rejecting

the first 2, we reject only the first 2 elements before setting the threshold.

2.2.2 Matroid Secretary Problems

It turns out the most natural generalization of the secretary problem is to modify the nature of
the objective function. While before, we were trying to maximize the probability of picking the
best value, we now attempt to maximize our expected value. The description of the matroid
secretary problem is as follows: There is a weighted matroid (w, M). Before the process begins,
an algorithm is provided with the matroid M, but not the weights. The algorithm maintains
an independent set S, which is initially (). The weights of the elements of I/ are provided to the
algorithm in a uniformly random order. Immediately after observing the weight of an element
x, if SU{z} € Z, then the algorithm may choose to accept it (thereby adding it to the set )
or reject it. The goal of the algorithm is to maximize the value of w(.S5).

In the models studied in this survey, weights are assigned to elements arbitrarily (the zero infor-
mation model). Since it appears to be quite difficult to obtain a constant factor approximation
in this model, there are some results on relaxations of this model [§].



Finally, there exists a more difficult restriction of the problem, which we call the strict-
comparison model. In this model, the algorithm only learns the ranking of an element relative
to the previous elements, and not the precise weight of an element.

The performance of an algorithm is typically measured by taking the ratio of w(OPT) and
Elw(S)], where OPT is a maximum weight basis of M. We say an algorithm is c-competitive
if w(OPT) < cEw(S)].

2.3 Connections to Mechanism Design

In the introduction, we described a connection between the matroid secretary problem and
online auction mechanism design. Now that we have some matroid terminology at our disposal,
we can be more concrete in our definition of the outcomes which satisfy an agent. We can define
a one-to-one correspondence between agents and elements in the ground set of a matroid, and
say an agent is satisfied when the element is in our chosen independent set of the matroid.
Some auction settings are described below - for more details, see [2].

o Selling k identical items: There are n agents and k identical items for sale. An agent
will be satisfied if he gets any item, and dissatisfied otherwise. This corresponds to the
uniform matroid of rank k.

o Unit-Demand Domain: There are n agents and m non-identical items for sale. Each agent
wants to get exactly one item from some subset of items which would satisfy him. This
corresponds to a transversal matroid.

e Gammoids: In a gammoid, we are trying to connect sources to sinks in edge-disjoint
paths. This can be seen as a sort of routing auction, with potential applications in the
routing of internet traffic.

While there are specific algorithms giving constant factor approximations for several of these
settings, we have yet to develop a constant factor approximation for the general matroid sec-
retary problem. Having a unified framework for all matroid secretary problems would greatly
enhance our understanding of the problem, and pave the way for more advanced work.

3 Algorithms

3.1 A O(1) Approximation on Uniform Matroids [7]

This result predates work on matroid secretary problems, and was originally phrased as a
multiple-choice secretary problem. First, we note that the result is phrased differently. The

result says that we can obtain a value of at least (1 — \%) v, where v is the optimal solution.

Converting this to our terminology, it says that the algorithm is \/\E/Z competitive. This can

be converted to a constant factor approximation by using the given algorithm for sufficiently




large k, and using the classical secretary algorithm for all k£ smaller than this value. For large k
(say, larger than 36), we can see that the approximation factor is < 6. For small k, the classical
algorithm can be analyzed in this case as follows: The value of the maximum element is at least
7, and we pick it with probability %, so our expected payoff is at least ;=. For k smaller than
36, this gives a 36e approximation, providing us with a O(1) approximation for the problem.

The result in the paper is actually stronger than this statement - it shows that our approximation
can get arbitrarily close to 1 for large enough k, and gives a rate at which our approximation
improves. It turns out this is asymptotically optimal - any algorithm can only obtain a 1 —

Q (\/LE) fraction of the optimal value.

At a high level, the algorithm can be approximated as the following: We break the sequence
of n elements into several segments which roughly double in length each time, where the first
segment is of length approximately 7. There’s a tradeoff here, similar to the classical problem,
in which we choose the optimal point to stop learning and start trying to make a decision. We
would like to defer the decisions as long as possible, so that we know the maximum amount
about the distribution. However, if we wait too long, we will miss all the best elements. It
turns out an appropriate way to choose the items is to pick one element from the first segment,
and double the number of elements we choose in each subsequent segment. We use information
from all the previous segments to make decisions - specifically, if we have seen a fraction p of all
elements, we will take any element that would fall in the top pk fraction of the past elements,
since under a random permutation, this sample would be a good representation of elements
which fall in the top k£ elements. In particular, note that when we reach the end of the process,
this threshold value would be exactly the top k elements in the sequence.

More precisely, the algorithm is as follows: If £k = 1, then apply Algorithm 2. Otherwise, draw

m from Binomial (n, ). Recursively select { = |%] elements from the first m values. Set a
threshold ¢, equal to the [th largest value from the first m values. After the first m values,

select every value which is greater than ¢, up to a maximum of k£ elements.

As this is a recursive algorithm, it is natural to analyze it by induction on k. First, we adjust
the weights of the elements. If an element is in the optimal solution 7" (i.e., it is one of the
largest k values), it maintains its original weight. Otherwise, it is assigned a weight of 0.

One key difference between this algorithm and the classical algorithm is the method in which
we partition the sequence. Before, we deterministically split the sequence at the halfway
point. Now, we randomly split the sequence at a position determined by a sample from
Binomial (n, %) Let S be the set of all elements, and Y and Z refer to the elements be-
fore and after the split, respectively. One can verify that Y will be a uniformly random subset
of all 2" subsets of S.

The analysis is broken into two halves - we argue about the value added to our solution by
Y, and then by Z. If we have r items from 7" in Y, then in expectation, the total value of Y
is zv. We further modify the weights for the elements in Y - if it is in the top [ elements of
Y, it keeps its value, otherwise, it gets the value of 0. This makes the total expected value of

Y (given r) be %(”)v To make this unconditional on 7, we take the weighted sum over the

possible values of r, getting a value of at least (1 — ﬁ) 5. This allows us to use our induction

hypothesis, giving a total expected value obtained from Y of at least <1 — %) (1 — ﬁ) 5
3
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Algorithm 3 Multiple-choice secretary problem
if £ =1 then
Run Algorithm 2, the classic secretary algorithm

else
m < Binom(n, 3)
[+ [5]
Recursively run algorithm on first m items in sequence, pick up to [ values
B «+ sort(A[l],..., Alm])
threshold < Bl]
fori=m+1,...,ndo
if we have selected fewer than k items total, and w(A[i]) > threshold then
Accept Ali]
else
Reject Ali]
end if
end for
end if

Next, we turn our attention to the value obtained from Z. Let y; > yo > ... > y; be the [ largest
elements from Y. We let ¢; be the number of elements between y;_; and y;, and ¢ = 22:1 G-
Intuitively, ¢ is the number of elements which we would pick based on our threshold, if our total
number of choices could be greater than k. We would like this number to be close to [ - if it is
too large, we will pick many worthless elements, and if it is too small, our threshold will be too
high to realize that some of the valuable items are worth taking. This quantity ¢ is bounded in
distance from [ by relating the ¢; to geometrically distributed random variables. We get that

the expected value of the elements selected from 7 is at least (1 — ﬁ) 5. Adding this to the

value obtained from Y, we can confirm the induction hypothesis, giving a total expected value

5
of at least (1 — \/_E) .

3.2 A logk Approximation on General Matroids [2]

This algorithm is almost identical to the classical secretary problem. We observe the first half
of the input, set a threshold based on this sample, and choose every element in the second
half which is greater than this threshold (with the added requirement that we can not pick
an element which would break independence). While before, we simply chose the maximum
value in the first half as a threshold, we now scale this maximum value down, dividing by
some number between 1 and the rank of the matroid, k. It is slightly difficult to motivate
this threshold. We can examine a few cases - if the values in the optimal solution are roughly
uniform, then scaling by a factor of 1 or 2 is most appropriate, since it is likely that we’ll find
several more elements with weights around this value. However, if the optimal solution has
a few elements with very large weight, then scaling by a factor close to k is appropriate - we
have likely already missed many of the larger values, so we must lower our threshold to hope to
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make up for missing the large elements by getting many smaller elements. Randomizing over
the choice of scaling serves to balance between all these cases, and rather than having a perfect
algorithm in one of these cases, we have an approximate algorithm in all cases.

n

More formally, the algorithm is as follows: Let S be the first § elements. Reject all elements
from S. Let [ be the element with the maximum weight in S, and w(l) be its weight. We
select a random integer j from 0 to [logk], and let our threshold be t = # After observing
S, we initialize our set B to (). Then, for all remaining items z, we accept it if BU{z} € T
and w(z) > t, and reject otherwise. Note that we need very little information to run this
algorithm, as this is oblivious to the structure of the matroid. It turns out that we don’t even
need the rank of the matroid, as we can estimate the rank based on the rank of S at the cost
of a constant factor to our approximation (this method is detailed explicitly in the algorithm
in the following section). The only knowledge we actually need is an oracle for checking if a set
is independent or not.

Algorithm 4 O(log k) approximation for the matroid secretary problem
fori=1,...,5 do
Reject Ali]
end for
j < Uniform(0,logk)
threshold + ——ielle- ghwAl)
B+ 0
fori=5+1,...,ndo
if w(Ali]) > threshold & B U {A[i]} € Z then
B+ BU{A[i]}
end if

end for

return B

We need a few definitions for the analysis. Let v; > vy > ... > v be the values of elements in
the optimal solution B*. We consider only the values that are at least 7t - these values will be

v1,...,v, Note that > 7 v > %Zle v;, since the values we excluded are sufficiently small.
For a set A, we define n;(A) to be the number of elements which are at least v;, and m;(A) to
be the number of elements which are at least 5. This factor of two becomes relevant due to

the fact that our threshold 2% is a value divided by a power of 2.

We show a 32[log k] approximation factor. This is equivalent to showing a factor of 16[log k]|
approximation to the sum of the largest ¢ values from the optimal solution. The largest ¢ values
have a sum vyng(B*) + 327" (viy1 — vi)ni(B*). If B is our algorithm’s solution, the value is
at least 2my(B) + >0 (%4 — 9)m,(B). Therefore, it suffices to show that 8(log k)m,(B) >
n;(B*) in expectation.

First, we consider the special case of © = 1. The analysis of this case is similar to the classical
secretary algorithm. We know n;(B*) = 1, by definition. We know that S contains the second
largest element, but not the largest element with probability at least ;11. If we choose the



threshold with j = 0 (an event that occurs with probability @), we will select the largest

element. Therefore, the expected value of my(B) is at least @.

Next, we consider ¢ > 1. This time, we condition that the largest element is in the sample S,
which occurs with probability % We also condition that our choice of j is the one satisfying

5 < % < v;. Such a j exists based on the fact that v; > 9+ = ;ﬁ)%, and we pick it with
1

probability gk There are at least ¢ items which exceed the threshold, and in expectation, at

least % > fl of these items are in the second half of the input. Therefore, we’ll pick at least
7 items using this algorithm. Given the above conditionings, m;(B) > 7 in expectation. We
remove the conditioning by multiplying by their probability, giving E[m;(B)] > —++. Since

2 Slogk
n;(B*) = i, this gives the desired result.

3.3 A logk Approximation on General Matroids in the Strict-Comparison
Model [8]

Recall that in the strict-comparison model, we do not obtain the specific weight of an item, we
only learn which elements it is greater than and less than. In the auction setting, this might not
be a necessary restriction - it seems impractical to design a mechanism in which we ask agents
their relative value compared to other agents. One can imagine settings closer to the literal
secretary problem - where we are trying to hire a good secretary, and we can only compare
applicants relative to each other. It does not seem obvious where this sort of situation might
apply in a matroid setting. However, this problem is most interesting due to the challenge - this
is a non-trivial restriction to the matroid secretary problem, and from a theoretical standpoint,
it is interesting that we can still approximate it to within the same factor as the best known
algorithm (at the time).

This algorithm is closer in flavor to the uniform matroid approximation than the other general
matroid algorihm. In the general matroid case, we throw out a lot of information - we are
only concerned with the maximum element of the sample, and we scale it by some factor. On
the other hand, in the uniform matroid case, we used the relative ranking of prior elements
extensively - in particular, we assumed that the greatest [ values in some fraction p of the
sequence behaves like the greatest fo values overall. This is the case here - we compute the
optimal basis of the sample, and assume that this is representative of the optimal basis for the
entire sequence. Specifically, we set the threshold equal to one of the elements in the optimal
basis of the sample. However, as in the previous general matroid algorithm, we run into the
same problem - we don’t know how the values are distributed. Therefore, to avoid adversarial
distributions, we randomize over the choice of our threshold - we can pick one of the larger or
smaller values of the optimal basis, based on the outcome of a random drawing.

We now describe the algorithm in more detail. The algorithm has a number of peculiar charac-
teristics. First, with probability %, we simply run the classical secretary algorithm. As before,
this will be used to give a constant factor approximation when the rank of the matroid is low.
Otherwise, we choose a stopping point m ~ Binom(n, %) We reject the first m samples, which
we denote by S. We then run the greedy algorithm to compute a maximum weight independent
set on S, which we denote A = {a4,...,a,}, where a; > ... > a,. If we happen to know the



rank k, we choose t = |logs k|. Otherwise, we choose ¢ to be either |logsr]| or [logsr| + 1
with equal probability. The idea is that, in expectation, the rank r of the first half is a good
estimate of the overall rank. Next, j is an integer, chosen uniformly randomly between 0 and
t. We set a threshold equal to w(as;) - for the remainder of the input, we add an item x to our
solution B if BU {z} € T and w(x) > w(azs), and reject it otherwise.

Algorithm 5 O(log k) approximation for matroid secretary problem in strict-comparison set-
ting
p < Bernoulli(3)
if p =0 then
Run Algorithm 2, the classic secretary algorithm
else

m < Binomial(n, 3)
fori=1,...,m do
Reject Ali]
end for
B «+ Greedy(A[l],..., Alm]), where Greedy is Algorithm 1
S < sort(B)
t < |logs k]
J < Uniform(0,t)
threshold <+ w(S[3’])
fori=m+1,...,ndo
if w(A[i]) > threshold & B U {Ali]} € Z then
B+ BU{A[i]}
end if
end for
return B
end if

A theme through the analysis of this algorithm (and indeed, many secretary algorithms) is that
a random sample should be “pretty close” to the complement of this sample. This is made
rigorous through the use of Chernoff bounds.

We start by assuming we know the rank. After, we will show that if we don’t know the rank,
our guess is correct with constant probability.

Here, we see the same useful property of sampling m from the binomial distribution as we did
in the uniform matroid case. Particularly, if we choose S to be the first m ~ Binomial(n, 3)
elements, then each element is in S with probability % independently, where the randomness is
over both the choice of m and the random permutation. Therefore, in expecation, we have half
the optimal solution in the first half, and E[w(A)] > tw(OPT).

To compute the expected weight of the set returned by the algorithm, we do a weighted sum
over each of the possible values of j. We know that each element returned by the algorithm is
at least w(ag;) for a fixed j, so we sum over the expectation of |ALG| - w(ag;). The number
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of elements selected by the algorithm is the rank of the unsampled elements larger than our
threshold, w(as;). This is at least the number of unsampled elements larger than the 37th
largest element overall. We’d expect this to be roughly % - a more concrete statement is made
through the use of Chernoff bounds. After lower bounding each term in the overall sum by the
weight of a range of values, and some arithmetic, we get that O(logr)E[w(ALG)] > E[w(A)].
Using the prior relationship between E[w(A)] and w(OPT), we conclude the desired result,
O(logr)E[w(ALG)] > w(OPT).

In order to alleviate the problem of not knowing the rank, we consider the sampled rank r -
the rank of the optimal solution on the first half, A. This can only be less than the actual rank
of the matroid, which is k. Again using Chernoff bounds, one can show that, with constant
probability, the sampled rank is at least £. If so, then value of |logyr] is either |logs k| or
|logs k| — 1, which are the two possible choices. Therefore, we will guess the rank with constant
probability, multiplying our competitive ratio by only a constant factor, and still allowing us
to be O(log k)-competitive with the optimal solution.

3.4 A /logk Approximation on General Matroids [4]

The most recent result on the general matroid secretary problem is a /logk approximation
algorithm. While this algorithm is very complex, and full description and analysis is beyond
the scope of this survey, it uses several techniques from other algorithms, as well as some brand
new techniques. Therefore, we will provide a rough description of the algorithm and some
intuition about why it works.

First, the algorithm requires each weight to be a power of 2. If this is not the case, then we can
treat each value as if it were rounded to the next power of 2, and we only double the competitive
ratio (at worst). We group the values into buckets - a bucket will contain all elements with a
given value.

Similar to a previous algorithm, we run the classical secretary algorithm on the problem with
probability % This allows us to handle the case where the largest element is at least the
expected payoff of the algorithm. The rest of the analysis depends on the largest element being
sufficiently small, and the classical algorithm provides a simple method for obtaining the desired
approximation if this is not the case.

As in many other algorithms, we sample a set S, which is the first m ~ Binomial(n, %)
elements. After S, we estimate the value of the optimal solution and the rank of the matroid.
These estimates are based off the corresponding values computed on S - we can guarantee these
estimates to be close to the actual values by Chernoff bounds. After this point, the algorithm
diverges into two separate algorithms, based on certain properties of the elements of S. The
authors of this paper name these algorithms the simple algorithm and the protection algorithm,
respectively.

The simple algorithm could also be named the hindsight algorithm. We run this algorithm
if one of two properties holds. If we knew the given property was going to hold before the
sequence started, we would have exploited it. Since we can’t go back, we simply exploit the
property from that point onwards. Using symmetry and Chernoff bounds, it is likely that the
remaining elements have some approximation of the property as well.
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The first property that triggers the simple algorithm is if there exists a single bucket containing
elements with a sufficiently high rank and weight. The second property that triggers the simple
algorithm is if there exists a set of buckets X containing a subset of “high independence” of
sufficient weight. By this, we mean that, for any element in this set, it can be added to any
other independent set made from elements of X without breaking independence. For either of
these properties, we continue by selecting any element which falls into the relevant bucket(s).
It is likely that this sample is representative, so following this rule will give a comparable result.

The protection algorithm is significantly more complicated. We would like to avoid the following
bad scenario: we have to turn down a high weight item since we accepted conflicting low weight
items earlier. Ideally, when we were faced with the decision of choosing the low weight items,
we would like to be able to look into the future and see if we’d be blocking valuable items later.
Of course, we can’t do this - instead, we look at the elements we already sampled. For some
buckets, we pretend we selected some of the heavier items before, and only add new items if
they are independent from the union of our current solution and these heavy items. Of course,
there is some balancing of parameters present - if we take too many heavy items, we will not
take any new items.

Further analysis shows that, no matter which of these subroutines is run, we get an approxi-
mation of y/log k, which is currently the best known approximation to the matroid secretary
problem.

4 Conclusion

In this paper, we surveyed a number of algorithms for the matroid secretary problem. While the
settings vary, we saw a number of themes common to several of the approaches, as well as some
interesting design differences. For example, all the algorithms here reject some prefix of the
input. However, this prefix length can vary - sometimes we choose a deterministic length, other
times we choose a length based on a draw from a binomial distribution, depending on which is
more convenient for analysis. We often assume some properties of the prefix to be representative
of the sequence of the whole. Sometimes we compute a threshold based on a complicated
function of an element’s weight, sometimes we set this function to be the identity. These
techniques provide a useful set of tools for analysis of matroid secretary problems, though it
seems likely that new techniques will have to be employed to reach the elusive O(1)-competitive
algorithm.
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